
OAT cuu:at
N HIGHEST ~N PROTEIN

Aug/Sept I98I $2.

Colorcue
A bi-monthly publication by and for
Intecolor and Compucolor Users

August/September 1981
Volume 4, lJumber 1

3 Editors' Notes

3 Compucolor Policy

5 The Serial Port, by Ben Barlow
How to use the RS232 port.

13 Lower Case y's, by Tom Devlin
A sirn?le, cheap fix for a nagging problem

14 Screen Dump to MX-88, by Mark Fairbrother

Editors:
Ben Barlow
David B. Suits

Subroutine to move graphic image from screen to printer

17 User Group Bulletin Board

19 Assembly Language Programming, by David B. Suits
Part 1 of a series for the beginner

Advertisers: You will find our advertising policies attractive! Write
for details.

Authors: This is a user-oriented and supported publication. Your
articles/tips/hints are required to make it go. Send your articles or
write for information.

Colorcue is published bi-monthly by Intelligent Systems Corporation,
with editorial offices in Rochester, New York. Editorial and subscription
correspondence should be addressed to the Editors, Colorcue, 161
Brooks ide Drive, Rochester, NY 14618. Product related correspondence
should be addressed to ISC, 225 Technology Park, Norcross, GA 30092,
ATTII: Susan Sheridan. Reproduction in whole or part without permission
is discouraged. Opinions expressed in by-line articles are not
necessarily those of the editors or of ISC. Hardware/software items are
checked to the best of our abilities, but are NOT guaranteed.

Editors'
Notes ...

The editorial duties of Color
cue have been assumed by a new
editor. In fact, there are two of
us. Since we plan to be around
for a while, let us introduce
ourselves.

David B. Suits obtained his
PhD. in philosophy from the
University of Waterloo in Ontario,
Canada, and teaches philosophy at
the Rochester Institute of Technol
ogy. He has published articles in
both philosophy and microcomputer
journals and has written a book
about Intecolor/Compucolor graph
ics. Dave became interested in
computers when he discovered that
his programmable calculator was
too small to handle a chess-play
ing program. He's been the librar
ian of the Rochester Compucolor
Users Group for 2 1/2 years and
is interested in artificial intel
ligence, music, and hardware.

Ben Earl ow is a computer
hacker. A systems programmer for
many years, he is now involved
with computers only as a hobby.
He works for the Xerox Corporation
in Rochester, and for the past 2
1/2 years he has edited and
published Datachip, the Rochester
Compucolor Users Group newslet
ter. His interests lie in the area
of hardware and external world
interfaces.

A word about policies is in
order, especially in light of the
recent shifts of Colorcue direc
tion. Colorcue will continue to
be a bi-monthly (every 2 months)
publication directed toward both
new and experienced users of
Intecolor and Co~uucolor compu-

t e r s . We a r e c omm i t t e d t o i t s
timely publication and to a goal
of providing top-quality, accu
rate and useful information to
our readers. At the same time,
however, we're dependent upon your
participation. We need your arti
cles, programs and ideas to make
this magazine into what it should
be and what we're sure you want
it to be. Let us and your fellow
users know what you've been doing
with your computer.

All current subscriptions are
good now for one year (six
issues), as are the applications
of those of you who responded to
the query about an Intecolor
publication. No renewal worries
for anybody until next year! So,
sit back, read, enjoy. (And, we
trust, learn.)

Dave and Ben

Compucolor
Policy

Because of a ruling by the
Federal Communications Commis
sion, Intelligent Systems Corpora
tion is no longer permitted to
sell the Compucolor II personal
computer in the United States.
The ruling stems from the FCC's
determination that most personal
computers generate substantial
interference--resulting in im
paired television reception. You
may have noticed that when you
work with the Compucolor II, a
television viewer in the next room
can have troubles getting a good
picture. This problem is especial
ly troublesome to apartment resi-

3

dents, who have no control over
the activities of neighbors in
adjoining rooms. Since televi
sions and personal computers are
communication media, the FCC step
ped in. Vacuum cleaners, hair
dryers, and other appliances are
not affected by the ruling, even
though they are often much more
annoying to the television viewer,
because they are not communica
tions equipment.

But personal computer owners
need not be worried that they are
operating machines illegally. The
ruling applies only to machines
manufactured after the FCC dead
line, which, in the case of
Intelligent Systems, was April,
1981. All Compucolor lis already
in service are perfectly accept
able--no modifications are neces
sary.

Virtually all personal compu
ter manufacturers were affected
by the FCC's decision. Companies
such as Apple and Radio Shack were
faced with modifying their pro
ducts in order to meet the new
standards. Intelligent Systems
started to reseach the changes in
design, components, and produc
tion that would have to be made
in order to meet the new stan
dards. Our financial planners and
marketing people assessed the
overall costs of such changes and
weighed them against current prof
its and projected profits. Then
we investigated all possible alter
natives to come up with a final
decision about how we would comply
with the ruling.

In the course of studying the
problem, it became evident that
re-designing the Compucolor II in
order to comply with the FCC
standards was simply too expen
sive. It would mean further
channeling of resources away from

4

the company's mainstay line or
business and scientific compu
ters, and that was not feasible.
Consequently, Intelligent Systems
Corporation had no choice but to
discontinue manufacture of the
Compucolor II. However, since the
FCC ruling does not affect over
seas clients, the company still
manufactures Compucolor lis for
sale in foreign markets.

Once the decision was made to
discontinue the Compucolor II for
domestic markets, company leaders
turned their attention to Compu
color II owners in order to
determine how they might best be
served. A two-point plan was
developed that serves past custom
ers well beyond any legal or moral
responsibility. lntell igent Sys
tems Corporation provides:

(1) A source of information
Colorcue . Despite increasing

costs of postage, editorial time,
and materials, Colorcue will con
tinue to be published. This
newsletter supplies users with
valuable information such as names
of people who welcome contact from
other users, and user group
locations for those who wish to
meet with other owners. Intelli
gent Systems decided to sponsor
publication of the newsletter so
that all users will have a place
to turn for information.

(2) A source of parts and
repair. Intelligent Systems con
tinues to maintain its repair
facility at the factory. Replace
ment parts and trained service
personnel are available to give
satisfactory turn-around time at
a reasonable cost. This ensures
that all owners will be able to
maintain their units properly for
best performance. IC

The Serial Port
by Ben Barlow

Stop! You apply the brakes as the traffic light changes first to

yellow and then to red. You are obeying the rules associated with a
standard established back in the 1930's just as your computer's RS232

port obeys the RS232 standard as it sends and receives data. The traffic
light's purpose is to control traffic flow; the RS232's purpose is to

control data flow. Just as the traffic light does not care what kind of

traffic is stopping below it, the RS232 standard specifies rules for
sending and receiving data but does not restrict the data being sent.
The only requirement is that data characters be transmitted in a serial
(bit by bit) manner, rather than in parallel (all bits simultaneously).
RS232 is not concerned with the type of code, parity, or the number of
stop bits, synchronous or asynchronous transmission - only with the
signalling levels to be used to transmit data and the protocol used to

interchange it.
Why have a standard, anyway? The answer is obvious, just as it is

at the intersection of two streets. Some commonly understood method of

control is required to make sure control is orderly, and to ensure

compatible products. A good standard serves as the base for manufacturers

to develop products, and promotes healthy competition (read lower price).

Look at the host of different terminal and computer devices on the market
manufactured by a myriad of manufacturers whose products are compatible

because of the RS232 standard.

The RS232 standard (current revision level C adopted in 1969) governs
the connection of terminals and computing equipment to modems. Although

it's not intended to describe direct terminal to computer interfacing,

it's been used that way often, especially since the onset of personal
computing. The standard defines three aspects of the interface - l)the

electrical standard (which is what most advertising refers to) 2)the

mechanical standard, and 3) the interchange, or protocol standard. The

latter is frequently determined by the software in the respective
computers and terminals. Let's look at these three aspects separately.

The easiest one to understand is the mechanical interface. The
ubiquitous DB25 connector has become almost synonymous with RS232C. This

familiar 25 pin plug (male) and socket (female) combination appears on

the end of every cable and is built into most equipment that meets the

5

standard. Some of the ISC computers use an edge connector to provide

the RS232 interface, ~hich must have an added cable to give a DB25-type
connection. By convention, terminals and modems usually have female

connectors, which leads to male/male cables, but this is not universally

true.

female- S male- P

DB 25 Connectors

Fig. 1

Electrical characteristics are also easy to understand. RS232 signals
are based on specified voltage levels. Your computer is constructed
largely of TTL family devices (integrated circuits). This family also
uses voltage levels for signal determination. TTL levels range between
0 and 5 volts; logic 0 is recognized as being a voltage between 0 and

.4 volts, and logic 1 is recognized as being between 2.4 and 5.0 volts.
A voltage between .4V and 2.4V is undefined. This is a relatively small

difference in voltage, and can easily be affected by electrical surges
caused by motors turning on (refrigerators, copiers, vacuum cleaners),
or even by line capacitance if the TTL signal must be passed over a long

(measured in feet) distance. Thus, it 1 s unacceptable as a data communication

method over any useful distance.

The RS232C standard, on the other hand, specifies voltages ranging

from -25V to +25V and provides much greater immunity to noise. A positive

signal is a voltage between 3V and 25V, and a negative signal ~s a
voltage between -25V and -3V. The area between -3V and +3V is undefined.
ISC computers use plus 9V and minus 9V as the signalling levels.

The interchange standards are the most difficult to describe because
of the many options which are possible. The simplest is the send-only

interface, sometimes known as "send and pray". A simple send/receive
interface can be constructed relatively easily, and a send/receive (or

simply send) interface with appropriate handshake can also be constructed
without much trouble. The standard includes many features such as

&

signalling on a secondary channel, ring detection (for dialup connections),
and data rate selection. These are fairly uncommon, though, so we' 11
not discuss their use. Let's look instead at the signals used in common
interfaces that you may apply to your computer, and then actually put
them to use.

Pin 111 (FG) 1s a common Frame Ground electrically connecting the
frames of the two machines being connected. It can sometimes be
omitted, especially if, as in ISC machines, frame ground and signal
ground (see later) are connected. When connecting to another piece
of equipment (e.g. modem or printer), check the outlets into which
each is plugged to make sure the polarity is identical. If the
electrician made a mistake, it could be a costly one for your
machine. Sears sells an inexpensive tester for this purpose. (Cat.
11 49662)

Pin #2 (TD) 1s for Transmitted Data, meaning data going out of the

interface (or, in the case of a modem, into the interface). The
transmitted data circuit at one end must be connected to the received
data circuit at the other. This reversal, sometimes accomplished
by the modem and sometimes by the cable, is frequently the cause
of initial operational difficulties when connecting gear.

Pin #3 (RD) 1s Received Data, data coming into the interface.

Pin #7 (SG) is Signal Ground and is the reference point for positive
and negative signal determination.

Some other signals used for handshaking occur in pairs, such as:

DataSet Ready and Data Terminal Ready (pins 6 (DSR) and 20 (DTR)

respectively). It's not difficult to imagine the use of these. They
tell each connected machine that the other is up.

Request To Send (pin 4, RTS) and Clear To Send (pin 5, CTS) are a
pair of signals used to request and grant permission to transmit
data. In the conventional terminal/modem arrangement, CTS is the
modem's response which enables data flow from the terminal.

These eight signals are the most commonly used signals of the 25 (3

7

unassigned) defined by the standard.
When a sender csn send data faster than the receiver can process

it, there needs to be some interchange protocol established so that the
sender does not swamp the receiver with data and cause data loss (overrun).
Several different conventions have been established over the last decade
and one of these is implemented using the RS232 signals. It is used by
most of the popular personal computer printers, such as the IDS 440-450-460
lines, the Epson, Heath, Base-2 and others. The method is to lower the
CTS (or sometimes DTR) line when the receiver does not want to receive

any more data. (The ability to sense this signal was omitted from early
Compucolors, and is the subject of an engineering change known as

ECN002137, the "handshake mod").

Now let's take a look at what is required to connect an ISC computer
to an Epson MX80 printer and a Cat Novation modem, two of the most

popular and useful peripherals to be found.

The first step is the construction of a cable that will connect the

RS232 port to the devices. Figure 2 shows the connections needed for
each. Notice that the signals for each are different. It would seem at
first that two cables will be needed, one for the printer, and one for
the modem. With a little cleverness, though, we can make one cable in
the form of a Y, with your computer on the bottom and the printer and
modem each on its own arm. It'll be necessary to plug and unplug devices,
since both should not be powered on and connected to the Y-cable
simultaneously. Fancy switching arrangements are an alternative, as are
separate cables, but the Y-cable works, and it's cheap. If you follow
the construction diagram (Figure 2) you should have no trouble, but some
hints are in order:

8

If you use an IDC-type (insulation displacement connector) at the

PC board end, press it solidly and evenly together in a vise using

even pressure and care. Don't plan to take it apart again!

If you use a solder-type connector at the PC board end, insulate

the pin by slipping a length of heatshrink tubing over the wires

before soldering. Any 20-24 gauge 4 conductor stranded wire can
be used. Belden 8723 is excellent, but can be obtained only in 500
ft. spools.

Solder-type DB25 connectors are the easiest to use.

TO
RD

Use lengths of heatshrink tubing on the Y connections and on the

Y itself.

Label the connectors on the legs as "printer" and "modem".

(IS C) 3

11 Printer
3
5 7

CTS 9
GND14 2

3
CCII

Modem

7

"Y"Cable

Fig. 2

The popular and versatile Epson MX80 printer has recently received rave

reviews, and its connection to your computer is not difficult, and will

serve as an illustration for the use of other printers. The Epson must

be ordered with the RS232/current loop interface (Cat. no. 8141). Follow

the instructions for installing the interface, and when the case is
open, make the following jumper and switch settings on the interface
board:

JNOR - cut and remove.

JREV - solder (carefully) a jumper of 28 or 30 gauge w~re.
SW 1-8 - all off.

The printer is now set up to receive data at 9600 BPS, its max~mum speed,

and respond to potential overflow conditions by raising the clear to

send line to your computer.

If you have a Compucolor with a Rev. 3 or earlier computer/logic
board, you'll need to add ECN002137. Your dealer can do this for you,

or by following the logic in Figure 3, you can make the modification
yourself. (If sufficient interest develops among older Compucolorists,

9

Intelligent Systems corp.® ENGINEERING CHANGE NOTICE

TITL E Cl'l J LOG I C f•C il ASS \.

TYPE OF
CHANGE

QDESIGN DE FIC IE N(: Y lMANDATORY)

0 DOCMENTATI O N CO RRECTIO N ONLY

REASON FOR CHANGE

DWG NO 1 0 0 9 62

iij PRODUCT IMPROVEMENT

OOTHER

REV 4

PROVJD~ PROPER CLEAR-TO-SEND LOGIC LEVELS FROM MODEM PORT TO LOGIC PCB.

DESCR IPTION OF CHANGE

l) TTE I'IN 9 OF 'J2' EDGE: CONNECTOR TO 'UDl' PIN 4.

2) TIE PIN 6 OF 'UD1' TO PIN 3 OF 'UC1'.

3) TIE PIN 4 OF "UC l' TO PIN 10 OF 'UEl'.

4) ADD lOK l/4 1'/A'l'T RES1S1'01< (I SC #200036) BETI·'IEE N PI N 4 OF 'UDl ' AND +1 2 VOLTS

REWORK EXISTING BOARDS AS REQUIRED f' OR PRINTER HANDSHAKE Of< ~10DEM 'CTS'.

ADD RESISTOR BET\'IEEN PTN 4 OF ' UD l' AND +12 VOLT DC SOURCE .

-- --- ---
NOTE: COMPUCOLOI< SO FTWARE ' S l OUT ' ROUTINE SAMPLE S BIT 7 OF' KEYBOAf<D 'J 2 '

I l'IPUT. 'SlOUT ' IS CALLED BY SETTING 1410 JN OUTPUT FLAG LOCATIONS.

EXAMPLE : IN BASTC- POKE 33265, !_i THIS SE NDS BASIC TO RS232 POI<T.

;!1.. POKE 332 49,!_i T HIS SENDS FCS TO THE RS232 PORT.

R
s
2
3
2
c

CTS 9

1 sr 102 - t 178

+l2VDC

3

J
~ :;:w "X'>'-6--~

"""
UDl

I
4

UCl

I
KEYBOARD

IC TABLE

UEl - 74LS157

I UCl - 74LS04
UEl

UDl - MC1489

1 0

11 ! Jl

PORT

Fig. 3

ECN oo2n 7

SHEET l OF l

PARTS DISPOSITION

IN
PROCFSS

D
liD
D

IN
STOC K

D REWORK

[]j USE AS IS

D SC RAP

EFFECT IVIT Y

NEXT ARTI'IORK *

F.CN 2104 IS VOTD

~--------------~

the editorial s t aff will devel op a $tep- by- step in s t a llat ion sequence

and k it . - ed .) Connec t the "printer" connector of the Y-cable to the
MX80 and t urn on the power. There are several ways to direct BASIC output

to the RS232 port, to the printer (or modem, when you connect it) :

1. Enter BASIC with ESC M rather than ESC E.

2. Execute a PLOT 27 , 13 statement.
3. Execute a POKE x,l4 where x = 33265 (for V6.78 and V8.79) or x

= 40886 (for V5.79).

Return BASIC output to the screen by executing a POKE x ,O statement,

where x is as above.

IO

-..

FCS output may also be directed to the RS232 port (handy for printing

directories) by entering FCS by the ESC G sequence rather than ESC D.

Output can be returned to the screen by typing either:

1. CPU RESET, or

2. executing POKE y,O where y

(V5. 7 9) •

33249 (V6.78, V8.79) or y 40884

With the MX80 set as described above, no other controls or options
need be set (the computer defaults to 9600 BPS). Other printers may

require speed and stop bit selection. Since the~odem connection requires
this, let's take a look now. As with directing output, the speed, stop
bits, and half/full duplex modes ·can be set either with keystroke

sequences or by executing BASIC statements.

SPEED
Keystrokes:

ESC R s where s

BASIC:

1 for 110 BPS
2

3

150

300

4 for 1200 BPS
5

6

2400

4800
7 9600.

PLOT 27,18,s where sis as described above.

STOP BITS
Keystroke:

A7 ON (one stop bit)

A7 OFF (two stop bits).

BASIC:

PLOT 14 (one stop bit)
PLOT 15 (two stop bits).

HALF /FULL DUPLEX

Keystrokes:

ESC H (half duplex - echo each character locally
as well transmitting it)

ESC F (full duplex- just send it).

11

BASIC:

PLOT 27,8 (half)
PLOT 27,6 (full).

Connecting the Cat Novation modem ~s simple. Disconnect the printer

and plug the "modem" connector of the Y-cable into the modem. Select
speed and stop bits with appropriate commands, direct the output to the
RS232 port and dial your favorite timesharing sytem, information utility,

or friend. The command sequence to use is:

1. CPU RESET
2. A7 ON or A7 OFF

3. ESC R speed

4. ESC F or H

5. ESC M.

Two of the more popular information utilities to which you may subscribe
are:

/l'd0;

MICRONET
Personal Computing Division
Compuserve Inc.
5000 Arlington Centre Blvd.
Columbus, Ohio 43220

-6-1:-4-457--8600
' ~ '-1£.., • e~s~

The SOURCE

Telecomputing Corporation of America
1616 Anderson Rd.

McLean, Virginia 22102

703-821-6660

Unfortunately, there may be more to using the port than is indicated

~n this article. Your printer may cause lower case y's or slashes to
print on the screen or printer, and when connected to a remote timesharing

system, the distant computer may send control sequences that will cause
your disk to spin, your screen to clear, or strange characters to be
displayed. These problems can be very annoying, but don't despair--there
are cures. The lower case y problem can be easily cured by software or

hardware. (See the following article). To solve the remote data/local
interpretation problem, a program such as ISC's (or other vendor's) is

needed to act as a data filter and translator for the incoming data. (A
past issue of Colorcue contained a simple data filter program. For a

reprint, send a SASE to our editorial offices requesting it. -ed.) IC

1%

Lo~er Case y's
by Tom Devlin
3809 Airport Rd.
Waterford, MI 48095

The following fix for the lower case y problem is the simplest,

cheapest one I've found to date. It requires the use of the handshake
mod (described in the previous article - ed.) and the addition of a

single 2 cent diode to the keyboard printed circuit board.
Basically, the fix takes advantage of the fact that the output of

UCl which you connect to pin 10 of UEl for the handshake mod also goes
to R6 in the keyboard via pin 11 of the keyboard cable. This gives us
the CTS signal at TTL levels. Adding a diode from this point to any of
the column outputs will cause the CCII to think that several keys are

being pressed whenever CTS is low, causing the keyboard scan routine to
give up and return without a character for that scan.

Following the placement of the diode as shown in the accompanying

photograph, you should have no trouble adding the fix to your machine.

Use a 1N914 diode, and make sure the band, i.e. the cathode, is toward
the right, as shown in the photo.

(Note: Although this fix works with no apparent side effects, it
has not been sanctioned by ISC, and may affect your warranty.- ed.) IC

Photo 1.
Trace side of
keyboard PCB.
Solder a s ig
nal diode as
shown, cathode
end to right.

13

Screen Dum' to
the MX8o Pr•nter
by Mark D. Fairbrother
Carriage House East, AS
Rt. 11
Kirkwood, NY 13795

This program will produce a hardcopy of the 128 by 128 resolution

ISC graphics screen on an Epson MX-80 printer. Only those character
positions that have the plot bit set in their color byte will be printed;

all others will be treated as blanks. The reason I chose not to print
other characters is due to the difference in size of an ISC plot block
(4 by 2) versus an MX-80 plot block (3 by 2). In order to faithfully
reproduce the ISC graphics, the screen is scanned three Y positions and
two X positions at a time to form an MX-80 graphic character. Since a

character such as an "A" occupies what looks to the printer like one
and a third lines, to avoid gaps it is not printed.

The program consists of three sections: initialization, dot
scan/character build/print, and point test. The following is a breakdown

of the program, by section and line.

IBITIALIZATIOH

0 and 1 Set up the array MS, which is used by the point test

subroutine. These lines must be executed before the dump

subroutine is called.

DOT SCAB/ CBAJlACTER BUILD/PR.IJIT

9000 Disable keyboard.

9010

9020-9040

9050-9200

14

Set up for stop bit (PLOT 14 • 15), 1200 Baud (PLOT
27 ,18,4), and send all output to the RS-232 port (PLOT
27,13). Set print width to 132 characters per line. The PLOT

14 at line 9030 sets double width characters, which change

the line width to 66. The PLOT 14 must be reissued for every

line output.
Scan the CRT Y positions in increments of three and X in

increments of two. This corresponds with the number of dots
per MX-80 block.
CH is the character to be sent to the printer and is built

9210
9220
9230-9240

one dot at a time. The characters are located from CHR$(160)
to CHR$(223), or all dots off to all dots on. On return from
the point test routine, PT will be set to -1 to skip two X
points, 0 if that X,Y point is off, or >0 if that X,Y point
is on. The printing process will take 20 to 25 seconds per
printer line (around 15 minutes for a whole screen) depending
on the number of blanks. The code at line 9060 is to handle
the scanning at the next to last lines.
Move to top of the next sheet of paper.
Return output to screen.
Enable keyboard interrupt and return.

POIBT TEST - TEST PODIT AT SX, SY

9510 Initialize PT.
9520

9530
9540

9550-9560

9570
9580

Compute the address within the screen buffer of the character
the dot specified by SX, SY is within.

Get the ASCII code and color byte of the character.
If it is not a blank and is a graphic character, continue
testing.
Return PT = -1 if two X tests can be skipped as being
unprintable (each character is two points wide).

Convert SX and SY to an index into MS.
See if point is on. MS and DO are used to isolate a particular

bit in the byte stored for the graphic character. (See your
Programming Manual for the relationship between a graphic
point and the byte stored in memory.) PT will be zero if
the point is off and non-zero if the point is on.

As mentioned above, it will take around 15 minutes for a complete
picture to print. Translation of the algorithm into machine language
will undoubtedly speed it up. (Any takers? - ed.)

To use the subroutine, simply bury it in a program that draws a
picture, and GOSUB 9000 to start it. If you do not have the y-eliminator,
put some sort of delay in before calling the subroutine to allow time
to set up the printer and turn it on. IC

(Listing follows.)

15

Listing 1. The screen dump subroetine

0 DII'I r1St7i 9150 NEXT J
NEXT I FOR I= 0 TO 7 9160

:!'!Sill= INT (Y Il 9170 PRINT CHR$ ICHJ;
NEXT X :NEXT I 9180

9000 OUT 8,4 9190 PRINT CHR$ \131
NEXT Y 9010 PLOT 14,27,18,4,15,27,13,15 9200

9020 FOR Y= 0 TO 126 STEP 3 9210
9030 PLOT 14

PRINT CHRS 1121
:REI'! OUTPUT A FORMFEED

9040 FOR X= 0 TO 126 STEP 2
9050 CH= 160

: M= 1
: IM= 2

9060 IF Y= 126 THEN II'!= I
9070 FOR I= 0 TO II'!
9080 FOR J= 0 TO
9090 SX.= X+ J
9100 SY= Y+ I
9110 GOSUB 9500
9120 IF PT= - !THEN M= Mt 4

:60TO 9160
9130 IF PT > OTHEN CH= CH+ M
9140 M= Mt 2

9220 POKE 33265,0
9230 OUT 8,255
9240 RETURN
9500 REM SUBROUTINE TO SEE IF POINT SI,SY IS ON. PT=O IF NOT.
9510 PT= 0
9520 AD= 28672+ 2t INT lSI/ 2)+ 128$ INT ISY/ 41
9530 DA= PEEK IADl

:CL= PEEK lAD+ !l
9540 IF DA< > 32AND CL> 127GOTO 9570
9550 PT= - 1
9560 RETURN
9570 DO= 4t lSI AND !)+ ISY AND 3)
9580 PT= MSIDOI AND DA
9590 RE TURN

LATE NEWS: Compuworld Inc. has announced business software packages for
Intecolor computers. Programs include ColorCalc, ColorGraph, General
Ledger, and others. (See the August, 1981 issue of Mini-Micro Systems .)
We 1 11 have more on these next issue. In the meantime , for more information
contact Fred Calev, Compuwor ld , 125 Hh ite Spruce Blvd ., Rochester, NY
14623. (716) 424-6260.

!W! fll~Eil vj~!l,l15~()rl ~~?,
Fast, machine language invaders arcade game tM@MW:

Copy right (c) 1981 by David B. Suits !W!.,;~. ,;.,
with color graphics and four levels of difficulty ·· ···\:::~~~!<~r···· ·
from "not-too-difficult" to "what-the-?!#*??". <···
Runs on V6.78 and V8.79 software with standard

keyboard. Also included: fast, machine language version

1&

of LIFE.

Special bonus: V2.0 of Alien Invasion (if I
ever get around to writing i t; I'm ba s ically
lazy, so I'm making no promises) will have
sound ef f ects if you have Cap Electronics
Soundware or an equivalent device, and it will
be free to all purchasers of Vl.0.

David B. Suits
49 Karenlee Dr.
Rochester , NY 14618

User Group Bulletin Board
The following list represents our most current information on

Intecolor/Compucolor User Groups. In the interest of keeping our readers
informed and in touch, we plan to run this list periodically. If you
have additions (because your group is not listed) or changes (because
names or numbers are different), drop a line to our editors so we can
tell the world. We'd like to include news of your group here, too. Have
your secretary write a piece about your group, its activities, interests,
and members. We also welcome pictures. (5 x 7 black and white glossies,
with good contrast.)

User groups are a very important medium for information transfer,
and we at Colorcue want to provide a platform for group information
interchange. Get your secretaries on the ball!

ALABAMA
Compucolor Users Group
Eike Mueller
12117 Comanche Trail, S.E.
Huntsville, Alabama 35803
(205) 883-7614

CALIFORNIA
Compucolor/Intecolor User Group
Stan Pro
S.P. Electronics Systems
5250 Van Nuys Boulevard
Van Nuys, California 91401
(213) 788-8850

El Cerrito User Group
Frasier Hewitt
c/o P.C. Computers
10166 San Pablo Avenue
El Cerrito, California 94530
(415) 428-0468 (F. Hewitt)

GOTO Group
Tommy W. Schenck
c/o Tom & Bobbie of Newberrys
1136 Fulton Hall
Fresno, California 93721

San Diego User Group
Hal Brehe
4671 Mt. Arnet Drive
San Diego, California 92117

San Jose User Group
Vicki Oliver
1358 Branham Lane #4
San Jose, California 95118
(408) 26 7-5250
The SOURCE: CL0691

FLORIDA
JACKS - Jacksonville Area

Compucolor Knowledge
Seekers

Gary Haney
1723 Debbie Lane
Orange Park, Florida 32073
(904) 264-6 7 85

Robinson High Computer Club
Mrs. Byman
6311 S. Lois Avenue
Tampa, Florida 33616
(81 3) 83 5-l 211

GEORGIA
Compucolor Users Group
Irv Hullins
2194 Briarcliff Road, N.E.
Atlanta, Georgia 30329
Day: (404) 586-5156
Night: (404) 634-3 91 9

17

MASSACHUSETTS
Compucolor Users Group
Richard Hanazir
13 Grandview Street
Southwick, Mass. 01077
Day: (203) 688-1911
Night: (413) 569-6621

NEW JERSEY
Compucolor Users Group
Peter J. Miller
125 Buena Vista Drive
Ringwood , New Jersey 07456
Night: (201) 83 9-7 251

NEW YORK
Compuc olor Users' Group of Rochester
Gene Bailey
28 Dogwood Glen
Rochester, New York 14625
(716) 381-4027

OREGON
Compucolor II Users' Group
Bruce Vanderzanden
2006 "C" Street
Forest Grove, Oregon 97116
(503) 357-2772

PENNSYLV ARIA
Philadelphia CCII Users Group
Howard Rosen
P. 0. Box 434
Huntington Valley, Pa. 19006
(215) 464-7145

VIRGDIIA
Compucolor Users Group
Rick Vick
702 W. Holly Avenue
Sterling, Virginia 22170
Day: (703) 827-3894
Night: (703) 430-3843

INTERNATIONAL
Ham Radio Users Group
Bill Shanks, W2GTX
7 Lake Circle Drive
Vicksburg, Mississippi 39180

18

AIJSTRALIA
Compucolor User Group/Syd-

ney Area
Andrew Ncintosh
91 Regent Street
Chippendale, N.S.W., 2008
Australia

Compuco lor User Group / r·1e 1-
bourne Area

Ueil Brandie
212 High Street
Windsor, Victoria, 3181
Australia

CANADA
Canadian Users Group
Gl en Davis
Bsmt-59 Kendal Avenue
Toronto, Ontario
Canada H5R 118

Compucolor Us ers Group
Hark Herzog
House of Computers
368 Eglinton Avenue, West
Toronto, Ontario
Canada N5N 1A2
(416) 482-4336 1C

Cueties • • •
10 REM CDLORED SQUARES
20 Ril'l BY STEVE REUBART
30 PLOT 27,24,15,29,6,0,12
40 IN=1:C=1
50 FOR Y=0 'ID 31 STEP 4
60 FOR X=0 'ID 63 STEP 8
70 C=C+ll-J:PLOT 6,C
80 FOR I=Y 'ID Y+3:PLOT 3,X,I
90 PRINT "''''''''":R.EN 8 NULLS
100 NEXT I,X,Y
110 FOR vv=1 'ID 600: NEXT
120 IF IN=1 'ffi.EN UJ=-1:C=64:

ooro 50
130 PLOT 27,11,6,2,8

Assembly Language Programming
by David B. Suits

The Intecolor and Compucolor computers have a great deal to offer

~n the way of color graphics. Using BASIC to access this power is
relatively easy, but its main disadvantage is speed. Assembly language
programming provides the ultimate in speed, but its main disadvantage
is coding time. Another disadvantage is instruction: what can you do
with assembly language if you don't know anything about it? Where can

you go to learn about it?
Answer: here! I sympathize with all those of you who want to learn

assembly language but are afraid to begin, or don't know where to begin.

This series of articles will be devoted to you, the rank beginner. I
will assume you know a little bit about programming your Intecolor or

Compucolor in BASIC. Other than that, all you need is a little curiosity,
and some perseverance. (And a subscription to Colorcue.)

Inside your computer's plastic shell there is an 8080A microprocessor
(call it "8080" for short), connected to some Read Only Memory (ROM)
and some read/write memory, also called Random Access Memory (RAM). In
addition, the 8080 has a tiny bit of read/write memory inside itself,

referred to as the 8080's registers. Each of these registers is eight

binary digits (one byte)--except for the Stack Pointer (SP) and the
Program Counter (PC), which are 16 bits (two bytes) each. Certain of

the eight bit registers may be grouped together into pairs: registers
D and E can be paired and referred to as register pair D (some people

prefer to be explicit and say DE). Hand 1 can be referred to as register

pair H (or HL), and so on. For the most part you will be concerned to

read from or write to registers A, B, C, D, E, H and 1, and, often, the

register pairs BC, DE and HL. PC, SP and FLAGS are used automatically

REGISTER

PC
SP

FLAGS A
B c
D E
H l

ONE BYTE ONE BYTE

REGISTER PAIR
NAME

PC (Program Counted

SP (Stack Pointer)

PSW (Program Status Word)

B
D
H

19

by the 8080 for its own purposes, and we won't bother with them for

quite a while, except for the FLAGS, which we'll make use of frequently.
The 8080 microprocessor is capable of understanding and carrying

out a varied set of instructions, each of which is simply a number (eight

bit binary) held somewhere in the computer's memory. The 8080 will look
at memory, copy the number it finds there into a secret internal register
of its own, and execute the instruction. This means that the 8080 must
know where in memory to find that instruction number in the first place.

That 1 s the function of the Program Counter (PC), which points to a

specified memory location. When the information (always an eight bit
binary number) is read into the 8080, the PC is automatically incremented

to point to the next instruction in memory: that is, it is automatically
set up to get the next instruction as soon as the present instruction
has been carried out. More or less as in BASIC, the 8080 will execute
an instruction and then move on to the next one, execute it, move on to

the next one, and so on. And, more or less as in BASIC, you can use

GOTOs and GOSUBs to veer off to other parts of the program, except that
the 8080 will jump hither and yon according to JMP and CALL instructions.
More accurately, since the 8080 can understand only binary numbers, and

not letters, it will GOTO (JMP) somewhere or other in response to the
binary number 11000011 (=195 decimal), and GOSUB (CALL) some subroutine

or other in response to binary 11001101 (=decimal 205). Since we humans
have difficulty in talking in long strings of 1s and Os, we write programs
using mneumonic names like JMP and CALL, which are then translated into
binary numbers by a program called an ass~ler. So there are two steps
to assembly language programming: (1) You write the program in assembly
language, perhaps using ISC's Screen Editor (or, Heaven forbid, the old
Text Editor), and s&ve it on disk. (2) You run the assembler (or the

macro-assembler), which translates your assembly language program into
a series of binary numbers and stores the result (we can now call it

machine language, since it is in a form which the 8080 can understand)
on disk. You will need, then, to learn how towrite an assembly language

program, and then you will have to learn how to use the assembler program

to translate what you've written. We'll cover both of those topics (and

more) in this series.

A crucial difference between BASIC (and other high level languages)

and assembly language is that in assembly language you do everything
one tiny, painstaking step at a time. Most single instructions in BASIC

would require a large number of assembly language instructions. Whereas
in BASIC you could write A=B+C, in assembly language you would have to

%0

break it down into a series of minimal steps:

(1) Find the location in memory called "B".
(2) Copy the contents of location "B" into an internal

register of the 8080.
(3) Find the location in memory called "C".
(4) Add the contents of "C" to that internal 8080 register

which has been holding the contents of "B".
(5) Find the location in memory called "A".
(6) Copy the contents of that 8080 internal register (which

now contains the sum of "B" and "C") into that memory
location called "A".

Steps (1), (3) and (5) are themselves a ser1es of operations which must
be broken down into a number of discrete 8080 instructions. (To make

matters more complex, BASIC uses not one, but four locations in memory

to store a number.)

Before we get into a discussion of the assembly language instructions
and what they mean, let's get accustomed to binary and hexadecimal
arithmetic. If you don't already know something of binary and hex, then
the following will serve as a brief introduction. The real key to learning
is experience. That means practice. And practice. The more you fiddle
around, the more you will feel at home. (Isn't this how many of us

learned BASIC?)

BINARY NUMBERS

When you add one to a (decimal) number, you get the next higher
number. Take the largest number representable by a single decimal

character, 9, and add one to it. You get 10. The digits shift just like

the wheels in an odometer: once a character reaches 9, it shifts back

to 0 and the character to the left moves up one. Each column in a decimal

number is occupied by some decimal character. The value of the whole
decimal number can be determined by multiplying the value of the character
by its column's weight. A decimal number has a one's column, a ten's
column, a hundred's column, and so on. These are merely the weights each
column has.

weight
example number

1000
0

100
2

10
3

1
8

The decimal number 238 is two one hundreds plus three tens plus eight

ones: (2xl00)+(3xl0)+(8xl)=238. These weights are simply powers of ten

21

(powers of ten, because this is the decimal number system). The power-s

stc:rt with 0: 10°=1. (In fact, any number to the zero power =1.)

powers
decimal weights

3
10 3 =1000

0

We now have all the principles necessary to develop any other number

system we please. For the binary number system, just repeat the previous

discussion, replacing "decimal" with "binary", the ten allowable decimal
characters with the two allowable binary characters (1 and 0), and so
on. ftc&fei

A binary odometer would turn considerably sJ--dwer
odometer (but there would be no s~g~in gas):

/oj5 "~
000
+ 1
001

001
+ 1
010

010
+ 1
011

011
.±._!_
100

than the decimal

As soon as you reach 1, you must start over again, whereas in the decimal

system you don't have to start over until you reach the character "9".

Don't misinterpret these numbers. The binary number 10 is not equal to
the decimal number 10. If you start at zero, you will have counted to
two when you get to binary 10, but you will have counted to ten when
you get to decimal 10.

Each column of a binary number has a weight, determined by the powers
of two:

powers
binary weights

0
2°=1

Thus, a binary number is represented using the same underlying principles

as a decimal number . If we wish to translate binary into decimal, we
need only multiply the column weights by the column numbers and add them
up. For example:

weight
(expressed
in decimal)
example number

2 3 =8
0 (binary)

In decimal this would be (Ox8)+(lx4)+(1x2)+(0xl)=6. Your computer stores

numbers as eight binary digits (one byte), so we ought to become
accustomed to this table:

22

-, ,.

powers
(expressed
in decimal)

This means, incidentally, that the largest number which can be stored

in a given memory byte is 11111111 (binary) = 255 (decimal). Some of
the 8080'sinternal registers are 16 bits wide; in addition, each memory

location in the computer is referenced by its address (more on that
later), which is 16 bits. So we ought to become familiar with this table:

2 1 5=32768 214 =16384 213 =8192 212 =4096 211=2048 210 =1024 2 9 =512 2 8 =256
2'=128 2 6 =64 2 5=32 24 =16 2 3 =8 2 2 =4 2 1 =2 2°=1

The largest number which two bytes can hold (and the highest address

allowed) is therefore 11111111 11111111 (binary) = 65535 (decimal).
With some "hunting and pecking", these tables will allow you to

translate from decimal to binary and also back again. To translate from
decimal to binary, find the bit with the highest weight equal to or less
than the decimal number to be converted. Make the corresponding bit in
the binary number = 1 and subtract its weight from the decimal number.

Resume the process with the result of that subtraction until the result
~s zero. For example, we can translate 238 (decimal) into binary by

noticing that the highest binary weight equal to or less than 238 is

128. Make that bit =1.

512 256 128 64 32 16
0 0 1

8 4 2 1

Subtract 128 from 238 to get 110. The highest binary weight equal to or

less than 110 is 64. Set that bit 1.

512 256 128 64 32 16
0 0 1 1

8

110-64=46. ~he bit under 32 becomes 1.

512 256 128
0 0 1

64 32
L 1

16 8

46-21=14, so the bit under 8 becomes 1.

512 256 128 64 32 16
0 0 1 1 1 0

8
1

4 2 1

4 2 1

4 2 1

23

14-8=6. Etc. The final result ~s 11101110 (binary).

bit 7
1

6 5
1 1

4 3 2
0 1 1

1
1

0
0 (binary)

An alternative method is to divide the decimal number by 2 and place
the remainder into the right-most bit of the binary number. Now divide
the quotient (i.e . the integer result) of the previous division by 2 ,
put the remainder in the next bit position to the left, and so on un t i l

the quotient = 0 .

119 remainder 0 (bit 0, i . e. , ri ght- most bit)
2mB

59 remainde r 1 (bit 1)
2) 119

29 remainder 1 (bit 2)
2 m

14 remainder = 1 (bit 3)
2)29

7 remainder 0 (bit 4)
2)14

3 rema i n de r 1 (bit 5)
2 n

1 rema i nder 1 (bit 6)
2 f3

0 remainder 1 (bit 7)
2 rr

HEXADECIMAL NUMBERS

The problem with binary numbers is that they are so confusing to

work with: all t hose zeros and ones create a fertile environment for

errors. Decimal numbers are easier, because there are fewer characters

per number and because we're already familiar with them. Unfortunately,

the computer is too stupid to deal with ten different characters. We
might use decimal numbers for our own figuring and then translate between
decimal and binary when required. But that is usually a tedious operation.
What we need, then, is a way of expressing binary numbers without being
restricted to two digits, and yet without the burden of tedious

translation. Enter the hexadecimal system.
The binary system is built upon powers of two (that's 10 ~n binary).

The decimal system is built upon powers of ten (that's 10 in decimal).
So the hexadecimal system is built upon powers of 6 (hex) + 10 (dec) =

16 (tha t's---you gue ssed it!--10 in hexadecimal). Hexadecimal ~s

convenient because 16 is a power of two (the fourth power). This means

24

-.

that we can represent four binary digits with one hexadecimal digit.

Or, that is, two hex digits will represent one byte, and four hex digits
will represent two bytes . That convenient symmetry does not exist between
binary and decimal. (Ten is not an integer power of two.) This does two
things for us: (1) it decreases the number of characters necessary to

represent a number, and (2) it allows a human to convert quickly between
binary and hex as the occasion demands.

The conversion is simple: start with the four least significant bits

(i.e., the right most four bits, or half a byte--sometimes called a
nibble, or nybble) and translate them into its hex equivalent. Move left

and convert the next nibble, and so on. To convert from hex to binary,

just replace each hex digit with its binary equivalent.
Well, in order to make these conversions, we'll have to define the

hexadecimal characters. We need sixteen of them, but we are accustomed
to using only ten (0-9). So we invent six more. It really doesn't matter
what they are, except that tradition calls for using the letters A-F.
(Perhaps because these symbols were easily available on typewriter
keyboards.) The relationships between the binary, decimal and hexadecimal

schemes are shown below. After working with hex and binary numbers for

a while, you will have this table memorized.

HEX BINARY DECIMAL

0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
A 1010 10
B 1011 11
c 1100 12
D 1101 13
E 1110 14
F 1111 15

10 00010000 16
11 00010001 17

25

If you recall the principles which structure all number systems,
you should have no trouble dealing with hex. A hex odometer would turn

slower than a decimal one:

00
+1
01

09
.....±1

OA

OA
+1
OB

OB
+1
oc

oc
+1
OD

OD
+1
OE

OE
+1
OF

OF
+1
10

10
+1
11

I said before that one reason for not using decimal numbers was

because the computer was too primitive to handle ten different characters;
two is its limit. (After all, the computer is merely a clever arrangement

of switches, each of which can be either on, =1, or off, =0.) And now
I offer the hexadecimal system with its sixteen characters. So? I lied.

No, no. It is true that the computer can't deal directly with anything

other than binary numbers, but hexadecimal numbers at least providr. a
fast and efficient manner in which to represent binary numbers to huma;:.t;,

which is what we are. We can always wri t e a simple routine to translate
between hexadecimal and decimal if we need it. Besides, hex is firmly
rooted in tradition (short as the computer tradition is), and any attempt
to rip it up will probably cause the destruction of the universe.

Your computer's FCS understands only hex. (This makes it difficult
for BASIC, which understands only decimal, to talk to its own FCS!

Computer manufacturers work in mysterious ways.) Furthermore, ISC 1 s

Machine Language Debug Package (a spectacular piece of software, by the

way) is easier to deal with in hex (although you can get by with decimal),

and we will be using it in this series. (Do you have yours yet?)

Next time: the 8080 instruction set. In the meantime, read anything
and everything you can get your hands on dealing with 8080 assembly

language. There are articles in magazines, books, and even assembly
language program listings--cryptic as they might seem at first--can help

you become acquainted with this new language. Every human is partly a
self-teacher. You'd be surprised at how much information you can

assimilate simply by looking over some 8080 assembly language listings.

At least you will come to have an unconscious "feeln for the language.
And that's important. IC

2&

--
..

HC>W ARD ROSEN • INC.

Put the finishing touches to ~our CoMpucolor II or ISC coMputer.

CoMe up to the world of word processing,
Extend the utilization of ~our coMputer to the other MeMbers of ~our faMil~.

* Letters
* School reports
* Business reports
* If you now type-write it, Comp-U-Write it for a better product.

Basic requireMents for CCII or 3651/9651!
16f(RAM,
1:l71<e~ ke~board.
F'r inter,
CoMp-U-Writer software and instruction Manual.

For Ma xiMUM capabilit~:
F•_tll 32k RAM.
Lower case characters.

Talk to other coMputers: Add a MODEM to ~our s~steM.

We carr~ the entire CCII & ISC line of hardware/software, including spares,
Send for our 4-page order forM for hardware/software. Request separatel~
b~ iteM ~our spare parts needs.

Send ~our order now. We pa~ the shipping.
Allow 5 weeks for deliver~.

CCII 3650/9650 Description Quant it~ Cost

010057 010053
01005S 010054
010059 010055
010044
1009S6 OC2100
010051

OC03LC
990001 990030

900041
90004'1

9915'14 9915'15
9915'16

Upgrade
Upgrade
Upgrade

72/101 ke~s
72/117 l<.e~s

101/117 ke~s
2'1in. RS 232C Cable
16k RAM Add-on
Switchable Lower Case
32 Lower Case Characters
5in. ForMatted Twin Pack
Sin. - 10 One Side ForMat
Sin. - 10 Two Side ForMat
5in. CoMp-U-Writer
Sin. CoMp-U-Writer

991509 991532 FORTRAN
Centronics 737-3 Correspondence printer
Base-2, Inc. S50 IMpact printer
C.Itoh Dais~ wheel printer
CAT Novation MODEM TransMit/Originate

Pa. residents add 6% Pa. Sales Tax

TerMs - Cash with order

Sub Total
Pa. Ta:-:
Total

150.00
250.00
100.00

45.00
310.00
150.00
100.00

9.95
75.00

100.00
262.50
262.50

75.00
S50.00
750.00

2100..00
175.00

AMourot

NaMe _________________ ,-,- T e 1 ep hone t..:.<_~;---'----::;Z:-::I:-::F:-, -----
Address Ci t~j St ___ _

HOW~RD ROSEN, INC.
F'O E:m: '13'!
Hurotingdon Valle~!• Pa. 19006

Signature (please s ign order)

---·--------------------------

27

Color cue

Editorial Offices
161 Brookside Dr.
Rochester, NY 14618

An a Publication

BULK RATE
U.S. POST AGE

PAID

Rocheste~ N. Y.
Permit No. 4 1 5

Colorcue
(

Oct/Nov I981 $2.

Colorcue
A bi-monthly publication by and for
Intecolor and Compucolor Users

October/November 1981
Volume 4, Number 2

3 Editors' Notes

4 ISC Product Review

Editors:
Ben Barlow
David B. Suits

6 Assembly Language Programming, by David B. Suits
Part II: Using the Machine Language Debug Package

15 Sphere Program, by Mark D. Fairbrother
Generate a 3-D sphere on your screen

17 Incremental Plot Table, by Bob V. Smith
Find those incremental plot numbers the easy way

18 Lissajous Figures, by Trevor Taylor
Mimicking oscilloscope graphics

20 Ask Mr. C. 0. Lorcue

21 CALLable Sort Routine, by Alan D. Matzger
Ultra fast sorting for your BASIC programs

Advertisers: You will find our advertising policies attractive. llrite for
details.

Authors: This is a user-oriented and supported publication. Your arti
cles/tips/hints are required to make it go. Send your articles or write
for information.

Colorcue is published bi-monthly by Intelligent Systems Corporation, \•lith
editorial offices in Rochester, New York. Editorial and subscription
correspondence should be addressed to the Editors, Colorcue, 161 Brookside
Dr., Rochester, NY 14618. Product related correspondence should be
addressed to ISC, 225 Technology Park, norcross, GA 30092, ATTN: Susan
Sheridan. Opinions expressed in by-line articles are not necessarily those
of the editors or of ISC. Hardware/software items are checked to the best
of our abilities but are NOT guaranteed.

,•

Editors'
Notes ...

The last issue of Colorcue
carried an article by Tom Devlin
about an elegant, inexpensive solu
tion to the lower case y problem
that has bugged Compucolor owners
for so long. As it frequently
happens, inventors seem to come up
with nearly the same ideas at
nearly the same time. Ken Orford,
a member of Forum, the Canadian
users group, hit upon the same fix
for the problem several months
before Tom and published it in the

July/August issue of the Forua
newsletter. Since by that time we
had already received Tom's article,
we ran it in our August/September
issue. But we neglected to mention
!:en's article, so we want to take
this opportunity to acknowledge
i~en's efforts and Forum magazine.
It is a fine newsletter published
six times per year. Subscription
is $15. By the way, our User Group
Dulletin Board in the last issue
of Colorcue was out of date for
Canada. Forum is the only user
group. For information, write to
Forum, 21 Dersingham Crescent,
TI10rnhill, Ontario, Canada L3T 4 P5.

DEBUG BUG DEBUGGED - Dave Suits

There is a fatal bug in at
least some versions of the !lachine
Language Debug Package program. In
order to see if your version has
a bug, and to correct it if it
does, read on.

TI1e MLDP disk comes with two
versions of the Debug program. On
the disk they are named f>!LDP.PIW;1
ana I~ !LDP.PRG;2. Only version one
h as the bug. If you've a 32IC
nachine, you probably won't notice
it. (Besides, you' 11 usually be

using version two.) But if you have
a 16K machine, you must use version
one (since version two loads into
very high memory--which would be
non-existent on a 16K machine).
Enter FCS with ESC D and then run
MLDP;1 " You should be greeted with
a heading and the DBG) prompt. Type
in this: @ A03A and hit RETURN.
There should be a yellow A03A on
the left. (If it's not there, try
again.) Off to the right, and in
white, you will see H,OEOOOH. If
that's not there (for example, if
you have H,OAOOOH), then your IILDP
program is OK. But if it is there,
then so is the bug. To correct it,
type in: LXI H,AOOO and hit RETUP~.
You should now be shown, on the
left, a yellow A03D. (If that's
not there, go back to the first
step by typing @ A03A and try a
gain.)

You have now altered the MLDP
program, and you should save this
corrected version on disk. To do
that, first hit CPU P£SET and ESC
D. If you have single density disks
(i.e. Compucolors) then you'll
have to mount a fresh disk: there's
no room on the original disk to
save the corrected program.
type : SAVE IILDP AOOG-BFOO.
new version of ULDP will now
corr e ctly on both 16K and
machines.

Now
T'ni s

run
32I~

The bug, in case you're inter
ested, was the program's initializ
ing the pseudo stack pointer to
EOOOH. That will work with 32K
machines, but on 16K machines,
EOOOH is a non-existent RAM ad
dress. TI1e alternative to the per
manent correct ion is to correct
the error each time the HLDP pro
gram is restarted (either run froLl
FCS or else entered with (ESC)
(USER)). In this case, you will
have to re-ini tial ize the pseudo
stack pointer by typing ~SP=AOOO.

3

EPSON NOTES - Ben Barlow

Those of you with Epson print
ers have no doubt seen the advertise
ments for GRAFTRAX 80, the bit
graphics package for the M:X-80. I
got mine in the mail the other day,
and what I read sent me scurrying
for the Aug./Sept. issue of Color
cue in which I had written: "The
Epson must be ordered with the
RS/232 interface (Cat . no . 8141)".
Then back to the front page of the
GRAFTRAX 80 documentation: "Note :
GRAFTRAX 80 will not function with
the Epson 8141 serial interface".
Curses! Not only can I not try
GRAFTRAX 80, since I've got an 8141
interface, but I've possibly misled
some readers into buying into the
same dilemma .

If so, I offer apologies. If
not, I can think of two solutions.
One, purchase the 8150 version
serial interface port (it costs
about twice the 8141), or, two,
build a serial to parallel inter
face and connect it to the ~~-80's
parallel connector. Always looking
for the cheap solution, I'm opting
for the second method. I hope to

INTELLIGENT SYSTEMS CORPORATION
PRODUCT LIRE REVIEW

h ave an article about the parallel
inter£ ace and GP..AFI'!lAX 80 in the
next Colorcue.

Having heard rumors of printer
nalfunctions when using GP~RAX-
80, and seeing a prominent warranty
disclaimer in the documentation,
I called Epson America to inquire.
I was told that there were no
problems using GRAFTRAX-80. It can
cause no problems with the hardware
because it is simply a replacement
program for the printer. The war
ranty disclaimer is there to pro
tect against claims due to customer
mis-installation or claims arising
from applications of the printer
(for example, a bug in the program
using a printer connected to an
EKG machine, causing the death of
three patients). I was advised of
a problem with a kit for a friction
feed roller to add to the !;~-80.

The kit apparently causes the step
per 1.10tor, which advances the pa
per, to burn out. Its installation
will void the Epson warranty . (Ep
son has no modi£ ica tion or plans
for one to add friction feed. They
advise the use of the r,~-80FT

printer.) C

Intelligent Systems designs, manufactures, markets and supports several

different types of color graphic microcomputers. These products are used

in varied applications such as process control, energy management, and
network monitoring. There are tens of thousands of units in use in over

40 countries.
Currently, the product line consists of three different computer types,

each of which can be ordered with various options such as different screen

sizes, different memory amounts, printers, software, etc.
The "workhorse" of the Intecolor product line is the 8000 series. This

series includes terminals, desktops, and complete computer systems. These

4

.· .

computers are ~n industrial cabinets and have card cages for adding features
as required. All prices quoted below are for single quantity.

8001G terminal $2560

Includes refresh RAM, terminal control software, 72-key keyboard,
19" CRT, RS-232C, 8 foreground 8 background colors, graphics

software and editing features. 160 x 192 resolution.

8001I terminal $4460
Same as 8001G, but with graphics resolution of 480 x 384. Each

dot on the screen is addressable to any of eight colors. Includes
dot, arc, vector, and incremental vector generators. 4 by 4 dot
super-pixel yields 4913 individual lines.

8051 desktop $4265

Complete desktop computer with color graphics, 19" CRT, Disk
BASIC, lower case ASCII, operating system, 48 lines by 80
characters, 80K mini-disk and 8K of user RAN.

\{hen the setting requires a contemporary cabinet, Intelligent Systems

has the 8300 and 8900 product series, with 13" and 19" CRTs respectively.
These fit well in business environments, where they a re used for HIS,
communications, and word processing. Each of the following pairs has
features comparable to the corresponding industrial units described above.

8301G $3560
8901G terminal $2760

83011 terminal $5460
8901I terminal $4660

8351 desktop $5265

8951 desktop $4465

Hany users do not require the high density of information that can be
displayed in the 80 character by 48 line format of the 8000 series. For
these users, Intelligent Systems manufactures a line of single-board
computers whose less dense (and less expensive) displays show 64 characters
by 3 2 lines. These computers have fewer available options than the 8000

series product s, but their low price makes them very attractive . They are

(Continued on page 13.)

5

Assembly Language Programming
PART II: USING THE MACHINE LANGUAGE DEBUG PACKAGE
by David B. Suits

1 mentioned last time that instructiono ~~ the 8080 are always eight

binary digits (one byte). This is misleading. With one byte there are 256
possible numbers (0-255), but the 8080 does not understand 256 different
instructions. The number 237, for example, is undefined: what the 8080

will do, if anything, with that number is unpredictable.
There is another sense in which it is misleading to say that the 8080

instructions are one byte numbers. Sometimes (I should say "often") the
8080 will know what to do, in response to an instruction code, but it will

have to be given certain data to do it with, or else it will have to be
told where to get that data. Let me explain.

In response to the number 71 (=01000111 binary) the 8080 will copy
the contents of the A register (the Accumulator) into the B register.
That's simple and straightforward. The 8080 doesn't care what is in either

register. It just blindly copies A into B. (Consequently, whatever used
to be in register B will no longer exist.) Suppose A contains 0001100 and
B contains 11010110.

Before executing 01000111

A 00011100

B 11010110

After executing 01000111

A 00011100

B 00011100

For each possible register copy instruction (not counting PC, SP and FLAGS

registers) there is some unique number which tells the 8080 to do that
copy~ng. In assembly language you specify the copy instruction by using
some mneumonic. The standard set of mneumonics was defined by Intel

Corporation (the inventors of the 8080) some years ago. Unfortunately,

instead of something obvious, like COPY A TO B, they chose the more cryptic
MOV B,A. 'MOV' stands for 'move', but what it means is simply copy. After

the MOV, the destination register ~s specified, and then the source
register. The general format for a KOV instruction is therefore KOV <dst.

reg.>,<src. reg.>. Don't forget the comma between the two registers' names.
The assembler translates such MOV instructions into their appropriate

binary codes.
Some other 8080 instructions, however, need more than one byte to

6

o~er&te. ~ur example, the number 00001110 (=OE hex) instructs the 8080 to

put the following number into the C register. But what is "the follo\ving

number"? It is the byte which immediately follows the 00001110 itself.

lienee, thi s is called an immediate type of instruction.

00001110 00000001
00001110 01000001

put 1 into the C register.
put 65 into the C register.

And so on. In assembly language, this is a move immediate instruction,

whose mneumonic is MVI. The general format is MVI <reg.>,<number>. Some

examples:

MVI A,0

MVI C,25
MVI 1,15

put 0 into the accumulator
put 25 into the C register
put 15 into the L register

Note that the number to be placed into a register must be between 0 and

255 Le., one byte. The instruction HVI A,l02L~ ~s an impossible

instruction (and your assembler will give you an error message), since

the number 1024 is 00000100 00000000 binary and occupies two bytes, not

one. U~y the >Vay, negative numbers are allowed, but that's a topic for a

future installment.)

Register pairs may also be loaded with immediate data (two bytes, this

time), but we'll save discussion of that for Another time.

Using the MLDP

ISC's Machine Language Debug Package is a warv e lous tool for debugging

r,-,achine language programs. It is not an assembler, although it can do some

of the same things that an assembler will do. And it can be used by us to

learn about GOGO instructions and what they can be made to do.

Before we jump in for some hands-on experience, please read the section

~n this issue's Editors' Notes dealing >Vith a bug in the HLDP program.

~-Jhen you're ready to go, enter FCS with ESC D and run MLDP;l (if you have

a 16K machine) or MLDP;2 (if you have a 32k machine). The program will

i)rint a heading and then give you a DBG> prompt. There are a number of

cor,rr.lands you can now give it. For example, it will translate a number from

hexadecimal into <1ecir.1al or vice-versa if >¥e give it the "=" command. (The

cor,tputer's output is in bold face in tne following examples; my input is

ii1 regular type and is follov1eci by a RETURN.)

7

DBG>=Hl
=9019 116

The number typed in after the "=" is assumed to be a hexadecimal number,

but if it is preceded by "it", then it is taken to be decimal. So DBG

understood my command to be: "Trans late the hexadecimal number 10 into

decimal". This is did; it printed out hexadecimal 10 and then the decimal

equivalent, 16 (preceded by "it" to indicate decimal). Similarly,

DBG>=42-#13
=9935 153

tells me that subtracting decimal 13 from hex 42 yields hex 35 (=decimal

53). You now have a convenient hex/ dec calculator-converter. You don't

really need binary output as well, since you can easily read off the binary

equivalent from the hex number. (See the previous article in this series.)

The MLDP can also set up a series of machine language instructions

and then execute them. (Furthermore, we can choose two modes of execution,

as I'll explain below.) The command "@" followed by a number tells the

program to point to the address in the computer's memory specified by the

number. For example,

DBG>@821Hl

8299 E5
MEM>

'E' PUSH H

Just above the MEM> there is a line of information consisting of four

fields. The first (at the left of the screen) tells you the memory location

(in hex, always). 1n our case it is 8200. To the right of that is a two

digit hex number, or else two two digit hex numbers, or else three two

digit hex numbers. Uhether there is one, two, or three numbers depends

upon what information is presently found at memory location 8200H. We' 11

come back to this later. To the right of the numbers is one (or two, or

three) characters within single quotes. Let's ignore that for the moment.

And finally, there are two more columns; together they comprise the assembly

language mneumonics corresponding to the information stored at 8200H. Hore

on that later.

Notice that the DBG> prompt has been changed to MEK>. This means we

are in the so-called "memory mode" rather than the debug mode. In the HEH

mode we can put a byte of data--for example, 3EH--into the present memory

location by entering

MEM>=3E

8

Af r.er press lng RETURN, the 3 EH (=62 decimal) was stored ln 82 OOH ana now

anotner line of display tells us what is at the next location, 8201H.

Let's enter 41H there:

MEM>=41

(Remember that whatever lS typed in is assumed to be in hex unless preceded

by ":fl" to indicate decimal.) Now enter these three bytes: CD, 33 and 00.

MEM>=CD
HEM>=33
MEM>=00

Now let's go back where we started and see what has been accomplished.

Go back to location 8200H by entering:

MEM>@8200

You should get this result:

8299 3E 41 '>A' MVl A,41B

This say s that we are at memory location 8200H and that the bytes 3EH and

41H are found there. Hell. ... There can be only one byte per memory

location . That's the 3EH. The 41 H is evidently in the next memory location,

namely, 8201H. Hhy ar e we shown two bytes at once? The answer is more

easily seen from the in forma tion at the right : MVI A,41H. This means, in

assembly

The "MVI

language mneumonics, "Put the number 41H into the Accumulator."

A~··" is the assembly language equivalent of 3EH (=00111110),

which is what is stored at 82001-l. That is, the HLDP program has translated

the numbers at 82008 and 8201H into assembly language mneumonics for us.

It has done just the reverse of what an assembler does, and so we say that

it has disassembled some machine language instructions. Instead of telling

us that "MVI A" was stored at 8200H, it tells us something more useful,

namely, "MVI A,41H".

How press the "+" key and RETURN. You will be shown the contents of

the next location in memory, namely,

8291 41 'A' MOV B,C

Oops! llhat is that "MOV B,C" doing there? That is an instruction to copy

the contents of register C into register B. But the MOV B,C instruction

apparently overlaps the MVI A~41H instruction. VJhat's going on?

The 8080 understands numbers held lH memory locations in two ways:

(l) as a number, such as 41H, or (2) as an instruction, such as er

41H! Hor;~ does the 8080 know that 41H is o n one occasion rr.erely a number

to do something with and on another occasion an instruction? \>Jell , that

9

depends. If the 8080 starts execu tin~ ac 82uGI: , it \vill ii~Hi 3i::it (or, 1n

assembly language, liV I A). But the instruction is incompl ete : move what

into the accumulator? Hhy, the next number, of course: 41H. So in this

case 41H ~s understood as a mere byte of data to be used somehow. On the

other hand, if execution were to begin at 8201H, then 41H would be

interpreted as KOV B,C. So if we ask the NLDP to tell us what is at

location 8201H, it will oblige by displaying 41H and then telling us that

41H is equivalent to KOV B,C . After all, the HLDP doesn't know w·here we

plan to begin execution.

The "+"key moved us forward one byte in memory. The "-" key will move

us backward one byte. Try it. You should be back at 82001-i.

Now press RETUru~ without entering anything. This will move you ahead

no t just one byte, but rather to the next instruction, even if, as in the

case of 3EH 41H, the instruction takes up more than one byte. Now you

should see:

8292 CD 33 99 - 'M3@' CALL l:tl:t33H

The CDH (that's a hex number, by the way, and not some kind of mneumonic)

is a CALL (like GOSUB in BASIC) instruction. But CALL what (or where)? In

BASIC, a GOSUB must have a line number to GOSUB to. When you're talking

directly to the 8080, you will have to give it an address. Remember that

memory addresses are two bytes long, and so an address can be anywhere

from 0 decimal to 65535 decimal. So 33H OOH following the CDH represent

(in hex) the address of the subroutine. But notice that out to the right

it says CALL 0033H, whereas to the left it says CD 33 00. Hhy have the

"33" and the "00" been reversed? The 8080 always assumes that the low byte

(i.e. the right-most, or least significant eight bits) of the address

comes first, then the high byte. Some people feel that this is backwards,

but I have found it quite natural. Just remember low byte first ~n memory,

eventhough we write it with the high byte first.

Hhen the 8080 performs a CDH (=CALL) instruction, it goes off to

execute some subroutine until it encounters C9H (=201 decimal, or RET ~n

assembly language), in which event it will return to where it v1as before

and continue. How does it know where it was before? V.'hen CDH (=CALL) ~s

encountered, the 8080 will store the address of the next instruction after

the CALL instruction. 1-lhen it returns from the subroutine it can retrieve

that address and continue. Since our CALL instruction ~s located at

addresses 8202H, 8203H and 8204H, the address of the instruction after

the CALL ~s address 8205H. Hhere is this address saved during a CALL? It

is saved in a reserved area of memory called the STACK. lie ' ll talk more

IO

about that ~n a later installment.

The display is still ~n KEM mode. Let's go back to the DBG mode. We

do that by entering "/" and RETURN. (Be careful not to enter / when in

the DBG mode, because that is a command to exit the HLDP altogether and

return control to the machine's CRT mode.)

How we're going to set a BREAKPOIB'T. A breakpoint is a location in

memory that will halt execution of a machine language program and return

control to DBG, sort of like putting an END statement into a BASIC program

to halt execution and return control to BASIC. A breakpoint is set by

entering AT <address>. Thus,

DBG>AT 8205

will set a breakpoint at 8205. You can put in a number of breakpoints

throughout a program for debugging purposes . To list all the breakpoints,

type in L. In our case, there is only one breakpoint, so we'll see:

DBG>L
8285: C3

This tells us that a breakpoint is set at 8205H, and that the contents of

8205H is C3H. (Yo ur memory might have some thing else there.) V.le don't care

what's there; \ve only want to make sure that the program will stop there

and not continue on trying to execute whatever random assortment of numbers

might be in memory. If we wanted to clear a breakpoint, we would type in

DBG>C 8205

But don't do tha t, because we want the breakpoint there.

Believe it or not, we now have a program to execute. There are two

ways OI execut i ng a program: R <address> and I <address>. The R command
will transfer control to the 8080, which will begin executing at the

address specified. It will run at top speed un t il it bumps up against a

breakpoint, in which case control will return to DBG. The I command will

execute much slower and in this case execution may also be interrupted by

pressing the ATTN/ BREAK key. Sometimes the I command is helpful because

you will want to see things happen in slow motion.

Let's execute the machine language instructions beginning at 8200H.

DBG>R 8200 or else DBG>I 8200

I n this case it won't matter whether you useR or I, because the program

~s so short.

What will be the result?

II

DBG>R 8200
A

BREAKPOINT AT 8295
A B C D E H L M SW : (SZXPC) PC SP (SP+9,SP+2,SP+4,SP+6)
41 9999 9999 9999 C3 92 99999 8295 E999 3C3A FE99 CAFl E99E
8295 C3 33 99 'C3@' JMP 99338
DBG>

(Some of the values on your display will differ from mine.) The first

thing to notice is the A on the second line. Our program was a sililp le one :

it put 41H (=65 dec., which is the ASCII code for "A") into th e ac c umul a tor

and then CALLed a subroutine in ROM (located at 33H) . That subroutine

takes whatever is in the accumulator and puts it on the screen. The

subroutine was RETurned back to our program, wher e it imme diately

encountered a breakpoint. The rest of the display shows the r e sulting

contents of the 8080' s registers (A, B, C, D, E , H, L), the contents of

the Status Word (i.e. the FLAGS), the Program Counter, the Stack Pointer ,

and the contents of part of the stack. On the last line of the display,

we are shown the contents of memory location 8205H, where the breakpoint

was encountered.

For now, nevermind all that information. The interesting thing is that

we have written a program to put something onto the screen. It works just

like the PLOT statement in BASIC: PLOT 65 would put an "A" on the screen

at the present cursor location. The rule is, each time you want to put a

character onto the screen (or change colors, or draw vectors, or do anything

else you do with BASIC'S PLOT statement), just put the appropriate number

into the accumulator and then CALL 33H. Try this:

DBG>C 8205
DBG>@8200
8299 3E 41
MEM>

(clear the breakpoint)

'>A' MVI A,41H

Now type in each of the following 40 two digit hex numbers, preceding each

with and following each \-lith the RETURN key.

BASIC equivalent

3E 9C CD 33 99 PLOT 12
3E 92 CD 33 99 PLOT 2 -- general plot mode
3E 99 CD 33 99 PLOT 0
3E 9A CD 33 99 PLOT 10
3E F2 CD 33 99 PLOT 242 -- vector plot
3E 64 CD 33 99 PLOT 100
3E 7F CD 33 99 PLOT 127
3E FF CD 33 99 PLOT 255 -- plot mode exit

I2

You should now be pointing to location 8228H. (If not, go back to 8200H

anci check your entries.) Return to the DBG mode with "/". Set a breakpoint

at 8228H and then execute the program beginning at 8200H. (Use either R

8200 or I 8200.) Notice how fast the 8080 executes when allowed full speed.

The I command is interesting, since the machine language program will then

be interpreted, and the results will be much slower--slower, sometimes,

than even BASIC. For example, the PLOT 12 instruction evidently first

homes the cursor and then erases each line of the screen from the bottom

up. Did you know that?

NEXT TIME we' 11 learn more about the 8080 instruction set, and we' 11

explore some much easier methods of putting stuff onto the screen. Until

then, fiddle around with the present method. Have fun! IC

(Continued from page 5.)

especially well-suited to small businesses, personal use, and MIS

environments.

3651 desktop $2945
Complete desktop computer with color graphics, 13" CRT, 72-key

keyboard, RS-232C, selectable baud rate, disk BASIC, internal

mini-disk drive with 92K bytes storage, 16K user RAM. Graphics

resolution: 128 x 128.

9651 desktop $3345
As above, but with 19" CRT.

3654 desktop $5445
Same as 3651 but with 1182K dual 8" double-headed floppy disk

drive.

9654 desktop $5854

Same as above but with 19" CRT. c

13

LOOKING FOR CUSTOM KEYCAPS
for your

COMPUCOLOR II or INTECOLOR COMPUTER?

14

We stock blank keycaps that match the
original key caps supplied on ISC 's keyboards

1 x 1 size in 16 colors
1 x 2 size in 14 colors

Single quantity prices for one line engraved keycaps start at:

$1.17 for 1 x 1 size with 5 characters
$1.95 for 1 x 2 size with 10 characters

Other sizes and specific colors are available on special order.
Custom molded keytops available for high volume users.

For order form call or write:

Arkay Engravers
2073 Newbridge Road

Bellmore, NY 11710

516-781-9859

Sphere Progra1n
By Mark D. Fairbrother
Carriage House East, A5
Rt. 11
Eirkwood, NY 13795

This program will generate a 3-D line drawing of a sphere on a 128xl2 8
screen using routines from "Mathematical Elements of Computer Graphics."
Note that lines 2000 and up are for use with the HX-80 screen dump routine
if you wish to add it. (See Aug./ Sept. Colorcue.) And in that case you
ought to add line 10 DIM MS(7) and line 20 FOR I=O to 7:NS(I)=INT(2AI) :NEXT.

1fil0 REM GENERATE A SPHERE USTIK; 'lliE SPHERICAL ax:>RDINATE SYSTEM
11fil DIM X(1filfil) ,Y(1filfil) ,Z(1filfil)
12fil I0=30:I=1
13fil FOR 'lli=fil 'ID 2.51327 STEP .628317
14fil FOR PH=0 'ID 6.28319 STEP .33fil694
150 X(I)=RO*COS(TH)*SIN(PH)
160 Y(I)=RO*SIN(TH)*SIN(PH)
170 Z(I)=RO*COS(PH)
100 I=I+1
190 NEXT PH
200 NEXT 'lli
210 P=100

1080 REM DIME'IRIC FRQJB:TION IOJTINE
1090 REM FRCM I MA'lliEMATICAL ELEMENTS FOR (I)MPUTER GRAPHICS I
1100 REM P = NUMBER OF X,Y,Z TRIPLETS
1110 REM X () = MIJI.Ni (I)NI'AINTIK; X-<XXlRDINATES
1120 REM Y () = MIJI.Ni (I)Nl'AINTIK; Y-<XXlRDINATES
1130 REM Z () = MIJI.Ni (I)N!'AINTIK; Z-<XXlRDINATES
1140 DIM U(1fil0,4),V(1fiJ0,4),T(4,4)
1150 FOR I=1 - 'ID P:FOR J=1 'ID 4:U(I,J)=fiJ:V(I,J)=fiJ:NEXT J:NEXT I
1160 FOR I=1 'ID P
1170 U(I,1)=X(I):U(I,2)=Y(I):U(I,3)=Z(I):U(I,4)=1
1180 NEXT I
1190 FOR I=1 'ID 4:FOR J=1 'ID 4:T(I,J)=fil:NEXT J:NEXT I
1200 T(1,1}=.92582:T(1,2}=.133631:T(1,3)=-.353553
1210 T(2,2)=.935414:T(2,3)=.353553
1220 T(3,1)=.377964:T(3,2)=-.327327:T(3,3)=.866025
1230 T(4,4)=1.0
1240 FOR I=1 'ID P:FOR J=1 'ID 4:FOR K=1 'ID 4
1250 V(I,J)=U(I,K)*T(K,J)+V(I,J)
1260 NEXT K:NEXT J :NEXT I
1270 FOR 1=1 'ID P
1280 X(I)=V(I,1):Y(I)=V(I,2):Z(I)=V(I,3)
1290 NEXT I
1300 N=3
1310 REM AXONO-lE'IRIC FRQJB:TION IOJTINE
1320 REM FRCM I MA'lliEMATICAL ELEMENTS FOR (I)MPUTER GRAPHICS I

1330 REM P = NUMBER OF X, Y, Z TRIPLETS
1340 REM X () = MIJI.Ni (I)N!'AINTIK; X-<XXlRDINATES
1350 REM Y () = Mlii.Ni (I)Nl'AINTIK; Y-<XXlRDINATES
1360 REM Z () = MIJI.Ni (I)Nl'AINTIK; Z-<XXlRDINATES
1370 REM N = NUMBER INDICATTIK; 'lliE PERPENDiaJLAR AXIS
1380 REM N=1 X-AXIS, N=2 Y-AXIS, N=3 Z-AXIS
1390 FOR I=1 'ID P:FOR J=1 'ID 4:U(I,J)=fil:V(I,J)=fil:NEXT J:NEXT I
1400 FOR 1=1 'ID P
1410 U(I,1)=X(I):U(I,2)=Y(I):U(I,3)=Z(I):U(I,4)=1
1420 NEXT I

IC

I§

143e FOR I=1 TO 4:FOR J=1 TO 4:T(I,J)=e:NEXT J:NEXT I
144e T(1,1}=1:T(2,2}=1:T(3,3}=1:T(4,4}=1
145e IF N=3 'lliEN 149e
146e IF N=2 'lliEN 148e
147e T(1,1)=e:GOTO 15ee
148e T(2,2)=e:GOTO 15e0
1490 T(3,3)=e
1500 FOR I=1 TO P:FOR J=1 TO 4:FOR K=1 TO 4
1510 V(I,J)=U(I,K)*T(K,J)+V(I,J)
1520 NEXT K:NEXT J:NEXT I
1530 FOR I=1 TO P
1540 HX=X(1):LX=X(1):HY=Y(1}:LY=Y(1}
1550 FOR I = 2 TO Jl
1560 IF X(I)>HX 'lliEN HX=X(I}:GOTO 1580
157e IF X(I)<LX 'lliEN LX=X(I}
1580 IF Y(I)>HY 'lliEN HY=Y(I):GOTO 1600
1590 IF Y(I)<LY 'lliEN LY=Y(I)
1600 NEXT I
1610 DX=HX-LX:DY=HY-LY:MX=127/DX:MY=127/DY
1620 PLOT 12,6,6,2,INT(0.5+MX*(X(1)-LX)),INT(0.5+MY*(Y(1)-LY)}
1630 PLOT 242
164e FOR I=1 TO P
1650 X(I)=INT(0.5+MX*(X(I)-LX)}
166e Y(I)=INT(0.5+MY*(Y(I)-LY))
1670 PLOT X(I),Y(I)
1680 NEXT I
1690 PLOT 255
2000 REM 2XXX LINES ADDED 'ID RUN srnEEN-PRINT IF WANTED.
2010 PLOT 15: INPUT "HARRXXlPY (Y/N) ";A$
2e20 IF A$="N" 'lliEN END ••
2030 PLOT 3,0,0:INPUT "HIT RE'IURN TO START";A$.-· ··-·.
2e40 G:SUB 900e •• •• •• "•1 205e END

1
.l •••.... •" •

~ I ~
.... · I
II J •••

I I ·~ • r·· -----· --1 • ·- -.

II
I •• ·---· I I

I • •• I ·.
I .L •• •• I

.. :---.... ~ ... :1 I .I
··.. ··.... I I .-··· I

·-. ·--. I I .. ··· ••. I I
···- ····.11.·- ·----------~--- t I

~~---- •=:· I --------- - I -- . - I - I -- I - ·- •• • • I ---- I .-- . ·····I I ··.. I -,_
••• •• I •• I ··.- I I --

1_..· ••• I ··.~ ·... II I II - ••
I •• • I ····- • ..

I •• I ••• -. I I I .. .· I I ·-- ··.. I •"'
I II •• •••• ·-••) I •. I
I. I I •. •l) .•

•• I 1 "•• 1•. ~ _. •
•••• I I ···- I ·- .· .• · .,L I • I .· --

··-· I ••.. •• .•

I ·--· I -. I I .· -. ----.... _ I ••~•

I ••... I • ~· ••• •• •
••••••••••••••••••••• I •.

I .• ••.. •. . - I . .
I I •• • I -- ·.

• .-· I I -. ·-
1 •. -· I ...• ..

I • I I .. I
I ···•·• ··
11 I 11 I

•• •• •• I• I

·-····---· .•• J.-----··--· ·• ..•. ~· I
I }"
I I ~ I •• • •• • • ••• ·.. -·· ··--· .. .

luge is 654
of original size.

·--·---·

16

Incremental Plot Table
by Bob v. Smith
498 Brmvn Street
tlafa, Cl\ 94558

This table allows you to discover the proper plot number for incremental

point and bar graph plotting. In the general plot mode, PLOT 251 enters

the incremental point plot subraode. The next number specifies the placement

of two more plot blocks out from the first, and this number can be found

in the table. For example, if you want to move northeast and then southeast

i:or the two incrert~ented ulocks, then PLOT 169 is the correct nUJ;~ber. If

the original block is at, say, X=63,Y=63, then the instruction:

PLOT 2 , 6 3 , 6 3 , 2 51 , 16 9 , 2 55

Hill plot the original block and the tHo incremented bloclr.s.

The table also applies to incremental bar graph plotting, Hhere t he

incre1,1ent nuuber \vill nove the end point of the bar graph in the specifiea

direction(s). C

First Block

N NE E SE s sw H m1
N 34 1 62 13 8 14 6 18 8 2 G6 98
NE 42 17 CJ 13 8 15 4 2 6 90 7 4 lOG
E An

·~ \) 1 68 13G 1 52 24 88 7 2 1 1_14

Se cond SE 41 1 6 9 137 153 25 8 9 7 3 1 0 5
Bl oc k s 33 161 129 145 17 81 6 5 9 7

sw 37 165 133 149 21 85 6 9 1 01
w 36 164 , ') ')

l....J~ 14 8 2 0 84 68 1 00

M'lj3 8 166 13<1 150 22 86 7 0 1 0 2

17

Lissajous Figures

by Trevor Taylor
36 Tarrn St.
Wavell Heights
Brisbane 4012
Australia

Lissajous figures are drawn by applying s1ne waves to the horizontal

(x) and vertical (y) deflection plates of an oscilloscope. The two variables

that determine the shape of the figure are th e ratio of the frequencies

of the two sine waves and the phase angle between them.

When the frequency ratio is an integer, it will be the numb e r of lobes

(loops in the figure) if the phase angle is 90 degrees. If you consider

the figure to be three dimensional, the phase angle (which is how much

one sine wave is shifted with respect to the other) determines how much

it is rotated. A frequency ratio of one and a phase angle of zero will

draw a straight line, i.e. a circle turned on edge!

In the program, line 30 determines the foreground and background

colors. The step size (degrees) used in the calculations is set in line

70. This is a compromise between speed and accuracy. Note that line 1050
and 2010 convert from degrees to radians as required for the sn: func tion.

In lines 2040 and 2050 the sine waves are scaled for the sc re en and the

aspect ratio is taken care of so that a circle will appear round.

Lines 2085 and 2087 take care of the case when you want only one figu re

drawn, which you specify by giving an increment of zero. Removing the 12

in line 1060 stops the program from erasing the screen between figures,

and can g1ve some pretty patterns. You could also modify the pr ogram to

run through a range of frequen cy ratios.

A good example is: Frequency ratio = 3, Starting Phase ang l e 90,

Ending Phase angle= 90, and Increment = 30.

Try to visualize the figure rotating as the program draws successive

pictures. Taking the reciprocal of the frequency ratio (for example,

0.33333) will turn the figure sideways, i.e., interchange x and yon the

screen. Experiment and have fun! Try to understand the math if you can.

Note: The Australian Broadcasting Commission used this particular

Lissajous figure as its symbol for a number of years. Of cours e, on TV it

was done using an oscilloscope and rotated much faster than is possi ble

on your computer. IC

18

lU F£; L I SSAJCXJS F'IGUP£5
11 IBi
12 m11 BY TRSVOR TAYLOH.
13 .REI-1
20 PI=3.14159
30 PLOI' 6,2
40 PLOI' 12
50 Z=360
60 CD=1
70 SS=10
79 P-El iliDFOmT X, Y OF SCREELJ
80 Xil=64:RH! FOR DJTECOLOR 8001 USE .ia·1=80
90 YT•1=64:REli FOR llJTECOLOR 8001 USE Yr'l=96
99 REf.l SO\Lll11.."; F'i'\.CI'ORS

100 XF=.75*(ia1-1)
110 YF'=YI1-l
530 IIJHJT "FRB;2UEIJCY RATIO (0.1-10): ";E
510 EJHJT "STARTTIJG PlfASE NJGLE (0-360): ";PS
520 EJIUT "ENDII JG PHASE ANGLE {0-360): ";PE
530 nrruT "INffiEf:IEIIT: "; rc
540 PLor 12
550 IC=l-\BS (IC)
560 HI=PS

1000 IF E> 10 '11-IE'LJ E=10
HHO IF E<0 .1 TI-IEI.-J E=lJ .1
1020 IF E<1 'IBEN Z=360/E
1030 IF PEl <O TI-IEi:J PLI=- PH
1040 IF PH>368 'TI-IEH PH=P:-l-360
1050 A=PH*PI/180
1060 PLOI' 12:REH TI-llS IlAY BE CJ.1I?I'ED
1070 ST=Yl·I+YF*STIJ(l\)
1880 PLOI' 2,253,.i~'i,ST,242
2000 FOR I=SS 'ID Z STEP SS
2010 T=I*PI/180
2020 X=STIJ (T)
2030 Y=STIJ (E*T+i\)
2040 X=XI'l+XF*X
2050 Y=YI1+YF*Y
2060 PLOI' X,Y
2070 tJEXT I
20 80 PLOI' 255
2085 IF IC=O TI-IEIJ 2500
2087 IF GO<>C 'I'HEN 2100
2090 IF EI=PE 'IHEl-J 2500
2100 PIJ=Pd+ IC
2110 FOR I=1 'IO 50 :IJEl-.'T
2120 G0=0
2130 GOIO 1000
2500 SLID

AskMr.C.O.Lorcue • • •

Dear Mr. Lor cue,

Strange things happen v1hen I press the INSERT LINE key on my extended

keyboard when I'm in BASIC. Can you explain what is going on? Or is my

machine defective? Signed: Keyed Up

Dear Keyed Up,
The explanation is not hard to find. Each key on the keyboard ~s

translated into a number from 0-255. The 'A' key, for example, translates

as 65 (the ASCII code for 'A'); the ERASE PAGE key translates as 12; and

so on. These numbers are PLOTted by BASIC. So PLOT 65 produces an 'A' on

the screen, and PLOT 12 erases the screen. The INSERT LINE key, just like

CONTROL C, translates as 3. Now, what is PLOT 3? Cursor control! The next

two keys you press would ordinarily determine the X,Y coordinates of the
cursor on the basis of those keys' ASCII values. Unfortunately, BASIC

doesn't know enough to stay in control, and it will go away after such

key presses. You can get it back with ESC E. Unlike many keyboard controls,

the INSERT LINE cannot be embedded within quotes in BASIC statements. So

it looks like the only obvious use of this is for one method of cursor
control in the CRT mode. For example, go into CRT mode and try these:

Keystrokes

INSERT LINE (or CONTROL C)
SPACE

CONTROL @

INSERT LINE (or CONTROL C)

A7 ON

BL/ A7 OFF

=3
=32
=0

=3
=14

=15

Comment

PLOT 3,32 ,0

PLOT 3,14,15

(If you have questions for Nr. Lorcue, send them ~n and we'll pass them
on. -Eds.) C

Cueties • • •

PLOT 12,3,64,0,2,63,63,251:FDR. X=O 'ID 1000:PRINT -.1\TN(X);:
PLOT 255,6,X AND 7,2,25l:NEXT:PLOT 255,6,2 E

20

CALLable Sort Routine
by Alan D. Matzger
960 Guerrero St.
San Francisco, CA 94110

A.few issues of Colorcue ago, Hyron Steffy had an article introducing

the CALL statement. I came upon its utility first when I was writing a

text editor for Assembler source code. Like Mr. Steffy, I wanted to move

large blocks of memory from one place to another and BASIC's PEEKing and

POKEing was unconscionably slow. Having solved the memory moving with an

assembly language routine, I went on to use the CALLed routine to list

text, edit individual lines, search for particular strings, and insert,

replace, delete, move, and copy one or more lines.

Uhich function was performed depended only on the particular X ~n

A=CALL(X). I have since used the CALL statement in the screen editor, ~n

a "stolen" HP-85 Cribbage game to draw cards and evaluate hands and, as

illustrated below, to sort any one of BASIC's string arrays.

The January 1981 Colorcue listed the labels for scratchpad addresses

in alphabetical order. I wanted the listing in ascending order of the hex

addresses. First, I copied each entry, interchanging the label with the

hex location, and saved them in a .RND file with 137 records, each 50

bytes long . Using a simple program which read the records into a string

array and then CALLed the sort routine, I was able to sort the 137 records

~n about 3 seconds.

The algorithm for the routine is the Shell-Metzner sort, modified to

leave the array in place and exchange the entries 1 index numbers in a

"pointer array" if the lower entry is "higher" than the higher one in the

ASCII collating sequence. An explanation of the Shell-Hetzner algorithm

may be found in any of several computer science texts, and in articles in

computer magazines, such as BYTE. Jv!y intent here is to demonstrate another

\vay of using the CALL statement. A short explanation of the assembly

language routine is in order, however.

When RUN through FCS, the routine is entered at the label START, where

it sets up the CALL vector and adjusts BASIC's end of memory pointer to

just in front of START itself, to avoid having the routine overwritten.

Doing this within the routine itself cleans up the BASIC program, leaving

only a mandatory CLEAR statement to be done there.

\lhen CALLed, the routine is entered at the label HAIN with the value

of X in A=CALL(X) converted into two bytes and received in the DE register

2I

(with the high byte i t< L) . The HL re ;; ls t:c.; r cont a lCS ijASIC'::; re tu rn acu 1 c .-."

and it must be restor er.i to HL upon RETurnin g . T; ,e tvJO by::es Hi i)E '-'i-'CJl":

RETurn are converted t c.> a deciraal nu;Hber \Jl.icb is t he value of 1\. It ·::, :Jy

or may not be useful t o the CALLing program; in this case lt is us ed to

pass back the address of the pointer array. Strictly speakiug then, on l y

one parameter may be passed and returned by ti1e CALL statement. Eut as

demonstrated by the BASIC demonstration program be low, the Cil.LLing progr am

can have access to any amount of data calculated by th e as s emb l y lan ~:. ua ge

coded routine.

(At the start of the routine, the pointer array INDXO ls set up ln

1,2,3, ... order. At the end, the index number of the "least-valued" st ring

will be in the first slot of this pointer array. The demo prograra reads

this array sequentially, converting the two bytes to a decimal number

which is the index of the next higher string and prints it. Similarly,

more than one value can be passed to the routine by POKEing into appropriate
locations within the assembled code. One must be careful t o note t he

addresses of wanted data areas from the listing by the assembler , co nvert

them into decimal numbers, and then insert t hese numbers into the BASI C

program.)

FNDAR finds the array name passed to it ln BASIC's array table, a nd

saves the number of entries and th e address of the first string for the

sort routine.

Finally, the

consistently used

PUSHing roan. The

suggested in the

CALLed routine need

whichever one BASIC

CALL statement, thus,

Programming Hanual.

not have its

uses and have

lS not nearl y

BASIC is fast

own stack; I have

never run out of

as restrictive as

enough for mos t

input-output operations, and the use of assembly language routines inserted

via CALLs greatly enhances its usefulness by adding speed when needed .

CALLing machine language routines has made my machine even more enjoyable,

fast and powerful. IC

22

N
~

CAL~>ble Shell-Metzner Sort PAGE CALLable Shel l-Metzner Sort PAGE

START:

PAGE !iO
1\SSEMRLY LANGUAGE SORT ROlJJ'INF: C!\LLABLP. FR0'1 BASIC

Alan D. Miltzger
9~0 Guerrero St.
San Francisco, CA 94110

Establish run-time linkages

ENTRY

PUSH
PUSH
LXI
Sf!LD
MVI
STA
LXI
SHLD
POP

START is entered when the PRG file is RUN by FCS

START

PSI'>' ;save regs at entry
fl
H,MAIN ;set up CALL vector with address,
13283
A, (JMP) ; and JMP op-code
33282
H,START-1
32940 ;set top limit of B~SIC to below us
H ; restore regs _

OSTR
NEGH

OSTR
NEGH

FNDAR:

MVI B,O ; (except B, a lJ in ~1ich indicates OK to FCS) FNDRl:

MAIN:

F:XIT:

POP
RET
Shell

PlJSH
CALL
CALL
CALL
LXI
POP
RET

PSI'>'
;and leave.

sort of BASIC's string arrays
MAIN is entered when BASIC prOJram executes a CALL

H
FNI¥\R
MKNDX
SHSRT
D,INDXO
H

;Save BASIC address
;Subrtn to find list to sort
;Initialize pointer array
;The actual sort
Return the address of ptr. array
Retrieve return address
Back to BASIC

;---
VF,78
VR79
V9~l)

F:QU
EQU
F:QU

l
0
l)

;Select version by setting aprop. V to 1
and others to lJ

;---

BG!\RR EQU
NDARR EQU

32984
32986

;POINTER to start of arrays
;Pointer to end of arrays

FNDR2:

IF
EQU
EQU
END IF
IF
EQU
EQU
ENDTF

PAGE

VA79 OR V980
182liH ;Puts out string to screen
1951\H ;Negates HL

V678
33F~H

3524H

FNDAR - Find array subroutine
DF: contain array name as 75F,*first ch + second ch + 128
e.g. if array name is ALS, then D = x'~l', C = x'CC'

on exit, NAMEO --> ARRI\Y
NELEM has # elements

LHLD BGARR ;IlL points to first arrny
MOV B,D ;Keep name in BC
MOV C,E
PUSH H
POP H
MOV A,M ;look at first byte
INX H ;point to second
CMP c ;lobytes the same?
.JNZ FNDR2 ; IF NOT, look at next entry
MOV A,M ; look at second
CMP B ;hibytes the same?
JZ FOUND ;yes.
INX H ;point to next byte
MOV E,M ;these contain offset to next entry
INX H
MOV D,M
INX fl
DAD D ;add offset
PUSH H
XCHG ;but maybe we're
DCX D
LHLD NDARR ;beyond last entry
MOV 1\,H
CMP D
,JM FNDER ;we are - show error
JNZ FNDRl ;we're not- look at next
MOV A,L ;compare lobytes
CMP E
JNC FNDRl ;we're not= look agnin

v

2

.. ... C/\LLilble Sheil-Metzner Sort PAGE

FNDER: LXI fi,FNEl"'G
CALL
POP
POP
JI-1P

OSTR ;display error msg
H

H
EXIT ;nothing more to do

FCJJND: LXI 8,4 ;in a one dimension list,

MKNDX:

MKNXl:

SIISHT:

SSLPl:

DAD
MOV
INX

B ; # elenents is ~ bytes away
E,M
~ ;get that number

MOV D,M
XC!-C
SHLD
XCHG
TNX
SIILD
RET
PI\GF:

NELF:M

H
NN.,Ell

;and store it away

;next byte is first for eo
; save that away

M~NDX - Make index array subroutine

LXI
LXI
LXI
"10V
HIX
MOV
INX
INX
DCX
MOV
ORII.
,TNZ
RET
PAGE

During the sort, the strings themselves are not
changed; their indices in a pointer array (INDXO)
are switched. '111 is subrtn initializes that array.

H, INDXO
0,0
B ,1280
~1 ,E
~

"1,0
H
D
B
A,C
B
MKNXl

;addr of Oth element
;index and value start
;there are n~O entries

2 bytes each

;value stashed
;prepare for next

value is one more ,
;are we all done?

we' Il see
;not if result is

nope
;yup

()I)

the same
MAX

SIISRT - The actual sort routine

LHLD
fiN/\

~10V

INNOl & INN02 are the pointer array indices
NSTRl & NSTR2 are the values in the index

and are themselves the indi ces to the two
strings in their own array.

NELF:M
A
A,H

;the nllnber of strin<JS
;clear arrily

1 CALLable Sheil-Metzner Sort

SSLP2:

SSLP3:

MRTST:

RAR
MOV
MOV
RAR
MOV
ORA
RZ
SHLD
CALL
SHLD
XCIIG
LHLD
01\D
SHLD
LXI
I~IX

XC!lG
SHLD
XCliG
LHLD
CI\LL
DI\D
LilLO
JC
Dl\D
SHLD
CALL
C!'.LL
CALL
LilLO
XCIJG
CPI
JNZ

CI\LL
LHLD
XCIIG
LHLD
DI\D
MOV
1\N/\
,JM
.JZ
,Jp
ORA
,J N7.
UILD
J"lP

H,A
1\,L

L,A
H

PI\RTN
NEGH
NGPTN

NF.LF.M
D
LPLIM
D,ll
D

INNOl

LPLIM
NE:GH
D
PARTN
SSLPl
D
TNN02
DTSTR
GT2ST
C0'1PR
INNOl

DOS' -IT
SSLP2
S'tiTCH
TNNl)l

NGPTN
D
l\ ,II
A
SSLP:J
MRTST
RTTIJ3
L
R'I"ril 3
PI\RTN
SSLP2

;we ilre dividing by two
;to get the partition factor

;if it is zero
we're all done

;but we aren't
;this ' is used

in many subtractions

;as here

this is loop limit
start with first string
get next index

;store it

;is it '> limit?

;compare them
;but load this before the test
; it is greater, go to loopl
;it's not, add partition factor
; to get second index
;sr to get string indexes
this gets their l<?n and 11ddress
sr to compare two strings
load first index in case

the two must he Svli tchccl
;they don't, go back for more
;they do

; r NNO l now in nP.
;lst str of next comparison is
;lNNO - PI\IIDJ, if th11t's

not zero or l ess

;is L zero too?
; if not, goto LP"l

if so, goto LP2

PAGE 4

.,

N
WI

CALI.ilble Shell-r~etzner Sort

RTT03: SHLD
XCHG
LHLD
JMP

INNlll

PARTN
SSLP3

;stash new strl index
;put in DE

DTSTR - Obtain NSTR's from INNO's
DTSTR:

LXI
LHLD
LXI
CALL
LHLD
LXI
CALL
RET

NFRTN: DAD
DI\D
MOV
STI\X
INX

D,INDXO ;start of index
INNOl
B,NSTRl address, not the value
NFRIN this gets and inserts the value
INN02 repeat for second
B,NSTR2
NFRIN

H ;HL*2, each entry is ;> bytes
D ;points to value in index
A,M
B
H

;store lobyte

INX B
MOV
STAX
RET
PAGE

1\,M
B ;store hibyte

PAGE

' GT2ST - Get length and starting addresses of the 2 strings
GT2ST:

LHLD
XCHG
LHLD
CALL
MOV
SHLD
LHLD
CALL
SHLD
RET

GLNAD: DAD
DAD
DAD
PUSH
MOV
INX
INX
MOV

NAMEO

NSTRl
GLNAD
B,C
ASTRl
NSTR2
GLNAD
ASTR/.

H
H
D
D
C,M
H
H
E,M

;addr of ptr to string " 0
;put in DE

;this gets 'em
;lenl now in B, len2 will be in C
;addr returned in HL

;do same for /.nd str

each entry is 4 bytes
so mult nstr by~

add to NAMEO
this byte is len of str
this one is fill~r
lobyte of addr in string spnce

5 CALLable Shell-Metzner Sort

INX
MOV
XCHG
POP
RET

H
D,M

D

;stash this addr in DE

;put it in HL
;retrieve NAMELl

COMPR - The comparison routine

Ca-lPR:
LHLD
XCHG
LHLD

Ca-1P1: LDAX
CMP
.JM

JZ
OLT2: XRA

OGT2:

OEQ2:

RET
MVI
RET
CCR
JZ
CCR
JZ
INX
INX
JMP
PAGE

1f lst <= second, A returns FFH, else OOH

ASTR;>

ASTRl
D
M
OGT2
OE02
A

1\, OFFH

B
OLT2
c
OGT2
D
H
C01P1

;Point to its first byte
;In DE
;addr of 1st string
;get the byte
;is str2 > strl?
;no, it's less
;no, it's equal
;yes -- put 00 in A

; tell caller to switch

;end of strl?
;yes, so 2nd > lst
;end of str2?
;yes, 1st > /.nd
;point to next byte

ditto

Sl•ITCH - Switch values in index array

Sh'TCH:
LXI
LHLD
PUSH
LHLD
DAD
DAD
POP
MOV
INX
MOV
LHLD
PUSH
LHLD
DAD
DAD
POP

D, INDXO
NSTR2
H
INNOl
H
D
B
M,C
H

;this value will go
; where NSTRl was
; but we have to find
; original address
;here it is

now the value is in BC

M,B ;all moved, now for other
NSTRl
H

tNN02
H
D ;here's the address
B

PAGE e;

\.1\LLJblc Shell-r~etzner So rl PAGE 7 s rm~

"10V '1,C

INX 1-j

'10V '1,B

RET

;switch completed

CALL IN ASSEMBLY Ll\NGU.li.GE SO"lT ROUTI"iF:

10 PLOT 27,4: PRINT "RUN SMSORT": PWf 77, /.7
20 C LVIR 200l1\l
2fi RFJ~

VARIABLES

NC:LEM: OS
INNOl: OS
INN02: OS
NSTRl: OS
NSTR2: OS
ASTRl: ffi
ASTR2: OS
PARTN: OS
NGPTN: a;
LPLrr~: [6

NAMEO: ffi
OOS''IT EOU
FNEMG: 00

DB
TNDXt): ffi

END

2
2
2
2
2
2
2
2
2
2
2
OFFfl

SET UP TEXT ARMY TO BE SORTED

30 DIM AS(lOll)

40 FOR X= lTO lllll
45 S$=
50 Fm L= lTO RND (3)* 2ll:REl'1 LENGTH OF 1\N TTEM
fill SS= SS+ Cf!RS (55+ 2fi* (RND (2)))
70 NEXT
7fi AS(X) = SS
RO IIIEXT
85 RFJ~

5,1,3,7.0,S,237,511 CALL S(nT ROUTINE TO SORT AS
'LIST NOT FOUND' ,11,23q,7.3q

12flll ;THERE ARE "2ll 2- BYTE
START E'JTRTES 90 X= 128+ 25G* ASC ("A")

95 PRINT "GOII\'G TO SORT"
100 B= CALL (X)

105 REM

PRINT SORTED ARRAY, USING POINTP.RS liT Lnc. B

110 DEF FN I(Z)= PP.EK (Z)+ 25fi* PEP.K (Z+ l)
125 RE:'1 STf:p Tf!RU POINTER ARRl\Y, P.liCH 2 BYTP.S LONG
130 FOR I= 2TO 2* lOOSTEP 2
140 IX= FN I(I+ B)
lSll PIUNT liS (I X) :NEXT

Vl. 0 (no sound) (US funds)

Copyright (c) 1981 by David

Fast, machine language invaders arcade game
with color graphics and four levels of difficulty
from "not-too-difficult" to "what-the-?!1*??".
Runs on V6.78 and V8.79 software with standard

B. <oi"~

keyboard.

2&

Also included:
of LIFE.

fast, machine language version

Special bonus: V2.0 of Alien Invasion (if I
ever get around to writing it; I'm basically
lazy, so I'm making no promises) will have
sound effects if you have Cap Electronics
Soundware or an equiva.lent device, and it will
be free to all purchasers of Vl.0.

David B. suits
49 Karenlee Dr.
Rochester, NY 14618

I

HOWARD ROSEN. INC.

Put the finishing touches to ~our Co"pucolor II or ISC co"puter.

> CoMe up to the world of word processing,
> Extend the utilization of ~our coMputer to the other MeMbers of ~our faMil~.

• Letters
• School reports
• Business reports
• If you now type-write it, C~-U-Write it for a better product,

> Basic requireMents for CCII or 36S1/96S1f
16K RAM,
117ke';:l ke~board.
Printer.
CoMp-U-Writer software and instruction Manual,

> For MaxiMUM capabilit~f
Full 321<. RAM,
lower case characters.

> Tall<. to other coMputers: Add a MODEM to ~our s~steM.

We carr~ the entire CCII & ISC line of hardware/software, including spares.
Send for our 1-page order forM for hardware/software. Request separate!~
b~ iteM ~our spare parts needs.

Send ~our order now. We pa~ the shipping,
Allow 5 weeks for deliver~.

cqi 36S0/96:50 Rescription Quantit~ Cost AMount

0100S7
0108S8
010059 -
0100"11
HR1001
0100S1

990001

HR0006
HR0007
991509

010053
0100S"'
010055

HR1002

OC03lC
990030
9000"t1
9000"t'f
HR0006
HR0007
991S32

Upgrade 72/101 l<.e~s

Upgrade 72/117 ke~s
Upgrade 101/117 l<.e~s

21in. RS 232C Cable
16k RAM Add- on
Switchable lower Case
32 lower Case Characters
Sin, For~atted Twin Pack
Bin, - 10 One Side ForMat
Bin. - 10 Two Side ForMat
Sin. Exec. CoMp-U-Writer
Sin. Hail-Merge C- U-Writer
FORTRAN

Epson HXBO Serial printer
Base-2, Inc. 850 IMpact printer
CAT Novation MODEM TransMit/Originate

Pa. residents add 6% Pa. Sales Tax

TerMs - Cash with order

Sub Total
Pa. Tax
Total

150.00
250,00
100.00
15.00

185.00
1SO.OO
100.00

9.9S
75.00

100.00
299.00
3"19.00

75.00
665.00
7SO.OO
175.00

NaMe------------------------------~~Telephone •~<--~--~--~~~---------Address Cit~ St ___ ZIP ____ _

HOWARD ROSEN, INC,
PO Bo}: "13"1
Huntingdon Valle~, Pa, 19006

<21S)-"t6"1-71"t5 Signature (please sign order >

27

Color cue
Editorial Offices
161 Brookside Dr.
Rochester, NY 14618

An !D Publication

BULK RATE
U.S. POST AGE

PAID

Rochester; N. Y.
Permit No. 4 1 5

Colorcue

Dec /Jan I982 $2.

Colorcue
A bi-monthly publication by and for
Intecolor and Compucolor Users

December 1981/January 1982
Volume 4, Number 3

3 Editors• Notes

5 Protected Fields, by Bernie Raffee

Editors:
Ben Barlow
David B. Suits

Control keyboard input with a machine language patch

13 Serial to Parallel Interface, by Ben Barlow
A simple but useful project for your peripherals

19 Assembly Language Programming, by David B. Suits
Part III: More on the 8080 instruction set

25 'The' BASIC Editor, reviewed by David B. Suits
A powerful new utility for BASIC programmers

Advertisers: You will find our advertising policies attractive. Write for
details.

Authors: This is a user-oriented and supported publication. Your arti
cles/tips/hints are required to make it go. Send your articles or write
for information.

Colorcue is published bi-monthly by Intelligent Systems Corporation, with
editorial offices in Rochester, New York. Editorial and subscription
correspondence should be addressed to the Editors, Colorcue, 161 Brookside
Dr., Rochester, NY 14618. Product related correspondence should be
addressed to ISC, 225 Technology Park, Norcross, GA 30092, ATTN: Susan
Sheridan. Opinions expressed in by-line articles are not necessarily those
of the editors or of ISC. Hardware/software items are checked to the best
of our abilities but are NOT guaranteed.

Editors'
Notes ...
Notes on Asse.blers

The Macro Assembler is a very
powerful tool when working with
assembly language programs. It is,
however, different from and a little
more difficult to use than the old
original Assembler program. The dif
ferences caused some trouble to a
few of our readers who keyed in the
Assembly Language Sort subroutine
in the last issue, and then tried
to "Assemble" it (rather than "Macro
Assemble" it). We appologize to
those readers we misled. Although
the Macro Assembler rates its own
set of tutorial articles, the fol
lowing brief notes will tell you
what is needed to "translate" be
tween the two versions of assembly
language. Colorcue will often pub
lish programs in the Macro version,
since one of its editors threw away
his old Assembler. [Tsk, tsk. --Oth
er Ed.]

The most powerful feature of
the Macro Assembler (hereafter known
affectionately as Mac) is its sup
port of relocatable, modular code.
Instead of one mammoth source pro
gram, the Mac user can develop small
modules, assemble them individually
(faster editing, faster assembly,
faster debug) and then "link" them
together using the L80 linker. Mac
doesn't know (generally) where the
final PRG program will reside; the
linker is told that. Mac tells the
linker which labels must be known
outside the current module by making
available ENTRY and ElTRN commands.
An ENTRY point is a name in a module
that may be referenced by another
module; an EXTRN is a name in another
module that the current module
wishes to reference. In our subrou
ines, replace an ENDY START line
with an appropriate OKG statement.

The Sort routine needed an ORG
OFOOOH.

Another one of Mac's features
is that of "condi tiona! assembly".
It's possible to define conditions
within a source file, and then
select one of several options with
assembly-time "switches". This fea
ture can be seen in the Sort routine
where different EQUs are generated
based on the setting of the version
variables, V879, V980 or V678. To
use with the regular Assembler,
simply delete the statements for
the version in which you're not
interested, as well as any IF, ELSE,
and KNDIF commands you may find.

Mac's third major feature is
the ability to define and use mac
ros. Since these are just notes,
and macros haven't been used in any
Colorcue programs to date, we won't
discuss them now, but save them for
the later article they deserve.

Busses

We know that several hardware
oriented readers have developed per
ipheral devices and busses for the
SO pin bus. It would be advantageous
to all of us--developers, users,
would-be consumers--if we had a
standard for an external bus inter
face. Colorcue (and some of its
corresponding electrical engineers)
will be happy to coordinate a stan
dard-setting activity. Just send a
definition of your bus to our edi
tors, and we'll chair a remote
committee of respondents. We'll also
be happy to publish a dialog on the
matter. Send us your comments,
notes, articles.

Back Issues
Please note that Colorcue back

issues are for sale. See inside of
this issue's back cover. IC

3

LOOKING FOR CUSTOM KEYCAPS
for your

COMPUCOLOR II or INTECOLOR COMPUTER?

4

We stock blank keycaps that match the
original keycaps supplied on ISC's keyboards

1 x 1 size in 16 colors
1 x 2 size in 14 colors

Single quantity prices for one line engraved keycaps start at:

$1.17 for 1 x 1 size with 5 characters
$1.95 for 1 x 2 size with 10 characters

Other sizes and specific colors are available on special order.
Custom molded keytops available for high volume users.

For order form call or write:

Arkay Engravers
2073 Newbridge Road

Bellmore, NY 11710

516-781-9859

Protected Fields
by BERnE IW'FEE
31 Malvern Avenue
South Harrow, Middlesex
England HAIJ 9EIJ

Although the common method of input to a BASIC program (prompted INPUT)

~s adequate for most applications, there are times when it is not so
suitable. Consider, for example, a data entry application where unskilled
users must enter names, addresses, and numbers from forms through a screen

for a program to write to a disk file. It would be nice if INPUT would
allow the programmer to exclude all the undesirable keys (the menu, escape,

blinks, erases, home, or down arrow) that can cause such harm if pressed.
Programmers themselves can press those keys by mistake, and trying to get
new users to realize the importance of NOT striking the wrong key is
sometimes a tough job. (And understandable, from their point of view. If
the computer doesn't want to see a menu key in the middle of typing in an
address, why doesn't it just ignore it?) Another drawback to INPUT is that

the user can type in 26 characters for a 25 character field. Nothing stops

them. The program can generate an error message after the fact, but it
would be much neater to inhibit input after the 25th character.

This article describes a CALLable assembly language subroutine that
does just that. In addition, it can disallow entry of alpha data in fields
defined as numeric, and has editing features such as the use of the

insert/delete character and delete field (line) keys. There are two programs

presented in this article. One of them, the assembly language subroutine,
will not be described. If you're interested, it makes interesting reading;
if not, just type it in and assemble it. The second program is a BASIC

program that illustrates the use of the CALLable "FIELDS" assembly language
routine. The assembly language program can be assembled by either assembler
(see the Editors' Notes in this issue about the differences between the

macro and regular assemblers), and that when RUN from FCS, it establishes
all necessary linkages, and adjusts for different software versions.

The major divisions in the BASIC program should be evident. Lines

550-870 display the initial screen. Each input field is shown as a blue
rectangle of appropriate size. For example, the first field - NAME - is

displayed on line 10. The title of the field, NAME, identifying the data

item, is displayed followed by a blue rectangle 12 bytes long. (Lines 630,
680.) Lines 880- 1080 are the main body of the code, where each field is
"read" from the screen. Lines 880-920 read the first field, NAME. Variables
X and Y are set to the first position of the blue rectangle for NAME, ML
is set to 12, the maximum field length, NA$ is set to "A" indicating an

s

alphanumeric field, and the CCI set to white on blue. The control subroutine
at line 100 (through 195) is called to interface to the machine language
subroutine. The 100 subroutine POKEs parameter values for the assembly
language routine into a known common location (right after the end of
BASIC RAM), and CALLs the routine. On return, FI$ is constructed from the
field, byte by byte, and control returned to line 910. The variable KB is
used to return the ending character of the field, and if a TAB key was
pressed, the program "backs up" a field. Lines 1210-1220 are where the
main field processing program would be. In this demo program, the entered
field is simply written back on the same line along with its length.

When the assembly language program gets control after the CALL, it
takes over all keyboard input and disallows any control characters and any
"undesired" characters. It processes editing keys, such as cursor controls
and character insert keys. The delete line key causes the field to be
cleared from the cursor to the end of the rectangle. When the return key
signifies the end of field entry, what is shown in the field will be what
the program gets, unlike INPUT, which inputs only to the cursor. (In the
assembly language program, changing the value of ALPHMAX to 126 will permit
lower case letters.)

Although the routines here may be a little long, I'm sure you'll find
them to be quite useful. They can greatly extend the use of your computer
by making the "feeding" of it more friendly. C

(Program listings begin on next page.)

CALL FOR. ARTICLES
Colorcue gets its material from those who write it. It don't grow on no
trees. Nevermind your bad sppeling or badly grammar: that 1 s the job of
the Editors. You come up with the ideas, splash them onto paper (or disk),
and we'll wrestle them into an intelligible form for publication. We can't
pay you for your time--you won't become rich. But, since Colorcue is read
all over the world (well, not all over, exactly), then maybe you'll become
world famous.... We 1 re looking for ideas, programs, reviews of books
and/or software and/or hardware applicable to ISC machines, hardware/soft
ware modifications, user group news, and •••• Well, you get the idea.

FOR. SALE. 32K Compucolor II with 117 key keyboard and lower case. Version
8. 79. Centronics 779-2 dot matrix printer with lower case and inter
face/cable. Novation CAT modem with cable and Com-Ironies TERMII communi
cations software. Disks: Sampler, Basic Editing, Assembler, Text Editor,
Star Trek, Personal Data Base, Blackjack, Cubic Tic-tac-toe, plus 25
additional disks. Compucolor Programming Manual. $2200.00. Contact: Don
Miller, 112 Marble Drive, Rochester, NY 14615 (716) 663-1175.

6

L

~

Listing 1. Assembly language listing for the
protected fields rout i ne.

;FIELD HANDLING ROUTINE WHICH
;ENABLES BASIC TO CREATE
; ' PROTECTED ' ~ ' UNPROTECTED' FIELDS
;ON THE SCREEN.

' ;AUTHOR. BERNIE RAFFE
HARROW

; ENGLAND
;FEBRUARY 1981

DATA AREA USED TO PASS PARAMETERS
;
COUNT: DB 0 ;CHARACTER COUNT
NA: OS 1 ;NUMERIC OR ALPHA;SET BY BASIC
CHARIN: DS 1 ;TEMPORARY CHARACTER STORE
FLDADR: DS 1 ;START OF FIELD;SET BY BASIC

MAXBAS EQU 32940 ;POINTER TO END OF BASIC RAM
VCALL EQU 33282 ;CALL VECTOR

SUBROUTINE TO SET UP LINKAGES WHEN RUN FROM FCS

START: PUSH H ;SAVE SOME REGS
PUSH D
PUSH PSW
LXI H,COUNT-1 ;SET END OF BASIC RAM POINTER
SHLD MAXBAS ;TO 1 BYTE IN FRONT OF PGM
MVI A, (JI'!Pl ;SET UP JUMP TO OUR RTN IN CALL VECT.
LXI H,CIINIT ;SO CALL WILL GO TO CIINIT
STA VCALL
SHLD VCALL+1 ;STORE ADDRESS
LXI H,1C7SH ;ASSUME LO ADDRESS IS IN V879

LDA 0001H ;CHECK
CPI 6CH ; IS IT?
JNZ STUFF ;YES
LXI H,3392H ;NO, CHANGE TO V678 ADDRESS

STUFF: SHLD L0+1 ;PUT PROPER ADDR. INTO INSTRUCTION
POP PSW ; PREPARE TO EX IT
POP D
POP H
!'!VI B,O ;CLEAR B TO INDIC. NO ERR. TO. FCS
RET ;RETURN TO FCS

LO LINKAGE
VERSIONIZED BY START ROUTINE

LO: JMP OFFFFH ;JUMP TO LO ROUTINE IN MONITOR
;ACTUAL ADDRESS FILLED IN BY START

CR EQU 13 ;CARRIAGE RETURN
DELINE EQU 04 ;DELETE LINE KEY
INSERT EQU 05 ;INSERT KEY
DELETE EQU 127 ;DELETE KEY
HT EQU 9 ;HORIZONTAL TAB
RIGHT EQU 25 ;MOVE CURSOR RIGHT
LEFT EQU 26 ;MOVE CURSOR LEFT
SPACE EQU 32 ;SPACE CHRACTER
SLASH EQU 47
INPCRT EQU 81C5H ;JUMP VECTOR J31
KBDFL EQU 81DFH ;HOLD NO. OF. JUMP
KBRDY EQU 81FFH ;KEYBOARD READY FLAG

;VECTOR FOR KEYBOARD

NUMMIN EQU 45 ;NUMERIC MINIMUM
NUI'!MAX EQU 58 ;NUMERIC MAXIMUM
ALPHMIN EQU 32 ;ALPHANUMERIC MINIMUM
ALPHMAX EQU 91 ;ALPHANUMERIC MAXIMUM

~ ;THIS CHARACTER INPUT INITIALISATION CFIN: EI ;ENABLE INTERRUPTS
;ROUTINE SETS UP THE PARA~ETERS RET ;RETURN FRO~ INTERRUPT
;NECESSARY FOR THE 'CHRINT' AND
; 'CI' ROUTINES.

;CI - THIS CHARACTER INPUT ROUTINE GETS A CHARACTER
CIINIT: PUSH PSW ;SAVE RESISTERS REQ'STD BY BASIC ; FRO~ THE TEMPORARY STORAGE LOCATION 'CHAR IN'

PUSH H ; CLEARS THE KEYBOARD READY FLAG
LOA KBDFL ;SAVE BASIC'S JU~P VECTOR I ; AND RETURNS WITH THE CHARACTER IN 'A'.
PUSH PSW ; IF THERE IS NO CHARACTER IN 'CHARIN',
MVI A,31 ;SETUP NEW JU~P VECTOR I : THEN 'CI' WILL HANS AND WAIT FOR ONE.
STA KBDFL
~VI A,OC3H ;PLACE 'J~P' AT VECTOR LOCATION CI: EI ;ENABLE INTERRUPTS
STA INPCRT CI10: LOA CHARIN ;SET CHARACTER
LXI H,CHRINT ;SET ADDRESS OF 'CHRINT' ROUTN CPI 0 ;HAVE A CHAR?
SHLD INPCRT+l ;PLACE ADDRESS AFTER 'J~P' JZ CilO ;IF NOT,HANS FOR ONE
XRA A PUSH PSW ;SOT ONE,NOW SAVE IT
~ov B,A XRA A
STA KBRDY STA KBRDY ;CLEAR KEYBOARD READY FLAG
STA CHAR IN STA CHARIN ;CLEAR TE~P STORAGE FOR NEXT CHAR
STA COUNT ;RESET CHARACTER COUNT POP PSW ;RESTORE CHAR
J~P SETNXT RET

;CHRINT - THIS CHARACTER INPUT ROUTINE IS GETNXT: CALL CI ;GET NEXT KEYBOARD CHARACTER
;VECTORED TO FRO~ THE KEYBOARD INPUT ~ov D,A ;STORE IN 'D'
;ROUTINE THROUGH THE JU~P VECTOR (1311. CPI LEFT ;BACKSPACE?
;THE CHARACTER FRO~ THE KEYBOARD JZ LEFTKEY ;JUMP TO BACKSPACE ROUTINE
;ROUTINE IS IN REGISTER 'E'. CPI HT . ;TAB?

JZ HAINFIN ;YES-JUMP TO END ROUTINE
CHRINT: LXI H,CHARIN ;SET ADDRESS OF TE~P CPI CR ;RETURN?

;CHARACTER STORAGE. JZ ~AINFIN ;YES - JUMP TO END ROUTINE
XRA A ;CLEAR ACCU~ULATOR CPI RIGHT ;CURSOR RIGHT
CI'!P ~ ;TEST FOR 'CHARIN' FOR ZERO JZ RGHTKEY ;PUT IT ON SCREEN
JNZ CFIN ;IF NOT ZERO THEN IGNORE INPUT CPI INSERT ;INSERT A NEW CHARACTER
I'IOV A,E ;GET CHAR FRO~ 'E' JZ INS10
ANI 127 ;STRIP UPPER BIT FOR ASCII CPI DELETE ;DELETE A CHARACTER
MOV I'!, A ;PUT CHAR IN 'CHARIN'

JZ DEUO STA COUNT
CPI DELINE ;DELETE LINE CHAR ~ov E,D ;PUT LAST CHAR IN 'E'
JZ DUNlO XRA A
~ov A,B ; FIELD FULL? I'IOV D,A
CMP E POP PSW ;RSTORE BASIC JUMP VECTOR I
JZ GETNXT ;YES SO IGNORE STA KBDFL
LOA NA ;NUMERIC OR ALPHANUMERIC FIELD POP H ;RESTORE USED RESISTERS
CPI 65 ;A=ALPHA POP PSW
JZ ALPHA RET

NUMERIC:MOV A,D ;NUMERIC VALIDATION LEFTKEY: MOV A,B ;BACKSPACE SUBROUTINE
CPI NUM~AX ;RANGE TEST-MAXI~UM VALUE CPI 0 ;IF ON FIRST CHAR
JNC 6ETNXT ; IGNORE JZ 6ETNXT ;THEN IGNORE
CPI NUM~IN ; I'IINII'IUM VALUE DCR B ;DECREMENT CHAR COUNT
JC 6ETNXT ; IGNORE MVI A,LEFT ;BACKSPACE CURSOR
CPI SLASH i = , I' CALL LO
JZ 6ETNXT ;IGNORE JMP 6ETNXT
JI'IP KEY OK ;ACCEPT KEY

RGHTKEY: ~ov A,B ;RIGHT CURSOR FUNCTION
ALPHA: ~ov A,D ;ALPHANUMERIC VALIDATION CMP E ;CHECK IF FIELD FULL

CPI ALPHMAX ;RANGE TEST - MAXIMUM VALUE MOV A,D ;RESTORE CHARACTER
JNC 6ETNXT ; IGNORE JNZ KEY OK ; NO SO O.K.
CPI ALPHMit~ ; MINIMUM VALUE JKP GETNXT ; IGNORE
JC 6ETNXT ; IGNORE

KEYOK: CALL LO ;PUT IT ON SCREEN ;INSERT A CHARACTER ROUTINE ••••
INR B ;INCREMENT FINAL COUNT ;RESISTER USAGE:-
JKP 6ETNXT ;SET NEXT CHAR i A=NO OF CHARS ALREADY IN FIELD

B=POSITION WITHIN FIELD
I'IAINFIN: !'lVI A,3 ;PUT CURSOR OFF SCREEN i C=NO OF CHARS TO SHUFFLE

CALL LO i E=I'IAX NO OF CHARS IN FIELD
MVI A,64
CAll LO INSlO: CALL CNTlO ;DETERI'IINE SIZE OF FIELD RTN
XRA A CPI 0 ;IGNORE IF NO CHARS IN FIELD
CALL LO JZ 6ETNXT

~ CALL CNTlO ;SETUP FIELD COUNT FOR BASIC PUSH D

.... LHLD FLDADR ;SET UP HL ;DELETE A CHARACTER ROUTINE •••.•
0 DCX H ;REGISTER USAGE:-

DCX H ; A=NO OF CHARACTERS ALREADY IN FIELD !AFTER CNT10 CALLI
SUB B ;CALCULATE NO OF CHARS ; B=POSITION NITHIN FIELD
Jl'! INSSS ;RETURN IF PAST LAST CHAR !NAUGHTY~! ; C=NO OF CHARACTERS TO SHUFFLE
JZ INSSS
I'!OV C,A ;PUT IN C DEUO: CALL CNT10 ;DETERI'!INE SIZE OF FIELD
ADD B ;RESTORE A CPI 0 ;IGNORE IF NOTHING IN IT
CI'IP E ;IS FIELD FULL JZ GETNXT
JNZ INS20 ;NO PUSH D
DCX H ;YES - SO ARRANGE FOR LAST CHAR LHLD FLDADR ;SETUP HL
DCX H ;TO DISAPPEAR FROI'! FACE OF EARTH INX H
OCR c INX H
Jl INSSS ;IGNORE IF SITTING ON LAST CHAR SUB B ;CALCULATE NO OF CHARS

INS20: I'!VI o,o ;POSITION HL TO LAST CHAR I'!OV C,A ;TO SHUFFLE ~ PUT IN C
110V E,A
DAD 0 DEL20: I'!OV E,B ;POSITION HL TO FIRST CHAR TO SHUFFLE
DAD D 11VI D,O
LXI D,OFFFCH ;TO SUBTRACT 4 LATER ON DAD D

DAD D
INS30: I'!OV A,l1 ;GET CHAR FROI1 FIELD LXI 0,4 ;TO ADD 4 LATER ON

INX H
INX H DEL25: OCR c

110V I'!,A ;AND SHIFT UP Jlt DEL 55 ;RETURN IF PAST LAST CHAR
JNZ DEL30 ;SPECIAL TEST FOR LAST CHAR

INS40: OCR c ;ANY 110RE? DCX H
Jl INSSO ;NO DCX H
DAD D ;YES POINT TO PREVIOUS CHAR JI1P DEL53
JI1P INS30

DEL30: 110V A, I'! ;GET CHAR FROit FIELD
INSSO: DCX H ;PUT A SPACE AT CURSOR POSITION DCX H

ocx H DCX H
11VI 11,SPACE ltOV 11,A ;AND SHIFT UP

INS55: POP 0 DEL40: OCR c ;ANY 110RE?
JI'IP GETNXT ;RETURN Jl DEL 50 ;NO

~~ l '

DAD D ;YES - POINT TO NEXT ONE DLIN40: POP D
J~P DEL30 J~P GETNXT

DEL SO: INX H ;PUT A SPACE AT LAST ;ROUTINE TO DETER~INE THE EXACT LENGTH
INX H ;CHARACTER POSITION ;OF A FIELD ON THE SCREEN.

DEL 53: ~VI M,SPACE ;FINAL COUNT IS PUT IN 'A'.

DEL55: POP D CNT10: PUSH B ;SAVE IT
JI'IP GETNXT ;RETURN LHLD FLDADR ;START OF FIELD

DCX H
DCX H

;ROUTINE TO DELETE ALL THE REMAINING I'IVI B,O
;CHARACTERS IN THE FIELD

CNT20~ I'IVI c,o ;C WILL CONTAIN NO OF SPACES
DUNlO: CALL CNT!O ;GET NO OF CHARS IN FIELD ;PAST THE END OF THE FIELD

PUSH D CNT3o: ~ov A,B ;B CONTAINS THE FIELD COUNT
LHLD FLDADR ;START OF FIELD CI1P E ;ARE WE AT 11AXI11UI1
SUB B ;CALCULATE NO.OF CHARS TO DELETE JZ CNT40 ;YES - FINISHED
J~ DLIN40 ;IGNORE IF AT END INX H ;GET TO NEXT CHAR
JZ DLIN40 INX H
I'IOV C,A INR B ;ADD 1 TO COUNT

MOV A,l1
DLIN20: 11VI D,O ;SET H&L TO 1ST CHAR TO DELETE CPI SPACE ; IS IT A SPACE

I'IOV E,B JNZ CNT20 ;NOPE
DAD D INR c ;INCRE~ENT SPACE COUNT
DAD D J~P CNT30 ;BACK & SHUFFLE NEXT ONE
11VI A,SPACE

CNT40: ~OV A,B ;CALCULATE EXACT COUNT
DLIN30: ~OV M,A ;DELETE CHARS SUB c

DCR c ;ANY MORE? POP 8 ;RESTORE USED REGISTER
JZ DLIN40 ;NO RET
INX H
INX H
JI1P DLIN30

..... END START
~

1-'
N

Listing 2. A BASIC program which demonstrates the
fields machine language patch. Note: numbers in
brackets are control codes entered from the
keyboard. Thus, [16] is black; [17] is red; [29]
is foreground on; etc.

1 OOJD 588
188 REM [18) [18)Fm..D BANIL:n«; SJBRl1l'INE[18) [18)
185 REM (22]X • X CD-CIIDINA1'E[18)
ill REM [22)Y • Y CD-<JmiNA1'E[18) .
ll5 REM [22)ML • MAXDilM lNPOT LEm'lB [18)
128 REM [22)NA$- 'N' I10R KH:RIC at I A' roR At.l'Bl\NCMI!:RC[18)
125 REM [22)KB • KEm:l!\RD <llARACI.'f2[18)
138 REM [22)FI$-FINAL smm:;[lS)
135 BfM [22)SA • &lU:fN AlliJU:SS (R Fm..D[18)
148 R>-PEEK(32948)+PEEK(3294l)*256+1:Imt IOINT 'lO PARNIIi:'.lER PASS AREA
145 ~28672+128*Y+X+X:REM &lU:fN AlliJU:SS .
158 ZZ.INT(SA/256) :IOKE I0+3,SPr-256*ZZ:POKE 10+4,ZZ
155~2
168 lOIE I0+1,ASC(NII$) :lUX AI.l'IWIH:RIC at KH:RIC
165 FI$-"•
178 PLOl' 3,X,Y
175 KB-CALL(ML)
188 IF m-9 at l'EE!t(IO)-s 'Dim~
185 roR I•2 'lO PEEK(l0)*2. Sl'EP 2
198 FI$-t>I$+01R$(PEEK(SI'rH)) :NEXT I
195 RB'l'CRi
5H Rill [18) [18)PROOIWI lNITIALIZATiaf[18) [18)
528 a.BI\R 188
538 PLOl' 27 ,4
548 PRINT "HlN FJF.Im•
545 BfM [18) SET UP &lU:fN [18)
558 PLOl' 27,27 ,27 ,24
568 PLOl' 12,3,5,1,14 .
578 PRINT •[29) [22]Sl\MPLE l'ROOlWl 'D)~ 'lHE USE (R I [17)FIPI.00[22)' [1

sJ•
588 PLOl' 3,8,5,11,3,5,5,15
598 INR1l' •[19)Eml!R I (22]I(19) 1 'D) INSERT at I [22)U[19) 1 'D) UHlME [22]•;A$
6H IF A$0•I• AND A$0-o"'O!! 588 618 PRINT •[17] ________ __:. _____________ _

_ [18]•
628 FOR I•1 'lO 28:PL01' 18,ll:NEXT I
638 PLOl' 3,1,18:P.RINT •[23)NAME [18]•
648 PLOl' 3,1,13:P.RINT •[23)ADCRESS [18] •
658 PLOl' 3,1,16:P.RINT •[2J)K>NEY Qf:n«;[18]•

668 PLOl' 3,1,19:P.RINT •[23]~[18)
678 IF A$--o"'Oro 738
681 PLOl' 3,14,18:P.RINT • [38) [211) [16).
698 PLOl' 3,14,13:P.RINT •[211] [16]•
7H PLOl' 3,14,16:P.RINT • [211) [16]•
718 PLOl' 3,14,19:P.RINT • [211] [16) [29]•
7211 OOJD 778
738 PLOl' 3,14,18:P.RINT •[29) [22) [38) [211)BmNIE RAP'P'E[16]•
748 PLOl' 3,14,13:P.RINT • [211)BlllUOi , EH0L11ND [16]•
758 PLOl' 3,14,16:P.RINT •[28)534.43-[16]•
768 PLOl' 3,14,19:P.RINT • [28)AVP1UIGE[16) [29]•
778 PLOl' 3.8.22
788 PRINT •[22)&nlfi\RY OF FACILITIES:-[18]•
798 PLOl' 3 ,8 ,24
888 PRINT • [19) 1) cetma. <JIA1UICl'ERS & ClJ1lS:R IOSITiamli KEYS (EXCEP1'[18]•
818 PRINT • [19) LEFl' & RIGill' CIJRS:R) ARE DISABLED. [18]•
828 PRINT • [19) 2) ClJ1lS:R WILL R:7l' mAVI!L aJT OF A Fm..D[18]•
838 PRINT . • [19) 3) FINAL FIELD VM.tlE IEPENil3 CN CDNl'mT OF FIELD CN 'lHE [181-
84IJ PRINT • [19) . SCREEN & 001' CN 'lHE ACIUAL !lEY IEPRESSICNS [18]•
858 PRINT • [19) 4) 'tfLE'l'E/INSERT CIAR' & 'IELETE LINE' ~ wriBIN APIJ:LD[18

]•
868 PRINT • [19) 5) ALHIABET!C CliAR1.CJ.'ERS ARE DISABLED IN WMERIC FIPI.OO (18]•

878 PRINT • [19) 6) 'DIE ''mB' KE! RE'lURNS ClJl9:R 'lO 'lHE EREVIaJS FIELD[1B]•
875 Rill [18) (18]GE'l' EHJI FIW>[18) [liJ)
888 X•14:Y•18:ML-12:NA$-•A•
898 PLOl' 6,38
988 G:BlB 188
918 IF~91J8
928 G:BlB 1288
938 X•14:Y•l3:ML-17:NA$-•A•
948 PLOl' 6 ,38
958 G:BlB 11Jtl
968 IF 'kB-90010 881J
978 G:BlB 1288
981J X•14:Y•16:ML-7:NA$-~
998 PLOl' 6,38

18H G:BlB 188
1818 IF~938
1828 G:BlB 1288
1838 X•14:Y•19:ML-7:NA$-•A•
liJ4IJ PLOl'. 6 ,3 8
1858 G:BlB 188
liJ68 IF ~ 988
1878 G:BlB 1288
1888 PLOl' 3 ,15 ,21: lNPOT • [17) Hl'l' RmmN roR JINC7lJim 00 [18]• ;A$
1885 Rill [18)a.EAR SCREEN AND 00 IT 1G\IN[18)
1898 PLOl' 3,8,8:roR I•1 'lO 23:PLOl' 18,ll:NEXT I
llH OOJD 588
1288 BfM (18] [18)Fm..D ~ Hll'l'INE. 'IBIS JUST HUNTS WILUE; [18]REAL mo

GRAM WWLD mn:sB FIW> HEm:
1218 PLOl' 6,2,3,33,Y:P.RINT •[29](17]•;FI$;• ([29][22]•;LEN(FI$);•[29](17])[29)[

18]•;• •
1228 RB'l'CRi

Serial to Parallel Interlace
by Ben Barlc:M

The Epson line of printers is certainly one of the most popular ones

~n the personal computer industry. Their combination of features (including
high resolution bit-level graphics), high reliability, and low price are

hard to beat. Have you noticed the low-end printers being offered by IBM
and HP on their lines of personal machines? OEMed Epsons. Many ISC and
Compucolor owners have added Epson printers to their computers, and several
of them, as I did, were probably surprised to find that the Graphics
package (GRAFTRAX-80) does not work with the low cost serial interface

board option in the printer; the $150 buffered serial interface is required
for GRAFTRAX. Having chosen the Epson at least partly because of price,

and badly wanting the graphics option, I was distressed to think of $150
fleeing after the $75 (inexpensive interface) after the $90 (graphics).
At that rate, the options would soon exceed the basic printer's cost. This

article is about a cheaper solution--one that you might want to consider
as an alternative to either of the serial boards: a serial to parallel

converter that allows the computer (serial) to talk to the Epson in its

own tongue (parallel). (After writing this article, I came across an
article in the Sept. 1981 issue of BYTE magazine by Steve Ciarcia on the
construction of an unlimited-vocabulary speech synthesizer that connects
to any computer through a parallel interface. So there may be value in
this article even if you don't have a printer.)

Photo 1.

13

The converter is a low cost device based on a 5V UART which accepts
data at 9600 BPS (Bits Per Second)from the computer, turns them into a
parallel byte, and strobes them into the Epson's parallel interface. It
accepts the BUSY signal from the printer and passes that back to the
computer as not clear-to-send to control data flow. It's constructed with
only four IC chips and a handful of other parts, and with judicious shopping
and no junk box to pull from, it can be built for about $45. With any k~nd
of parts box to paw through, the cost can go down significantly.
Construction is relatively simple, and the converter can be a rewarding
project for the winter months.

Looking in more detail at the operation of the converter, it may help
to look at the schematic. The AY-3-1014A UART is one of several chips
which are adequate; choosing one that operates on a single 5 volt supply
simplifies the process, though those chips are more expensive than the +5
and +12 ones. The 1014 is set up with its selectable options determined
by connecting option selecting pins 34, 35, 36, 37 to +5V. Pin 21 must be
grounded, and pin 4 must be low to place received data on the output lines.
Bits of a byte a clocked into the 1014 under the control of the Receiver
Clock (RCP = pin 17). When a serial byte has been completely received,
the 1014 puts it onto the output lines RDl through RD8, and raises the
DAV signal on pin 19 to indicate that a byte is ready. DAV is used to
generate a short duration pulse which strobes the data on the output lines
into the printer's data buffer. The 74123 chip (a 74121 would have been
more appropriate, but I didn't have one) provides this pulse, which is
about 500 nanoseconds long.

The printer returns the ACKNLG* ("*" indicates active low) signal
which is routed to the 1014 on pin 18, RDAV*. The 555 timer chip provides
the clock for the 1014, which must be at 16 times the baud rate, or 153.6K
(9600 x 16). Although this is outside the 555's specification (lOOK is
its published limit), it seems to produce an adequate (though not quite
square) pulse train. (I experimented with CMOS oscillators with no luck.
A baud rate generator chip, which would be the professonal way to get a
clock, would have added about another $15-$20 to the low-cost project.)
An adjustable potentiometer adjacent to the 555 provides the necessary
degree of adjustment of clock frequency to compensate for temperature or
burn-in. (My clock seemed to drift for a couple of days until the capacitor
apparently stabilized. Since then it's been fine, and unadjusted.) The
1489 chip accepts RS232C signal levels, converting them to TTL levels and
inverting them. Serial data comes from the computer at an RS232C level,
and is routed through the 1489 before feeding to the 1014. The BUSY signal
from the printer also is routed through the 1489, but only for its inverter
function. (The BUSY* signal thus supplied works with ISC computers and
Compucolors containing the ECN 002137 published in the Aug/Sept Colorcue.)

14

The converter consists of three separately constructable pieces: the
interface itself, a 5V power supply, and a printer cable. The interface
pictured (photo 1) was built on a small piece of vector board using wire
wrap methods. A 16-pin socket was wired in as the parallel cable connector,
allowing the cable to be removed from the interface itself, a simplifying
factor during construction. I 1 ve gotten into the habit on wire-wrap projects
of providing labelled test pins for +5V and GND, so that I can easily
attach logic probes or meters without crowding the components needlessly.
The potentiometer for the 555 should be a multi-turn one, possibly with
a series resistor as shown in the schematic, depending on the values you
can locate. Having the adjustment screw available from the outside (notice
the hole in the case in photo 2) simplifies adjustment somewhat. The power
required is low, but I chose not to pull it from the computer. It's not

readily accessible there, nor did it seem esthetically correct. My junk
box had some non-working calculator power supplies that came from a surplus
store as fantastic bargains a year or two back, and modification of one
of those proved to be easy. For someone without that type of junk, a 6 or
9V transformer with regulation to 5V on the converter board would be an

inexpensive solution. There's room on the board for the required regulator
and capacitor.

Photo 2.

Cable construction is straightforward. The special connector for the
parallel interface is soldered on one end, a 16-pin DIP header on the
other. The only trick is to carefully map pin to pin. Although I used a
hunk of 12 conductor wire from under the workbench, ribbon cable or separate
wires should work as well. Remember to connect pins 35 and 31 on the
parallel connector.

IS

Once built, you'll want to check the w~r~ng (and, if you're like me,
recheck it). An easy way to do this is to check (with no chips in the
sockets) each pin, each wire, with a voltmeter set to measure resistance-
make a series of continuity checks. If all the wiring checks out, check

the power supply wiring, and if it looks all right, plug it in and hope
for SV. Check power and ground pins on each socket on the board, check

the cable, and with the power off, plug in the chips. If it seems to be
working (as opposed to smoking), check the SSS's output with an
oscilloscope. (If you don't have one, don't worry. The following procedure

works as well.) Set the pot so that the 555 1 s pulse width ~s 6.5
microseconds. Or, write a small BASIC program, such as:

10 PLOT 27,13
20 PRINT ''ABCDEFGHIJKLMNOPQRSTUVWXYZ////1/TEST ...• TEST .
.•. TEST----TEST----TEST"
30 GOTO 20

Connect the computer's RS232 cable to the interface, connect the printer,

power everything on (all the connections were made with power off, right?),

and RUN the program. Adjust the pot until the printer prints text, not
garbage. Find the middle of the "print" range, in between garbage settings,
and leave it there. You may have to adjust it again, but if it acts like

mine, it will settle in like a rock after a day or two.

In summary, if you are willing to trade a little time for money, and

enjoy (or want to experiment with) the hardware side of the business,
you'll find this project appealing. It's a simple, low cost, safe interface.

:16

Parts List

Small box
2.5" x 5" Vector board

1 8 pin WW socket
1 14 pin WW socket
2 16 pin WW socket
1 40 pin WW socket
1 LMSSS IC
1 MC1489 IC
1 74123
1 AY-3-1014-A
2 50 pF capacitor
2 .1 mF capacitor
1 10 mF capacitor
1 1K Ohm resistor
1 20K Ohm resistor
1 56K Ohm resistor

1 SOK multi-turn pot.
1 DB-25 female soldertail connector

misc. w~re (stranded 22 ga. & WW)
.025" square post terminals

1 Amphenol 36 pin connector for
Centronics-type printers

1 length 12 conductor cable (or
substitute)

1 16 pin DIP header

SV power supply or:
6 or 9V DC transformer
78MOS regulator
lOOOmF 35V capacitor

II(.

5DK.

K5Z3Z
P4RALLiit.
CCNNiicm~

CA6Lf; CAJ!jLii

#COl
,s, z

ICIZ. " 3
1!)5

,.
't

f(bf' C>.5" AV-3·
3 1011# ll!IS"s 6

«Of. 7 7
11»7 • 8
(18 ~ !i)

10

ACitNI.O

+SV zo" ~sv

If

+5V 1'11Z3 PAT4
STifoa•

11 <J~--------------------~'()~~1-----------------------------<JII
CTS ~ ~y

~~--~:>1&
GND GND

Serial to Parallel Converter

17

RENAISSANCE MARKETING ANNOUNCES

Low Cost Business Programs
for your Compucolor model 4, model 5
and Intecolor 3600 series Computers

* GENERAL LEDGER (16K, 32K) $ 59.95

(1) ACCOUNT PROGRAM: Display account data, list all accounts,
add account, delete account, change account data.

(2) JOURNAL PROGRAM: Enter journal data, display journal data
by entry number, change account data.

(3) PROOF PROGRAM: Display or print journal entry proof sheets
with titles.

(4) POST PROGRAM: Applies journal entries to accounts.
(5) REPORT PROGRAM: Print balance sheet, print income

statement with titles.

* INVENTORY CONTROL (16K, 32K) $ 34.95

the following reports:
Display item data by quantity.

Gives
(1)
(2)
(3)
(4)
(5)

Print or display all items on file.
Display item data by class code.
Print or display item data by vendor.
Updating section:
a. add new item
b. update item quantity
c. change item data
d. delete item

(6) Display item data by item number.
Provides quantities and data for 750 items or models.

MAXELL MINI DISK for Compucolor. Box of 10 $ 34.95

30% OFF all Compucolor Corp. software in stock. CALL

RENAISSANCE MKT.
7 So. Pierson Rd.
Maplewood, NJ 07040

201-762-0585
[] General Ledger $59.95
[] Inventory Control $34.95
[] Maxell Disk Box Qty.

In N.J. add 5% sales tax

Ship to:

Ierms: payment with order Freight: Prepaid in USA
Available for Intecolor Feb., Mar. 1982 Taking orders now.

18

Assembly Language Programming
PART III: 10m <B 'lBE 8888 lRS'IHJC'fi<B SET
by Dl\VID B. &JITS

Last time we used res Is Machine Language Debug Package in order to

learn about a few of the 8080 machine language instructions (or "operation
codes", or just "op codes", as they are often called). We saw how to put
an eight b~t number into the accumulator and then CALL a certain subroutine

contained in your computer's ROM in order to put something onto the screen.
This was just like BASIC's PLOT statement. In BASIC, you can specify a
whole string of PLOT numbers just by separating them with commas. For

example, PLOT 2,0,0,242,127 ,0,127 ,127 ,0,127,0,0,255 will draw a line around
the screen. Being able to separate the numbers with commas makes things

a lot easier than having to say PLOT for each number: PLOT 2: PLOT 0: PLOT
0: PLOT 242 ••• etc. Can we do something like that in assembly language
so that we don't have to load the accumulator each time with the next byte
and CALL the subroutine? Yes. We will investigate a method which works
something like BASIC's DATA and READ statements.

As we learned last time, the MOV instruction tells the 8080 to move

(or, really, copy) the contents of one register into another. The

destination register is specified first, and then the source register.
For example, MOV A,E will copy the contents of the E register into the A
register (the Accumulator). The diagram shows the registers. But there is

REGISTER

PC
SP

FLAGS A
8 c
0 E
H L

ONE BYTE ONE BYTE

I'IEGISTER PAIR
NAME

PC (Program Counter)

SP (Stack Pointer)

PSW (Program Status Word)

8
0
H

a register (well, sort of a register) which is not shown: register M. 'M'

stands for Memory. Although memory locations are surely not registers in

the 8080 chip itself, the 8080 is cleverly designed so that we can sometimes

treat them as if they were. But certain conditions must be fulfilled.

Specifically, we can call that memory location whose address is contained
in the HL register pair a register. Thus, MOV A,M is an instruction to

copy the contents of the memory location into the accumulator. Which memory
location? Why, the one whose address is contained in the HL register pair.

19

For example, if the HL pair contained the 16 bit address 00111111 00001110
(which is 3FOE in hex), then MOV A,M would copy the contents of memory
location 3FOEH into the accumulator. The instruction MOV M,E would copy
the contents of register E into memory location 3FOEH. And so on. There
are other ways of getting data to and from memory, but this is a handy
one which will suit our present purposes.

How do we set up the HL pair so that it contains the address of the
memory location we want? We can use the MVI instruction which we dealt
with last time. Remember, MVI <reg>, <num> will put <num> into <reg>. If
we want 3FOEH in the HL pair , then we could write:

MVI
MVI

H,3FH
L,0EH

or MVI
MVI

L,0EH
H,3FH

(Note that I have explicitly specifed that each of the numbers is hex by

using the capital 'H'. Although the MLDP assumes that all numbers are in
hex, your assembler doesn't: it assumes that everything is in decimal
unless followed by 'H' for hex. Since we will be dealing with the assembler
eventually, we might as well get used to this way of doing things. Besides,
specifying 'H' when hex is meant will help avoid confusion. Of course,
for numbers less than OAR, it won't matter: 1 decimal= 1 hex, 2 decimal
= 2 hex, and so on up through 9.) But there is a more convenient method
of loading a register pair with two bytes, and that is: LXI <reg pair>,

<num>. The 'LXI' stands for Load eXtended Immediate. 'Load' in this case
~s the same as 'move'. So this is just like the MVI (MoVe Immdiate)
instruction, except that 'extended' refers to a register pair instead of
just one register. The number which is to be loaded into the specified
register pair will be interpreted as two bytes. Thus, LXI H,3FOEH is an
instruction to load the register pair HL with the two bytes of immediate
data, 3FOEH. And LXI H,2 will load 0002H into the HL pair.(The 'H' in the
LXI H, ••• instruction will not be confused with the single register H,
because the LXI instruction requires reference to a register pair. 'H' in
this case stands for 'HL'. 'B' would stand for 1 BC', and 'D' would stand
for 'DE'. 'SP' would stand for 'Stack Pointer'. The Accumulator and FLAGS
together constitute a register pair only in certain circumstances, and
this is not one of them.)

That's fine, but we need some more tools in order to do what I want
us to be able to do. Enter the increment command. Any register, or register
pair, may be incremented by one by the use of a single command. To increment

a single register, IBR <reg> will do. For example, if register B contains
4, then after INR B it will contain 5. If the Accumulator contains 11111111B
(=OFFH, =255 decimal), then what will be in the Accumulator after INR A?
0FFH+1=100H, which is 100000000 binary. But that's 9 bits long, and the

20

Accumulator, like all the other single registers, can hold only 8 bits.

As a result, the left-most bit is lost; the Accumulator will now have zero
~n it.

If we wish to increment a register pair, the INR instruction just

won't do. Suppose the HL pair contains OOFFH, that is, H holds 00 and L
contains OFFH . Then INR L will result in H=OO and L=OO. But if we want to
increment the HL register pair, then we want OOFFH+l to yield OlOOH; that
is, H should contain 01 and L should contain 00. In this case we use the

INX instruction: INcrement eXtended. Thus, INX H will increment the register
pair HL; INX B will increment t he register pair BC; and so on.
(Corresponding to the increment and increment extended instructions, there
are t he dec rement and decrement extended i ns truct ions . DCR A will subtract
one fr om the Accumu l ator. DCX D wi ll subt r act one from the r egister pair

DE . And so on.)
Wher e does all this get us? Well, now we can store all our PLOT numbers

in a section of memory. Then we can load t he HL r eg i ster pair with the

address of the start of that section of memory . That is, the HL pair will
act as a pointer. Each time we wish to read a number from memory into the

Accumulator, we use the MOV A,M instruction. Remember, that instruction
gets the contents of the memory location which is pointed to by (i.e.,

whose address is in) the HL register pair. And then to output what is in
the accumulator to the screen, we do what we did last time: CALL 33H. To

get the next number, we simply make HL point to the next memory location
by using the INX H instruction. Then we loop back to the MOV A,M. And so
on. Something like this :

l"'J A,M ;Get the m.nnber fran memory.
CALL 33H ;Put it onto the screen.
INX H ;Point to next location in memory.
; (Now loop back to the MDV A,M instruction.)

(No t i ce, by the way , that your assembler will treat a semicolon just as

BASIC treats "REM".)
Of course, we need something more. We need a LOOP. We want to execute

those three instructions a certain number of times. How do we make a loop?
We need a counter to keep track of the number of times we have gone through
the loop . And we need a conditional branch instruction to go back to the

s t a r t of the l oop in case the counter hasn't yet finished counting. In

BAS IC, the l oop is handled · in the familiar way using a FOR-NEXT structure.

Unfortunat e ly, t he 80 80 doesn't understand either 1 FOR' or 1 NEXT'. How
could we make a l oop in BASIC if we didn 't have t he FOR-NEXT structure?

Perhaps like t h is :

2I

10 a>UNT=l
20 blah
30 blah
40 blah
50 <X>UNI'=CDUNr+ 1
60 IF OOUNT<8 THEN 20

:REM llUTIALIZE CDUNI'ER.
:REM HERE' RE THE STATEMENTS
:REM WHIOI OCQJR lliSIDE
:REM '!HE LOOP.
:REM lliffiEMENl' CDUNI'ER.

In that example, we repeated a loop 7 times. Alternatively, we could count

down instead of up:

10 OXJNr=7
20 blah
30 blah
40 blah
50 <X>UNI'=CDUNI'-1
60 IF OXJNI'>0 THEN 20

As it happens, this is a perfectly natural and easy way for the 8080 to
handle a loop. For the counter, we could use, say, register C. We initialize
register C to 7 with MVI C, 7. And we decrement the counter each time
through the loop with DCR C. But how do we test for zero and go back to
the beginning of the loop? In BASIC, you jump around with GOTO statements.
If you want to GOTO some place unconditionally, you simply write GOTO
xxxx. But if you want to GOTO some place only when a certain condition is
satisfied, you have to put in a test: IF such-and-such THEN GOTO xxxx.
The 8080 has its unconditional GOTO instruction, too, only it's called a
JuMP instruction. JMP xxxx will cause the program to go to (jump) to
address xxxx. (It jumps to an address in memory, rather than to a line
number.) But in addition, the 8080 has quite a few conditional jump
instructions, all of which take place automatically by testing the status
of one or another of the bits held in the FLAGS register. One of those
bits is called the zero bit, and that is set (=1) whenever the result of

certain operations end up as zero. Som~ operations affect that flag bit,
and some do not. (The DCR instruction does.) The conditional jump
instruction we want is: JBZ <adr>, or Jump if Not Zero to address <adr>.

Now we are ready to put together a program. Just as an example, let's
erase the page and then plot a line around the screen. That will require
13 plot numbers, just as in BASIC: 12, 2, 0, 0, 127, 0, 127, 127, 0, 127,
0, 0, 255. Let's put these numbers (the data) at some convenient but out
of the way location in memory; say, at 9000H. Get out your MLDP program
and type

1Bi>@9000

22

and then enter those 13 numbers in this fashion:

etc.

NOTE: If you have a 16K machine, your MLDP program may have a bug in

it. Please read last issue's Editors' Notes and make the necessary
correction, otherwise your efforts here will be in vain.

SECOND NOTE: Remember that you place numbers into memory using the

"=" command. Whatever number you type in will be assumed to be hexadecimal
unless preceded by "41". Since the numbers 0-9 decimal equal the numbers

0-9 hex, the "41" won't be necessary in such cases. That's why I didn't

bother with it in the example above.
And now for the program to transfer those 13 bytes onto the screen.

We can put the program anywhere (but not, of course, where it would
interfere with the data). Let's put it at 8200H.

Address Contents Assembly Language Corrments

s2e~m 21H LXI H,9eeeH ;Point to start of data.
s2e1H eeH
s2e2H 9eH
82e3H em MVI c,eoH ;Initialize counter.
82e4H eoo
s2esH 7EH WJV A,M ;Get next byte of data.
s2e6H eCDH CALL 33H ; 'Plot' it.
82e7H 33H
s2esH eeH
s2e9H 23H INX H ;Point to next byte of data.
s2eAH eoo OCR c ;Done with all bytes?
82eBH ec2H JNZ s2esH ;Not yet.
s2ern esH
s2eoo 82H
s2em ;Yes. All done!

Notice that two byte numbers are always stored low byte first, then

high byte. That's why the contents of locations 8201H-8202H, 8207H-8208H

and 820CH-820DH are the way they are.
There are two ways of entering this program into memory using the

MLDP. You can load each memory location with the necessary hex values.
For example:

Z3

MI!M>@8200
IHD=21
IHD=00
IHD=90
IHD=0E

etc.

Or you can just type ~n the assembly language mneumonics (but not the
comments):

MI!M>@8200
MEM>LXI H,9000
ta>MVI C, # 13
Mmi>MJV A,M

etc.

That is, the MLDP will act as a mini-assembler and translate the assembly
language code into the required hex values for you.

Don't forget to put a BREAKPOINT right after the program:

tD>/
IG3>AT 820E

And now you can execute the program, either full speed with

IEG>R 8200

or else in the interpreted mode with

lEG>! 8200

REXT TIME: Some more 8080 instructions, a look at the Status Flags, and
still more ways of putting data onto the screen. In the meantime, have
you been reading anything and everything you can get your hands on regarding
8080 programming? That's the way to learn. Our sessions here cannot hope
to cover everything; I expect you to be doing some homework. IC

Z4

'THE' BASIC Editor
Reviewed by DI\VID B. SOI'l'S

The BASI C i n ROM in your mach ine
has some rudimentary editing capabil
ities: if you wish to make some
changes to your BASIC program, you
needn't write the entire program
over again. But a more sophistis;ated
editor would be a great boon to
BASIC programmers. That's why I was
so e:z:c ited when rsc released
'FRED!', their BASIC editor, some
time ago.

But now a newer, even more
powerful editor is available, writ
ten by M. A. E. Linden and distrib
uted by Quality Software Associates.
It is called 'The' BASIC Editor. It
does all that FRED! does and much,
much more besides. Like FRED!, 'The'
Editor 1 ive s in the top of your
computer's memory; it takes up only
slightly more room than FRED!. Un
like FRED!, 'The' Editor is a screen
editor: instead of editing one line
(shown at the top of the screen) as
FRED! does, 'The' Editor allows you
to move a cursor up and down the
screen and then move into a line in
order to edit it . You can copy one
line or a block of lines into a
different part of the program. You
can delete a line or a block of
lines; scroll the screen up or down;
insert one or more lines (with auto
line numbering); and search for a
specified string.

The good news does not stop
there. 'The' Editor will also renum
ber your program. And it will re
store a lost program. (Ever hit ESC
W and RETURN and then regret it?
Not t o worry!) It keeps you informed
about the amount of memory you have
left. It will LOAD a BASIC file for
you. 'The' Editor will also pol it ely
disappear in case you don't want it
around any longer.

But perhaps the mo s t spectacul ar
feature of this spectacular editor
is its ability to append a program
on disk to the one you have in
memory! What's more, it will put
the appended program starting at
any line number you wish, resolving
all the GOTOs and GOSUBs. This means
that you can have a library of
routines on disk and use 'The'
Editor to appe nd any one or more of
them as and where you need t h em .

The ver sion we received was an
early one. Although the upgraded
version was no t available at press
time, it should be available as
you read this. The upgrade will have
typomatic, it will list the pro
gram's variables (including ar
rays), and it will have a few other
esoteric goodies which will boggle
your mind.

'The' Editor is priced at $49.95
(US), and, in my opinion, it is well
worth every cent of that. It comes
with an e:z:tensi ve manual, and if
future changes are made, purchasers
receive a free upgrade. If you are
more than a very casual BASIC pro
grammer, this is one software tool
you will be overjoyed with. 'The'
Editor works with V6.78, V8.79 and
V9 .80 systems, either 16K or 32K.
(It will even be available very soon
in a ROM version.) Contact:

Quality Software Associates
21 Dersingham Crescent

Thornhill, Ontario,
Canada, L3T 4P5. IC

zs

HOWARD ROSEN~ INC.

Put the finishing touches to ~our CoMpucolor II or ISC coMputer,

CoMe up to the world of word processing,
Extend the utilization of ~our coMputer to the other MeMbers of ~our faMil~.

• Letters
• School reports
• B•Jsiness reports
* If you now type-write it, COMP-U-write it fo r a better product.

> Basic requireMents for CCII or 3651/9651:
16f(F\AM,
117ke~1 I< e~boar d.
Printer.
COMP-U-writer software and instruction Manual.

> For MaxiMUM capabilit~:
Ft_o 11 321<. RAM,
Lower case ch a racters.

' Tall<. to other coMputers: Add a MODEM to ~our s~steM,

We ca rr ~ the entire CCII & ISC line of hardware/software, including spares.
Send for our 4-page order forM for hardware/software. Req ues t separate!~

b~ iteM ~our spare parts needs, Call us for coMputer servicing and upgrading

Send ~our order now. We pa~ the shi pping,
Allow 5 weeks for deliver~.

We are an authorized ISC dealer

CCII 3650/9650 Description Quantit~

010057 010053 Upgrade 72/101 ke~s
010058 010054 Upgrade 721117 ke~s
010059 010055 Upgrade 101/117 ke~s
010044 24in. RS 232C Cable
HR1001 HR100 2 161<. RAM Add-on
HR100 3 Switchable Lower Case

OC03LC 32 Lower Case Characters
990001 990030 5in. ForMatted Twin Pack

9000'H Bin. - 10 One Side ForMat
900044 Bin. - 10 Two Side ForMat

HR0006 HR0006 5in. E:·:ec. COMP-U-writer
HR0007 HR0007 5in. Mail - Merge C-U-Writer
991509 991532 FORTRAN
CAT Novation MODEM TransMit/Originate

Pa. residents add 6% F' a. Sales Ta x
St_ob Total
Pa. Ta:.:
Total

TerMs - Cash with order

Cost AMount

150.00
250,00
100.00

45 . 00
185.00
122.50
100.00

9.95
75.00

100.00
299.00
349,00

75.00
175,00

NaMe T e 1 ep hone t _,_(--=-c:---'----==------Addr e-s-s--------------,C::-:-i t-:-~ St ___ ZIP ____ _

HOWARD ROSEN, INC.
PO E:o:.: 434
Huntingdon Valle~, Pa. 19006

(215)-464-7145

Z6

Signature (please sign order)

-

Back Issues Sale

Back issues of Colorcue are an excellent source of information about
Compucolor computers, ISC computers, and programming in general. Inter
views, interesting articles, and programs are all there with a touch of
history.

The list below includes every Colorcue ever published. If it's not on the
list, then there wasn't one.

RETROVIEV: Vol. 3, 4tl (Dec 79/ Jan 80) includes: an interview with Bill
Greene; Compucolor-teletype interface; user group hot line; introduction
to the Screen Editor; PEEKing at BASIC programs; talking to other computers;
making programs compatible with V6.78 and V7.89 software; software
modifications.

MULTI-ISSUES at $3.50 each
__ Oct, Nov, Dec 1978 __ Apr, May/June 1979
__ Jan, Feb, Mar 1979 __ Aug, Sept/Oct 1979

IBDIVIDUAL ISSUES at $1.50 each
Dec 1979/Jan 1980 Feb 1980 Mar 1980

__ Apr 1980 __ May 1980 __ Jun/ Jul 1980

IBDIVIDUAL ISSUES at $2.50 each
__ Dec 1980/Jan 1981 __ Aug/Sep 1981 __ Oct/Nov 1981

POSTAGE
US and Canada -- First Class postage included.
Europe, S. America-- add $1.00 per item for air, or

$.40 per item for surface.
Asia, Africa, Middle East-- add $1.40 per item for air, or

$.60 per item for surface.

DISCOUNT
For orders of 10 or more items, subtract 25% from
total after postage.

ORDER FROII: Color cue
Editorial Offices
161 Brookside Dr.
Rochester, NY 14623

Color cue
Editorial Offices
161 Brookside Dr.
Rochester, NY 14618

[Address Correction Requested I

An - Publication

BULK RATE
U.S. POST AGE

PAID

Rochester; N. Y.
Permit No. 4 1 5

Colorcue
D li II

II F If II I! ,_, ___ __.u

'\1~~ I _L _ I ..._.._--==

3D Graphics

-:-;-----------..,...-.,
I I 11 I

'••,-r ''• 11 I I I
CRT Mode Plotting

-~------~ .. -~------------.....----.. ~ I '- I
I I ~ I

\ \ Iii= \ \
\ ~ \ \ Business Software Reviews

.................. _."':";"'1 ___ ""___ ·----~:::.-...-......-.._-....::::~ ~.,.....~.:-..."...._.
\ '· ... ·~ ' ' ' ~ \t- ., ~.; ~ ~ ~
\ ·~ \ ·.,·., \"P \ \

• 1_ 1 ___ .. :,·---·:.·'· ~ ~ ~
0 I • 1 0 :. ---~ .. ,---.!.

F

--~---~::.___ ... _......... •... ___ ... _ .
r ---. _ ... _ .. _........ • .. ·. ·. ... ·. ~ •... · ...

u
II
II
II

•... •.. • ... ·.. ·... ·... · ..
•... •.. ·.

Assembly Language

Programming

. . ------..........-.-...~ •..__ _____ .. --::. __ _ ____ .. -··-·
~·····~·····--:-····· ~ ·. \ ~ ~ .. . \ .

• l..• ~ , \

T-'X"'-~::::::.:...""::~"":l7::...~

F

II
II .,,,, ~

I I ;::: I
I I I
a....-L.._--r;--;--------__,......,

I I II I

....1 -r ~~··
• ... L--------k.J

'"i --~----....-----...-....--..
I 1 L I
' I ~ I
' ' tr- \ ' I I or '

.... '-""': ~. . .
.... ·... ·.

'• ~ ·.. ~ ·-~:::::a--........_-..:::~......!. __ ..,...~.::.......,., .. . ' ' '

More

Feb/Mar

.
~ , _...... .

......___ c. - , ~~.,...,
I I I I

\ \~- \ \ '· \,.. ' ' I··--;· :1 e. T 4 e I. • • ., f f \
a a • •, • I I I
o .. \ o I I I '• ._,....._...._...._......__-4.,.._-
... '• .. \.. • .. I ·. ~ \ \.: •. ;

• • • • I 1.. I • .. ·. \ ·. ·. ·. .. •. '·
................................. ., •• •:4 -... -·

$2.

Colorcue
A Bi-monthly Publication by and for
Intecolor and Compucolor Users

February/March, 1982
Volume 4, Number 4

3 Editors• Notes

3 Compuworld Business Software

5 Frepost Computersr Inc. ROM Board

5 Cueties

7 3-D Graphicsr by Doug Van Putte
Reflection, shear, rotation and scaling

Editors:
Ben Barlow
David B. Suits

15 Compuwriter Word Processorr by Howard Rosen
Software review

16 Classified Advertising

17 CRT Mode Plottingr by Bob V. Smith
Keyboard tables to make graphics easier

19 Assembly Language Programmingr by David B. Suits
Part IV: The Status Flags and the Stack

Advertisers: You will find our advertising policies attractive. Hrite for
details.

Authors: This is a user-oriented and supported publication. Your arti
cles/tips/hints are required to make it go. Send your articles or write
for information.

Colorcue is published bi-monthly by Intelligent Systems Corpor a tion, with
editorial offices in Rochester, New York. Editorial and subscription
correspondence should be addressed to the Editors , Colorcue, 161 Brooks i de
Dr., Rochester, NY 14618 . Product related correspondence should be
addressed to ISC, 225 Technology Park, Norcross, GA 30092, ATTN: Susan
Sheridan. Opinions expressed in by-line articles are not necessarily those
of the editors or of ISC. Hardware/software items are checked to the best
of our abilities but are NOT guaranteed.

Editors'
Notes

Dial Up Colorcue
Some of our subscribers have ac

counts with the Source, Compuserve (Mic
ronet), or other system. We'd like to
publish a directory of such persons so
that Compucolor/Intecolor users can con
tact each other to exchange ideas, chew
the fat, and otherwise pursue the hobby.
If you would like your name included in
the directory, send us your name, the
name of the dial-up facility, and your
ID number. Better yet, if you're already
dealing with Micronet, leave the message
for us there: Colorcue's editors (yours
truly) are now on Micronet at account
number 70045,1062.

By the way, it's easy to get onto
Micronet. Drop by your local Radio Shack
store and purchase the "Dumb Terminal"
information package (Cat. No. 26-2224).
This g1.ves you an account number and
password for Compuserve's Micronet in
formation facility and one hour of free
connect time. There is also an applica
tion for permanent status which you must
fill out and send in. You will also need
a simple program to make your machine
into a "dumb terminal". Finally, you
will need a modem. If you're already
dealing withMicronet, the Source, etc.,
why not tell us all about it via an
article for these pages?

Corrections
It's just not true that there's

always an error in Colorcue. Who said
that?! Well, there's the occasional
oversight.... Dave's Assembly Language
Programming had a small omission last
issue which is corrected in Part IV this
month. And Ben's article on the serial
to parallel interface ought to have
indicated, on the schematic on page 17
of last issue, that pins 2 and 6 of the
555 should be connected. Please draw
that in so you won't forget.

Doings Down Under
Ralphe Neill of the Victorian (Aus

tralia, not B.C.) Users' Group writes
a "Cor1pucolor Column" in Australian
Persol\al Coaputer magazine. His column
is an unexpected bright spot in these
non-Compucolor d-ays. It almost seems as
though, now that the Compucolor II is
out of production, support is starting
to emerge. Witness also Tony Watson and
John Newman's book Progr~ng Colour
Graphics for Coapucolor/Intecolor Coapu
ters. The book takes you from initial
power on through BASIC programming to
color (and colour!) graphics, random
files and even a driver program for the
HIPAD digitizer. Bernie Muldowney, also
of the Victorian Users' Group, is sell
ing an assembly language tutorial series
on disk. We have seen part of it, and
it looks very good. $50 (Australian)
plus postage. Contact Bernie at 5 Dixon
Street, Wangaratta, Victoria, 3677, Aus
tralia. And there are two active users'
groups with growing program libraries.
The Vic tor ian Group can be contacted
through its Secretary-Treasurer, Keith
Ochiltree, P.O. Box 420, Camberwell,
Victoria, 3124. The Western Australian
group's librarian is Tony Lee, 52 Cowan
Rd., St. Ives, NSW, 2075. 1C

COMPUWORLD BUSINESS SOFTWARE
Compuworld, Inc. has announced a

line of business software for the Compu
color II/ISC 3600 series computers. All
programs require 32K user memory, one
disk drive and a minimal (i.e. regular)
keyboard.

ColorCalc
(CCII/ISC 3600 series, $199.00)
ColorGraph
(ISC 3600 series only, $150.00)

The so-called spread sheet is a
trad1.tional managerial tool which aids
in the analysis of financial informa
tion. Data is presented in rows and
columns and may represent sales informa-

3

tion, inventory, etc. As a company's
budget changes, the data in the rows
and columns are changed accordingly,
and the entire array can be re-examined.
ColorCalc is a computerized spread sheet
which automatically totals the informa
tion you are after. The results can be
handed over to another program, Color
Graph, which will then provide color
graphic displays. Both programs are
written in assembly language.

ColorCalc has 12 single-key com
mands, such as "L" to load data files
or "D" for data entry. As many as 51
columns and 52 rows of data may be
entered. A formula may be entered on
the basis of which the data will then
automatically be analyzed. Such a for
mula may operate on any column or row
any number of times. And up to ten
formulas may be saved. (24 formulas on
3600 machines.) ColorCalc operates with
a triple-precision math package which
is accurate to the penny up to five
billion dollars. Hard copy print out is
supported.

ColorGraph takes data from ColorCalc
and draws graphs of any section of the
spread sheet. You can re-scale the
graphs, re-color them, re-label them,
and print them -- in black and white on
an Epson, for example, or in color using
the PrintaColor inkjet printer.

Inventory Control
(CCII/ISC 3600 series, $150.00)

Among the many features of this
package is the ability to keep track of
distributor's name, quantity on hand,
quantity on order, re-order level, last
re-order date, late received date, whole
sale/retail pricing, and current order
price. Reports may be generated by
different parameters, including re-or
dering, on order, and total retail and
wholesale stock value at any time.

Accounts Receivable
(CCII/ISC 3600 series, $150.00)

Designed with the average operator
in mind, this package can keep track of
credit ratings and credit limits. Also
included are aged account status , his-

4

tory of total business done with any
account, total monies owed at any time
by all accounts, statements as often as
required, and mailing labels by two
parameters. On the 3600 version, this
program has linkage to the General
Ledger.

Accounts Payable
(CCII/ISC 3600 series, $150.00)

This package supports invoice aging,
with account status reporting, total
monies owed, and a history of total
business done with each vendor. Partial
payments are supported, as well as
manual and automatic check writing and
check registers and mailing labels. On
the 3600 series, this program has link
age to the General Ledger.

General Ledger
(CCII/ISC 3600 series, $299.00)

This package is menu driven with 10
levels of account totals, account balan
ces for current month, quarter, previous
three quarters, year to date and pre
vious year. It generates trial balance
and income statements, balance sheets,
special reports and account status re
ports. A triple precision math package
is incorporated and hard copy print out
is supported. (This also creates data
files for ColorCalc. And for 3600 series
machines, there is linkage to Accounts
Receivable, Accounts Payable, and, in
the near future, Inventory Control.)

Mailing List
(CCII/ISC 3600 series, $100.00)

The Mailing List system stores data
for personal and business mailing:
names, addresses, phone numbers and
comments. The program provides for search
l.ng on one or more of eight fields,
alphabetical storage of names, support
of printing one, two or three labels
across a page, sorted in alphabetical
or zip code order.

Contact Compuworld, Inc., 125 White
Spruce Blvd., Rochester, NY, 14623 (716)
424-6260 . c

..

FREPOST COMPUTERS, INC.
ROM BOARD

Add-on ROM Board
Most ISC computers have a slot for

addi tiona! ROM (Read Only Memory). In
the Compucolor II, the area in memory
from 4000 hex to 5FFF hex is reserved
as a user ROM area. Therefore, if you
have software you wish to be available
at any time, it can go into this area.

Frepost Computers, Inc. will supply
a plug in ROM board for your ISC
computer. The board is ready for you to
plug in EPROMs of your own, or pre-pro
grammed EPROMs available from several
sources. Since the Compucolor V6.78
system allows only one user jump vector
(ESC A), your EPROMs can be accessed
from a jump instruction poked at 33215.
As an added enhancement, Frepost Compu
ters has available a replacement system
EPROM to rep lace one of the original
V6.78 system chips. This allows four
software or keyboard jumps to the PROM
board and adds two more . user program
mable jumps (like having three ESC A).
And as an added feature, you can custom
ize your system to your requirements.
Frepost Computers will even burn your
program into EPROM for you.

Bank Selectable EPIOH Controller
We also have a device that will plug

into the Compucolor CPU board in the
Add-on ROM connector just like the small
board mentioned above. This device ac
cepts commands from a program or from
the keyboard and selects up to seven

Cueties

more banks of ROM, all occupying the
same memory addresses, 4000-5FFF. The
EPROM bank selector module adds 56K of
additional ROM that is software select
able in 8K byte segments. It uses 2532
type chips which are the same as your
system ROMs. If you already have an add
on ROM board in your machine, it can be
pulled out of its sockets on the logic
or CPU board. The EPROM bank select
board plugs into these sockets and your
present ROM board plugs into the bank
selector board. There is a 50 pin bus
connector that plugs into the back of
the logic board. If you're already using
the 50 pin bus connector for something
else, we supply you with all instruc
tions on how to soider the appropriate
leads to your computer, eliminating the
need for our 50 pin bus connector. (If
you order it that way, you save $10.)

The Add-on ROM board is available
for $49.95, assembled and tested, or in
kit form for $39.95, complete with
sockets, capacitors and connectors. The
EPROM bank selector board is $249.95
assembled and tested. In kit form, with
all sockets, capacitors and chip select
parts, it is $199.95. (Either version
with 50 pin bus connector is $10 more.)
The Frepost V6.78 enhanced system PROM
is available for $29.95. Orders less
than $100, please include $5.00 shipping
and insurance. All orders include com
plete instructions and documentation.
Write or call Frepost Computers, Inc.,
431 East 20th Street 10D, New York, NY
10010. Phone: (212) 673-6476. The
Source: TCI251. Micronet: 70210,374. IC

PLOT 12:X=64:Y=X:FOR Z=0 TO 5000:X=X+2-INT(RND(3)*5):Y=Y+2-
INT(RND(2)*5):PLOT 2,X,Y,255:NEXT

5

6

HDWAF~D R 0 S E N t I n c.

Authorized ISC dealer

T {~ 1... ~(E D T 0 y D l.J R COMF'UTEI=t:

D I D I T T A 1... ~(

N 0 W l T C A N ~

T y F' E - I N - T A L K

I T~pe & hear the written word spoken
I SiMpl~ connect to the RS232C port

L A T E L. Y '?

To order send check for $362.00 with ~our naMe, address, cit~,

state, & zip. (F'a. resident please add 6% sales tax).
We pa~ the shipping charges.

- We carr~ the word processor for the CCII, 3621, 3650.
Your coMputer isn't the saMe, once ~ou've added the word
processor.

forMs are easil~ prepar e d • • • • • • • • 1 (·:~ t ·t<:~ r s
with the aid of the wor ci p r oce~:;~:;or •

Servicing available for ~our CCII

New hardware & software list with iteMized description

- Send for new list and order forM ~

- Never a shipping charge for software & hardware purchases.

HOWARD ROSEN, Inc.
P. 0. E:o:-: 4:34

Huntingdon Valle~, Pa. 19006
(215) 464 - 7145

* Inquire about our free prograMs

30 Graphics
by

Doug van Putte
18 Cross Bow Dr.

Rochester, NY 14624

Graphic displays on the computer are enhanced by giving depth and

motion to objects. The world of animinated graphics using matrix mathematics
to present objects with simulated depth and motion will be introduced. I

will cover the basic concepts and then describe the elementary motions
that can be attained. These motions will be illustrated by a program that

can be applied to any object by the reader. Those of you who find the
technical treatment too superficial are referred to the references.

First, you will be given a rev1ew of the Cartesian coordinate system,
followed by the object matrix which is used to define the coordinates of
a point on the object. This will be followed by an introduction to the
transform matrix which contains the elements of motion that can be applied

to the object (matrix). The multiplication of the object matrix and the
transformation matrix will then be shown to yield a new, transformed
coordinate matrix from which the object can be drawn in its new position.
I hope you can visualize now that a previously defined object can be moved
through a series of motions by successively applying the operations above

to each point on an object, followed by redrawing the object from its
"new" points. The types of motion which include scaling, reflection,
translation, rotation, and shearing will be shown in simple matrix notation.

CARTESIAII COO.RDDIATE SYSTEM. The Cartesian coordinate system used
exclusively here is the PLOT 2 coordinates familiar to ISC computer users.

While the origin is usually in the lower left hand corner of the screen,
the demo program uses an origin at the center. The X-axis is the horizontal
axis, the Y-axis is the vertical axis, and the Z-axis, by convention, is
perpendicular to the X and Y-axes and runs toward the viewer and into the
depth of the screen. Positive values are toward the right for X, up for

Y, and out of the screen for Z.

OBJECT MATRIX [P]. The object in all cases will be a series of coordinate
points which are connected by lines (PLOT 242). The individual X,Y,Z
coordinates for a point are stored in a column matrix P, which looks like
this:

7

8

(P is a matrix with
one column and
three rows)

X
y

z

Points are stored in a
2 dimensional array, i.e.
Xl=P(l,l):Y2=P(2,l):Zl=P(3,1).

If ten points are required to define the object, then ten column matrices,
each with one column and three rows, must be created. E.G., P(l,l), P(2,1),
P(3,1), P(l,lO), P(2,10), P(3,10). The object is constructed by

connecting the coordinate points P by using PLOT 242 to draw lines between
each successive point.

TRARSFORKATIOB MATRIX [T]. This matrix is sometimes called the operator

matrix because each non-zero element is a term which operates on or modifies

one of the coordinates, point by point, to transform the object. For now,
Twill be defined as a 3*3 matrix as follows:

(T is a matrix with
three columns and
three rows.)

A B C
D E F
G H I

Row 1 modifies X.
Row 2 modifies Y.
Row 3 modifies Z.

The transform matrix T can be multiplied by the object matrix P to yield

a transformed object matrix P' as follows:

P' = T * P

Upon expansion, the new coordinates of P 1 become:

X * A + Y * B + Z * C, x•
y• = X* D + Y * E + Z * F, and
Z1 = X * G + Y * H + Z * I.

Rules of matrix order and shape have to be observed in the multiplication

process. (See reference 3.) Using the 0*3) transformation matrix T,

operations of scaling, reflection, rotation, and shearing can be used to
manipulate the coordinates of a point P. Other operations, called

translation and overall sealing, will make use of an expanded (4*4)
transformation matrix. All the operations will be illustrated with a simple

cube in a BASIC program later on.

SCALIBG. For pure scaling, T becomes

A 0 0
T 0 E 0

0 0 I

And when T is multiplied by P, then

X' A * X,
Y' E * Y, and
Z' I * Z.

Independently then X, Y, & Z coordinates can be scaled to produce a

reduction or a magnification of an object. The operation of reflection is
similar.

REFLECTION. To obtain the reflection of an object in a given direction,

all the signs of that coordinate direction must be reversed. For example,

to obtain the mirror image of an object through the plane of the screen
(X-Y), T becomes:

1 0 0
T 0 1 0

0 0 -1

Ana when T * p then

X' X,
Y' Y, and
Z' -z.

SHEAR. An object is sheared by modifying one or more coordinate values of

a point in a special manner. A coordinate's value is modified from the

original value by an amount computed from the point's position on one or
both of the other two coordinate axes. An object can be sheared in its
X-direction by:

T

Ana when T * P, then

9

10

X' = X + B * Y,
Y' Y, and
Z' = z.

On evaluation, this operation tilts an object by displacing the horizontal

(X) values an amount B*Y. Then as a point's vertical (Y) position increases,
the displacement of X increases and therefore the redrawn object will be
tilted. Note that the X value can be modified by both the Y & Z position

of the point at the same time by making the 'C' value non-zero. All three
coordinates of a point can be sheared simultaneously by the other
coordinates by making B, C, D, F, G, & H non-zero. This operation yields
interesting object motions, but the operation of rotation can produce the
most life-like movement.

ROTATION. An object can be rotated about any axis to produce a specific

orientation in space. The transform examples, however, are restricted to
the coordinate major axes. By specifying the rotation angle, an object
can be rotated in one of three planes about its origin by using one of

the following transformations:

X-Y PLANE (about the Z-axis):

T =

And when T * P, then

COS(a)
SIN(a)

0

-SIN(a)
COS(a)

0

0
0
1

X' =X* COS(a) + Y * SIN(a),
Y' =X* SIN(a) + Y * COS(a), and
Z I Z •

X-Z PLANE (about theY-axis):

T
COS(a)

0
SIN(a)

And when T * P, then

0
1
0

-SIN(a)
0

cos(a)

X' =
Y'

X* COS(a) + Z * -SIN(a),
Y, and

Z' =X* SIN(a) + Z * COS(a).

Y- Z PLANE (about the X-axis):

T

And when T * P, then

x• x,

1
0
0

0
COS(a)
SIN (a)

Y1 Y * COS(a) + Z * -SIN(a), and
Z1 Y * SIN(a) + Z * COS(a).

Although not within the scope of this treatment of rotation, it can

be stated that:

1) The final positon of an object rotated sequentially about

different axes is a function of the order of applying the

transformations.
2) An objec t may be rotated about any arbitrary point by translating

that point to the origin prior to rotation and subsequently

returning the point to its original position.
3) An object can be rotated about any arbitrary axis placed through

the object.

Now for the theory and transformations for operations of Translation
and Overall Scaling. This treatment will be followed by a demonstration
program.

In order to present the last two operations, both the P(Object) matrix

and the T(Transform) matrix must be expanded. They become:

X A B c
P(X,Y,Z,l) y T D E F

z G H I
1 0 0 0

On multiplication, T*P yields pI (XII' yn' Z II'S) •

coordinates become:

X11 X *A+ Y * B + Z * C + U,
Y11 X* D + Y * E + Z * F + V, and
Z11 X * G + Y * H + Z * I + W.

u
v
w
s

On expansion, the new

The transformed coordinates are now 'normalized' by dividing them by S to

yield P'(X' ,Y' ,Z' ,1) as follows:

X'
Y' =

X" Is'
Y"/S, and

Z' = Z"/S.

In addition to all the operators described earlier, these new forms of

the P and T matrices can be used to move and scale an object. For example:

TRAIISLATIOB. For translation only, T becomes

1 0 0 ~I T 0 1 0
0 0 1 ~I 0 0 0

And when T*P, then

X' X + u,
Y' = y + v, and
Z' z + w.

Thus it is seen that the first three elements (U,V,W) of the fourth column

are the elements of translation for each of the three coordinates (X,Y,Z),

respectively. This transformation, in conjunction with the others discussed
above, provide us with the means of giving realistic movement to an object.

12

OVERALL SCALIRG. For Overall Scaling only, T becomes

1 0 0 0
T 0 1 0 0

0 0 1 0
0 0 0 s

And when T*P and the coordinates are normalized by dividing by S, then

X I = X/S'
Y' = Y/S, and
z I = Z/S.

Thus, the fourth element of the last column can be used to scale the three

coordinates identically.

DEMOBSTRATION PROGRAM.

A few comments about the demo program are in order.

1) All prompted inputs are numeric, but the values need to be

tailored for the type of operation. Values for each input which
cause no operation are given with each prompt. The rotation
angles are interpreted as degrees. Start at values close to
the no-op values given to begin experimentation.

2) There is no internal check for exceeding the screen limits.
3) The program produces a composite transform matrix before the

object is operated upon. To test the effect of each operation
on the object, the user can change the program, or simply use

the no-op values for the other operations.
4) The user can input his own object. Follow the program comments

and don't forget to change the 'NR' value for the number of
object points and the matrix dimensions.

5) The program is unfortunately slow. What is needed to make the
program swifter is an 8080 subprogram which can be called to
multiply matrices. Does anyone have one? If not, why don't one

of you 8080 Wizards write one and share it.
6) All the lines, including the hidden lines, are drawn by the

Plot subroutine. Can anyone add a hidden line subroutine?
7) Undoubtedly, there are the inevitable bugs. Please pass any

you find along to me. IC
y

X

Object ~n demo program

z

REFERENCES:

1. J. Posdamer, "The Mathematics of Computer Graphics", BYTE, Sept., 1978,
pp. 22-39.

2. J. Hungerford, "Graphic Manipulations Using Matrices", BYTE, Sept.,
1978, pp. 156-165.

3. D. Rogers and J. Adams, Mathematical Elements for Computer Graphics
(McGraw Hill, 1976).

13

14

laS REM ************ 3-D GRAPHICS DEMO PROGRAM *******************
ill REM ************ BY D. A. V1lN IUl"''E ****************
129 PLOT l2,15:DIM G(4,3S) ,P(4,3S),Sl(4,4),S2(4,4),T(4,4):NR-24
139 Il(l)sl:I2(1)•2:Il(2)=l:I2(2)=3:Il(3)=2:I2(3)=3:DX=45:DY=45:DZ=45
149 REM * RFJ\D CJ3.JEl:T IDINTS FRCM ARRAY (LINE 9999)
159 RES'10RE :FOR C=al '10 NR:P(4,C)=l:FOR R-1 '10 3:RFJ\D P(R,C) :NEXT :NEXT

169 GCSOB 53S:GOSUB 6SS:GOSCB 599
179 REM * SCALE OPERATIC»-RE;JOIRES INR1l' OF 3 zns.
189 INRJT •SCALE X,Y,Z (1,1,1)? •,A,E,I:Sl(l,l)=-A:Sl(2,2)=E:Sl(3,3)si:IF A-1

.AND E-1 .AND I•l 'lmN 219
199 GCSOB 459
299 REM * OVFRALL s:ALE OPERATIC»-RE;JOIRES INR1l' OF 1 NJ.
ill INRJT "01J'&W.L s:ALE FACl'OR S (1)? •7S:IF Sal CR ~ 'lmN 249
229 Sl (4 ,4) =S:GOSUB 459
239 REM * SBEliR OPERATICfi-RE;JOIRES INR1l' OF 6 NJS.
249 INPOT •SHEAR X(B&C),Y(D&F),Z(G&B) (S,S,S,S,S,S)?•JB,C,D,F,G,H:IF a-9 AND

Q::zS AND J>o:8 AND FxS AND G=S AND H=S 'lmN 289
250 Sl(1,2)=B:Sl(1,3)=C:Sl(2,l)=D:Sl(2,3)=E:Sl (3,1)=G:Sl(3,2)=H
269 GOSUB 459 .
279 REM * ROTATICE OPERATIC»-RE;JOIRES INR1l' OF 3 NJS.
289 INPOT "RRTATTCN PN:;LE IN X-Y,X-Z,Y-Z PUNES (S,S,S)? •7A(1),A(2),A(3):IF

A(l)oo9 .AND A(2)=S AND A(3)=e 'lmN 319
299 GCSOB 55S:GOSUB 459
399 RFM * .REE'LEC':rc:ti ~RE;JOIRES INR1l' OF 3 NJS.
319 INPOT "REFLEX:TTCfi X,Y,Z (1,1,1)? •;A,E,I:IF A-1 AND E=1 AND I•l 'lmN

35S
329 Sl(l,l)=-A:Sl(2,2)=E:Sl(3,3)•I
339 GCSOB 459
349 REM * 'lru\NSLA'l'l:CE CIPERATICN-RE;JUIRES INPCT OF 3 NJS.
359 INPOT ~SLA'l'l:CE X,Y,Z (9,9,9)? •;o,V,W:DD=249/(249-+0:IF ~ AND v-9

AND w-8 'lBEN 389
369 S1(1,4)=U:Sl(2,4)=V:Sl(3,4)=W:GOSOB 459
379 FOR C=l '10 NR:P(1,C)sP(l,C)*DD:P(2,C) 3 P(2,C)*DD:NEXT
388 GCSOB 4U:PLOT 12:GOSUB 599
399 INPOT -siT RErum '10 RES'TAAT";ZZ:PLOT 12:00ID 159
499 REM * SOB '10 KJLTIPLY T Ml\nUX * P MAnUX
419 FOR !=1 '10 4:FOR J=l '10 NR:Sf+oS:FOR K=1 '10 4
429 SM=-SWr(I,K)*P(K,J) :NEXt' K:G(I,J)=SM:NEXT J:NEXl' I
431!1 FOR R-1 '10 4:FOR C=a1 '10 NR:P(R,C)aiNT(G(R,C)+.5)/S:NEX1' :NEXT :RE'lUR

N
440 REM * SOB '10 <DNS'mDCl' <DMEOS!'re 'mi\NSF'(Dt Ml\nUX (T)
459 FOR I•l '10 4:FOR Js1 '10 4:SM-e:FOR K=1 '10 4
469 SM- SM+Sl(I,K)*T(K,J):NEXl' K:IF ~2<.3~91 THEN SM=8
479 S2 (I,J) -sM:NEXl' J:NEXl' !:FOR R-1 '10 4
400 FOR C=al '10 4:T(R,C)=S2(R,C) :NEXT C:~ R
498 REM * SOB '10 FW'l' 'mi\NsrommD CJ3.JEl:T (P')
599 PLOT 2,P(l,l)+DX,P(2,l)+DY,242:FOR 0=2 '10 18:PLOT P(1,C)+DX,P(2,C)+DY

:NEXt' :PLO!' 255
519 PLOT 2,P(l,l9)+DX,P(2,19)+DY,242:FOR 0=29 'lO 24:PLOT P(1,C)+DX,P(2,C)

+DY:NEXl' :PLO!' 255:RIDURN
529 REM * SOB '10 INITIALIZE T Ml\nUX
538 FOR R-1 '10 4:FOR C=a1 '10 4:T(R,C)=S:NEX1' C:NEXl' R:T(l,l)=1:T(2,2)=1:T

(3,3)=l:T(4,4)=1:RIDURN .
548 REM * SOB '10 au:ATE ROTATICN 'mi\NSF'(Dt MA'lRICl:S
558 FOR L=l '10 3:A=A(L)*3.14159/189:IF A(L)=S THEN 588
569 Sl(Il(L),Il(L))=COS(A):Sl(Il(L) ,I2(L))~SIN(A)
578 Sl(I2(L) ,Il(L))=SIN(A):Sl(I2(L) ,I2(L))=COS(A)
589 NE:XT L:RIDURN
599 REM * SOB '10 INITIALIZE GENERAL 'mi\NSF'(Dt MA'lRIX (Sl)
698 FOR R-1 '10 4:FOR 0=1 '10 4:Sl(R,C)=S:NEXT C:NEXT R:S1(1 ,li•1:Sl(2,2)=

l:Sl(3,3):al:Sl(4,4)s1iRIDURN ,
619 REM * ENl'ER <DORDINATES (X,Y,Z) OF EACH r.\TA IDINT IN SE;l.
629 REM * EXAMPLE Ili\TA IS A 3-D <llBE W/ LE'I'I'm 'F' CN FlOll' FAa:
638 ~ B,S,B,3B,9,B,3B,3B,B,3B,3B,3S,3B,39,B,9,3B,B,9,S,B
648 ~ B,S,3B,B,39,39,3B,3B,3B,B,3S,3B,0,3B,B,9,0,0
659 ~ 0,B,3B,3B,B,39,3B,3B,3S,3B,0,3B,3B,B,B
668 ~ 14,13,3B,l4,17,3B,l7,17,3B,l4,17,3B,l4,15,3B,l6,15,3B

CompuW'riter
Word Processor

by
Howard Rosen
P. 0. Box 43 4

Huntington Valley, PA 19006

Ten ways to use a word processor:
write a letter; build a form; write a
story; write a report; write a book;
write a note to 15 people; write an
article; write a research paper; write
mailing labels; prepare a sheet of
vertical and horizontal lines. The list
is not complete, and I'm open to sugges
tions.

Do any of the above apply to you?
Read on and learn the workings of the
Comp-u-Writer word processor. How do
you use it? Do you have to know how to
program? No, you do not do any program
ming. Let's examine how the word proces
sor is actually used on a day-to-day
basis.

While a typewriter can be used to
prepare a neat looking document, the
word processor does it better and easi
er. Take, for example, centering the
first line of a letter. Just press the
key marked CEITER and type. The text
mag i cally starts at the very center of
the line and moves left, then right,
whi le maintaining a perfect center. A
typist has to consider page width, line
ending, tab setting, and indentation.
All of these are child's play to the
word processor. Just press the P1l111T
key and a menu with color squares
appears. Each color square is associated
with a setting: BI.UE for lines per page;
YELLOW for characters per line; RED for
margin settings; and more. After the
page is typed in, if you wish to change
the number of characters per line,
return to the menu and change to a
different setting. The text will immedi
ately shift to accomodate your new
choice.

Tabs are set by moving a little blue
square right or left along a scale at
the top of the screen and locking them
in place by depressing the RE"l'U1HH key.
The TAB key is then exactly like your
typewriter, except you can change tabs
if you like right in the middle of a
letter to get a different effect. Sup
pose you've finished typing and you've
found mistakes. Return to the scene of
the error, delete the word or character
and make your correction. Perhaps you
should have made the first paragraph
the third one. Use the two keys labeled
MARK BEG and MARK EID to place marks on
either end of the section in question-
watch it turn from green to red to
indicate that it's marked--and then move
the cursor with the four arrow keys to
the exact spot where you want the
paragraph to be. Then simply press the
MOVE BLOCK key and watch how fast all
is forgiven. If the marked block is to
be repeated, press the COPY BLOCK key
for each copy desired. The ERASE BLOCK
key will totally remove the marked block
from your text.

To avoid typing long words used
repeatedly, you might use x or y or z
in substitution, then with the DEFilE,
SEARCH, and REPLace keys you can
specifically or generally make your
replacements. Anything can be underlined
or made to be boldface by the press of
a key. Any character on the keyboard
will automatically repeat if held just
a little longer.

Now you're ready to print. You can
choose single sided, where each page is
sequentially printed, or double sided,
where the odd pages are printed, then

J:5

you reverse the paper for the even pages.
If you wish to do two column printing
then each consecutive pair of pages
becomes the left and the right columns,
respectively. This can be done for
doubl e sided printing as well, with the
word processor keeping an eye on how
things are going. I f only a part of what
was typed is to be printed, then use
the marking technique discussed earlier
and pr i n t only the marked part. Multiple
copies can be printed by responding to
the question "HOW MANY COPIES?" on the
print menu. Documents can be saved on
disk for future use. Either the whole
document or just the marked portion can
be saved.

The most recent version of Comp-u
Writer is version 3.5. There are two
types available: the Executive and the

CALL FOR ARTICLES

Mail Merge. The Mail Merge, while capa
ble of printing personalized letters,
does not support the two sided printing.
Ma~l Merge is useful when a specific
letter is needed for a number of custo
mers, each individually addressed.

Comp-u-Writer for the Compucolor
II/3600 series computers requires the
117 key keyboard and a min imum of 16K
RAM. It is recommended that both 32K
RAM (to support long documents) and the
lower case letters (to allow normal
typ~ng) be available.

As an authorized ISC dealer, we
carry the Comp-u-Writer and the entire
ISC hardware and software line. We may
be reached at HOWARD ROSEN, INC., P.O.
Box 434, Huntington Valley, PA 19006
or by phone at (215) 464-7145. 1C

Colorcue gets i ts material from those who write it. It don't grow on no
trees. Nevermind your bad sppeling or badly grammar: that's the job of
the Editors. You come up with the ideas, splash them onto paper (or disk),
and we'll wrestle them into an intelligible form for publication. We can't
pay you for your time--you won't become rich. But, since Colorcue is read
all over the world (well, not all over, exactly), then maybe you'll become
world famous.... We're looking for ideas, programs, reviews of books
and/or software and/or hardware applicable to ISC machines, hardware/soft
ware modifications, user group news, and •••• Well, you get the idea.

CLASSIFIED ADVERTISING

WANTED: Compucolor II system. Purchase
or trade for TRS-80 Model 1. Mike
Charlton, (502) 926-3021.

FOR SALE: Compucolor II, V6.78, 24K,
non-working. Analog board problems. Com
plete with manuals, programs, etc. Ben
Moser, Rt. 2, Box 550, Stanley, VA,
22851. (703) 778-2861.

FOR SALE: Heathkit microprocessor learn
ing system. M6800 based trainer, with
documentation. Excellent package for
introduction to hardware. Micheal Ezzo,
692 S. Drake Apt. 0-10, Kalamazoo, MI
49009.

16

FOR SALE: Compucolor II, extended key
board, 16K, with diskettes, manual,
graphics. Can add modem, sound, and
memory. (716) 872-2322 (after 5).

FOR SALE: Intecolor 3651. 32K machine
with 5 1/4 inch disk, std keyboard.
Manufactured in mid 1981. Asking $2000.
Jim Dantin, (502) 927-6921 x377 (days),
or (502) 926-8333 (nights).

FOR SALE: Intecolor 3651. New in origi
nal carton. 32K, 5 1/4 inch disk. Asking
$2000. George Wilson, (404) 458-1431
(nights).

CRT Mode Plotting
by

Bob v. Smith
498 Brown Street
Napa, CA 94559

Using the deluxe keyboard, graphic
displays can be drawn in the CRT mode.
Control B enters the plot mode (just
like BASIC's PLOT 2.) From then on, the
ASCII values of each key press will
determine what is plotted. (See the
keyboard table on the next page.) The
special function keys FO-FlS are used
to enter the various plot submodes. In
order to simplify incremental plotting,
the table below can be of help.

For example, draw a triangle this
way: enter the CRT mode, Control B for
the plot mode, plot a point with two
appropriate key strokes, enter the vec
tor plot submode with the F2 key, plot
the other end of the vector with two

SHF = Shift
CTL = Control
COM = Command

(shift &
control)

Right
Side
(B)

For Y bar graphs,
A is bottom of line.

N

N SHF
2

NE SHF
*

E SHF
8

SE SHF
9

s SHF
1

sw SHF
5

w SHF
4

NW SHF
6

---- ---- -
HOLD
_____ l_!

more appropriate keys, and finally enter
the incremental vector plot submode with
the FO key:

ESC CRT
Control B
Control CRT
Shift ?
F2
CRT
Shift ?
FO

Now form a triangle by holding the left
end of the vector stationary and moving
the right end up (North). According to
the table, that is the 2 key. IC

Left side (A)

NE E SE s sw w NW HOLD

COM COM COM CTL SHF
2 B R R R B B 2

COM COM COM CTL SHF
* J z z z J J :

COM COM COM CTL SHF
8 H X X X H H 8

COM COM COM CTL SHF
9 I y y y I I 9

COM COM COM CTL SHF
1 A Q Q Q A A 1

COM COM COM CTL SHF
5 E u u u E E 5

COM COM COM CTL SHF
4 D T T T D D 4

COM COM COM·CTL SHF
6 F v v v F F 6

CTL COM COM CTL SHF
I 0 CRT CRT CRT 0 0

1.7

Keyboard Table. Each row lists ASCII values produced by the indicated
keys (plus Control, Command or Shift, if necessary).

.....:l C.!) C.!) Cl Cl:l:l Cl C.!)
0 z z z z 0 0 z z
0::: 8 H H 8 .ex: .ex: 0::: 0::: 8 .ex: H
8 CL. ::X:: ::X:: CL. ::e:: ::e:: 8 8 CL. ::e:: ::X:: z H 8 8 H ::e:: ::e:: z z H ::e:: 8
0 ::X:: 0 0 ::X:: 0 0 0 0 ::X:: 0 0 u (/) z z (/) u u u u (/) u z

"I@
32 0 641@ 96 @ 128 @ 160

"'
192 1F0 224 F0

1 A 33 1 65 A 97 A 129 A 161 1 1 193 , F1 225 F1
2 !B 34 2 66IB 98 B 130 B 162 2 194 !F2 226 F2
3 :c 35 3 67 l c 99 c 1311C 163 3 1 195 F3 227 F3
4 1D 36 4 68 1 D 100 D 132 . D 164 4 . 196 i F4 228 F4

I

197 1 F5 5 E 37 5 69 E 101 E 133 ' E 165 5 229 F5
6 F 38 ! 6 70 F 102 F 134 F 166 6 . 198 : F6 230 F6 i

!
7 G 39 ! 7 71 G 103 G 135 G 167 7 ' 199 i F7 231 F7 !
8 H 40 8 72 H 104 H 136 H 168 sl 200 F8 232 F8
9 I 41 9 73 I 105 I 137 ' I 169 9 201 ! F9 233 F9

10 J 42 * 74 J 106 J 138 J 170 * 202 F101 234 F10
11 K 43 + 75 K 107 K 139 K 171 + 203 ' F11 235 F11
12 L 44 , 76 L 108 L 140 L 172 ' , 204 F12 236 F12 !
13 M 45 ! = 77 M 109 M 141 M 173 = 205 F13 237 F13
14 N 46

1

78 N 110 N 142 N 174 I

206 F14 238 F14 . .
15 0 47 : I 79 0 111 0 143 0 175 I 207 F15 239 F15 I

176 : 16 p 48 1 0 80 p. 112 p 144 p 0 208 F0 240 F0
I

17 Q 49 1 1 81 Q 113 Q 145 Q 177 1 209 F1 241 F1
18 R 50 1 2 82 R 114 R 146 R 178 !2 210 F2 242 F2
19 s 51 i 3 83 s 115 s 147 s 179 ' 3 211 , F3 243 F3
20 T 52 i 4 84 T 116 T 148 T 180 4 212 , F4 244 F4
21 u 53 5 85 u 117 u 149 u 181 5 213 : F5 245 F5
22 v 54 6 86 v 118 v 150 v 182 6 214 1 F6 246 F6

I

23 w 55 7 87 w 119 w 151 w 183 7 215 : F7 247 F7
24 X 56 8 88 X 120 X 152 X 184 i a 216 1 F8 248 F8
25 y 57 9 89 y 121 y 153 y 185 l g 217 1 F9 249 F9
26 z 58 : 90 z 122 z 154 z 186 . 218 F10 250 F10 .
27 [59 ; 91 [123 [155 [187 . 219 F11 251 F11 I

28 \ 60 < 92 \ 124 \ 156 \ 188 < 220 F12 252 F12
29] 61 = 93] 125] 157] 189 = 221 F13 253 F13 .
30 A 62 > 94 " 126

A

158
A

190 > 222 F14 254 F14
31 - 63 ? 95 - 127 - 159 - 191 ? 223 F15 255 F15

BUSINESS SOFTWARE FOR SALE
•1982 INCOME TAX PREPARER (for Federal and New York State).
•COMPLETE CASH REGISTER PROGRAM (Includes invoice print, order, inventory count,

cash/credit total).
ePAYROLL SYSTEM.
eQSORT PROGRA..\1
eCCII INTERACTIVE OPERATING SYSTEM

18

MAU Corporation

5 Eldridge Street , Store North
New York , New York 10002
Tel. (212) 431-1277

Assembly Language
Programming

by

David B. Suits

PART IV: 'Jhe Status Flags
and the stack

Well, I goofed last time. Some of
you saw the mistake and made the approp
riate corrections. The little program
I gave you last time to draw a line
around the screen will unfortunately
only plot four points at the corners of
the screen. That 1 s because I left out
the incremental plot mode introduction
number, 242, which should be inserted
just after the 12,2,0,0 in the string
of bytes which the program used. In
addition, there will now be 14 bytes in
the string instead of 13, and so the
counter must be initialized to 14 (=OEH)
at address 8203H.

The Status Flags
Besides the normal 8080 registers

(Accumulator, B, C, etc.), there is an
eight bit group of Status Flags, each
of which can be set (or 1 on 1

, =1) or
reset (or 1 off 1

, =0), according to the
operations of certain instructions. Al
though the flag register is eight bits
wide, there are only five flags; the
other three bits are unused. The five
flags are the Sign, Zero, Auxiliary
Carry, Parity, and Carry Flags. Their

Status Flags: I S I Z I I AC I I P I I C I
settings are often used automatically
by other instructions. For example, the
DCR <reg> instruction which we examined
last time will affect all the flags
except the Carry flag. Probably the most
useful of the flags it affects is the
Zero flag, which wi 11 be set if the
result of DCR <reg> is zero, and reset
otherwise. Then a conditional instruc
tion such as JNZ <addr> (Jump if Not

Zero) will automatically test the status
of the Zero flag. Thus, the sequence

OCR <reg>
JNZ <address>

is a very common one in 8080 programming.
There are other conditional jump instruc
tions, each of which tests the status
of some flag:

Hex Instruction Meaning
DA JC <address> Jump if carry (carry flag=l)
FA JM <address> Jump if minus (sign flag=l)
02 JNC <address> Jump if no carry (carry flag=!!)
C2 JNZ <address> Jump if not zero (zero flag=!!)
F2 JP <address> Jump if plus (sign flag=!!)
EA JPE <address> Jump if parity even (parity flag=l)
E2 Jro <address> Jump if parity odd (parity flag=f<l)
CA JZ <address> Jump if zero (zero flag=l)

In the previous installment we made use
of the CALL instruction. The CALL is
really a jump-to-subroutine instruc
tion. You might expect, then, that there
would be a set of conditional jump-to
subroutine instructions. And you would
be right:

Hex Instruction
DC CC <address>
FC CM <address>
D4 CNC <address>
C4 CNZ <address>
F4 CP <address>
EC CPE <address>
E4 CPO <address>
CC cz <address>

Meaning
call if carry (carry flag=l)
call if minus (sign flag=l)
call if no carry (carry flag=!!)
call if not zero (zero flag=!!)
call .if plus (sign flag=!!)
call if parity even (parity flag=l)
call if parity odd (parity flag=!!)
call if zero (zero flag=l)

Finally, there are corresponding RET
(return from subroutine) instructions
which are executed only if a flag is of
a certain value:

Hex ·Instruction
08 RC
F8 RM
00 RNC
Cf<l RNZ
Ff<l RP
E8 RPE
Ef<l RFO
C8 RZ

Meaning
Return if carry (carry flag=l)
Return if minus (sign flag=l)
Return if no carry (carry flag=f<l)
Return if not zero (zero flag=!!)
Return if plus (sign flag=!!)
Return if parity even (parity flag=l)
Return if parity odd (parity flag=!!)
Return if zero (zero flag=l)

I9

Notice that if a flag has been
affected (set or reset) by some instruc
tion, it will retain that value until
and unless some other instruction is
executed which affects it. For example,
the INX <reg pair> (increment a register
pair) instruction affects none of the
flags. So this sequence:

OCR C
rnx H
rnx H
JNZ <address>

would have exactly the same effect as

rnx H
rnx H
OCR C
JNZ <address>

The Caapare Instruc~ion
The contents of the Accumulator may

be compared to the contents of another
register by means of the CMP <reg>
instruction. The CMP <reg> instruction
will not change the contents of either
the Accumulator or the other register,
but it will affect the statuses of all
the flags. However, we will usually be
concerned with only two of them: the
Zero flag and the Carry flag. The CMP
<reg> instruction will set the Zero flag
only if the two numbers (the contents
of the two registers) are equal. Other
wise, the Zero flag will be reset. Thus,
a typical loop structure which we used
last time,

DCR C ; Is C=0?
JNZ <address> ;Not Yet.

;Yes.

could alternatively be re-coded in this
rather cumbersome form:

%0

.
MVI A,0
DCR C
OIP C
JNZ <address>

;Accumulator = 0.
;Decrement counter.
;Is C=Accumulator (=0)?
;Not yet.
;Yes.

Obviously, such a program,
workable, is not very clever.
a clever use of CMP:

OIP A

although
Here is

This instruction compares register A to
itself. Thus, the Zero flag is necessar
ily set, since A is necessarily equal
to A. This might be a useful way of
setting the Zero flag unconditionally-
in case you ever need to do that.

Not only can the contents of a
register be compared to A, but a byte
of immediate data may also be compared
to A. Remember that MOV A,<reg> will
move (i.e., copy) the contents of <reg>
into the Accumulator, whereas MVI A,
<num> wi 11 load the Accumulator with
the number specified, which is called
a byte of immediate data. Similarly,
the instruction CPI <num> will compare
<num> to the contents of the Accumula
tor. So we could write the loop structure
above in still another (but equally
cumbersome) way:

DCR C
ID.J A,C
CPI 0
JNZ <address>

;Decrement counter.
;Get counter value into A.
;Is it =0?
;Not yet.
;Yes.

The CMP and CPI instructions affect
the Zero flag. But they affect another
flag as well, the Carry flag. The Carry
flag is used for many purposes, and many
instruction affect it. Just why and how
the Carry flag is affected by the compare
instructions is a more involved topic
than we have space for here. But we can
note one rule of thumb for making use
of the result: if the contents of the
register (or the byte of immediate data)
being compared to the contents of the
Accumulator are greater than the con
tents of the Accumulator, then the Carry
flag is set (i.e., =1); otherwise the
Carry flag is reset (=0). Suppose, for
example, that the Accumulator contains
OAH (=10 decimal):

Instruction
CPI 9
CPI ~AH
CPI ~BH

carry Fl.aJ
~ (no car .-y)
~ (no carry)
1 (carry)

Thus, the instruction CPI <num> (or CMP
<reg>) can be interpreted as a test for
greater than: is <num> greater than the
contents of the Accumulator? (Or, 1s
the number in <reg> greatel..· than the
contents of the Accumulator?) If so,
the Carry flag is set. If not, then
there is no carry. There is no instruc
tion which tests for a less than rela
tion, although we can do the same thing
by a series of conditional jumps. For
example:

OIP B ;Compare contents of B
; with contents of A.

<address> ;Jump if B>A.
<address> ;Jump if B=A.

JC
JZ

;At this point we know that B<A.

Another Way to Put
Stuff Onto the Screen

In the last installment we developed
a handy way of putting a lot of informa
tion on the screen. We did this by
constructing a loop. Here it is again:

11\TI C,~DH
LXI H,9~~~H

LOOP: MDV A,M
CALL 33H
INX H
DCR C
JNZ LOOP

;Put count of bytes into C.
;HL point to start of bytes.
;Get a byte.
; 'Plot' it.
;Point to next byte.
;Done with all bytes?
;Not yet.
;Yes. All Done.

No tice that I have taken the liberty of
calling the address in the conditional
jump "LOOP". If the MVI C, ODH ins truc
tion is at 8200H, then JNZ LOOP would
translate as JNZ 8205H. Bet I don't want
to have to figure out all those addresses
each time I give you an example program,
so I' 11 just label a certain spot in
the program and then you' 11 know what
I mean by JMP LABEL, or JNC LABEL, and
so on. This is the convenience that an
assembler allows you. (The MLDP does
not.) When you write something like
"LOOP:" out to the left (always followed
by a colon), the assembler understands
that it means whatever address that is.
Then, when you write something l ike JNZ

LOOP, it will translate "LOOP" into
whatever address the label "LOOP:" was
at. You can have as many labels as you
wish, but no two labels may be identical.

Anyway (I got off the track) , by
using the compare instruction we can
now generalize things a bit. Notice
that, in order for the program above to
operate properly, you first have to load
the C register (or whatever register
you use for the counter) with the number
of bytes in the string. But suppose you
don't know (or are too lazy to count)
how many bytes there are? In that case,
you specify that a certain number will
represent the termination byte--it will
indicate the end of the string. For
example, let 1 s pick the number 239 to
represent the end of the string of bytes.
Now our program doesn't have to know
how many bytes to print--it will just
keep CALLing 33H until it finds 239.

Thus:

LXI H,9~~~H
LOOP: MDV A,M

CPI 239

EXIT:

JZ EXIT
CALL 33H
INX H
JMP LOOP

;HL point to start of string.
;Get a byte.
;=239 (terminal byte)?
;Yes. Jump out of loop.
;No. 'Plot' the byte.
;Point to next byte.
;Back for roore.

The data at address 9000H will be a
series of numbers to be plotted (just
as in BASIC's DATA statement), and will
end with the number 239. The disadvan
tage of this scheme, however, is that
you cannot PLOT 239. Of course, if you
wanted, for some reason, to plot 239,
then you could pick some other number
to represent the terminal byte. Zero,
perhaps:

LXI H,9~~~H
LOOP: MDV A,M

CPI ~

EXIT:

JZ EXIT
CALL 33H
INX H
JMP LOOP

;HL point to start of data.
;Get a byte.
; Is it =~ (terminal byte)?
;Yes. Jump out of loop.
;No. 'Plot' the byte.
;Point to next byte.
;Back for roore.

But in this case you couldn't plot a
zero.

In BASIC, the PLOT statement handles
not only graphics (point plot, bar
graphs, etc.), but also letters and
digits. You need an ASCII table to tell
you what number represents what charac
ter. (An ASCII table is provided for
you in your Programming Manual. There
is also one included with the Machine
Language Debug Package Manual.) Thus,
PLOT 65 is the same as PRINT "A". And
so

MVI A,65
CALL 33H

; Put decimal 65 into A.
;Print an 'A'.

will be the assembly language equiva
lent. Since the letters, digits, punc
tuation marks and special characters
printed on the screen range from ASCII
32 through 127, a number out of that
range, such as 239, can be used as a
terminal byte for a string of printable
characters. It so happens that there is
already such a routine in your compu
ter's ROM, and it expects 239 as the
terminal byte (which is why I chose it
for my example). Get out your MLDP
program and examine the routine which
starts at address 33F4H (for V6.78
machines; 182AH for V8.79 and V9.80).
Let's name this routine OSTR (for Out
STRing). It is easy to use. Just set up
HL to point to the first byte of the
string of numbers to be plotted and then
CALL OSTR. Thus,

LXI H,9000H
CALL OO'IR

If you have stored these bytes at 9000H,

Address
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
900A
900B

Olntents
(hex) (decimal)

49 73
54 84
20 32
57 87
4F 79
52 82
4C 76
53 83
21 33
0C 13
0A 10
EF 239

then the result will be
IT ~RKS!

22

Try the program using the MLDP. (Remem
ber to set a BREAKPOINT after the CALL
instruction so that the program will
stop and transfer control back to the
MLDP.)

CALL and R.ETurn
We've had enough experience now with

the CALL instruction to feel comfortable
using it. But what does it do? It does
the very same thing as the JMP instruc
tion, but with one clever addition: the
address of the next instruction after
the CALL will be saved in a reserved
area of memory called the stack. The
subroutine which is CALLed will be able
to return to the part of the program
which CALLed it by using the RET instruc
tion. That instruction, too, does the
same thing as a JMP with a clever
addition. Unlike JMP or CALL, RET does
not specify an address to return to.
How does it know where to go? Simple:
it merely jumps to the address contained
in the stack area. Let's look at an
example.

AIXRESS <DllDl.rS IRS'lKJCl'Iai
8500 21 LXI H, 7000H
8501 00
8502 90
8503 0E MVI C,40H
8504 40
8505 3E MVI A,20H
8506 20
8507 0CD CALL 8832H
8508 32
8509 88
850A 78 !>OV A,B

8832 77 !>OV M,A
8833 23 INX H
8834 0D OCR c
8835 0C2 JNZ 8832H
8836 32
8837 88
8838 0C9 RET

This little program has the effect of
storing 20H (=32 decimal) at 40H (=64
decimal) memory locations begining at
address 7000H. When the CALL 8832H
instruction is encountered at address
8507H, the address of the instruction
following the CALL 8832H is stored "on
the stack" (as they say). That address
is 850AH. Then a jump is made to address

8832H where the program continues. It
loops around until the contents of the
C register become zero, and then it
RETurns; that is, a jump is made to the
address contained on the stack, namely,
850AH. Pretty neat, eh?

The Stack and its Pointer
The stack itself is merely a desig

nated section of memory. The programmer
may designate which section of memory
~s to be used as the stack area. The
8080 has a number of instructions which,
either explicitly or implicitly, store
or retrieve data in that area. The CALL
and RET instructions, for examples (plus
all their conditional variations, such
as CNZ, CC, RZ, etc.) make implicit use
of the stack. On the other hand, some
instructions, such as PUSH <reg pair>
and POP <reg pair>, which I'll discuss
in a moment, make explicit use of the
stack.

The stack may hold lots of data at
once: it is not limited to storing only
one address (or, more generally, two
bytes). The stack is sometimes more
descriptively called a "push down
stack", or sometimes a "first-in, last
out" stack. The common analogy is a
stack of plates in a cafeteria: the
cafeteria staff adds a clean plate to
the stack, which sinks down a bit on a
spring loaded holder. A customer comes
along and takes a plate (the top plate,
please; don't be difficult), and the
whole stack rises up a bit. Just how
many plates you can put on the stack
depends on the size of the holder. And
just how many plates can be taken off
the stack depends on how many plates
are on it. The nature of the physical
universe determines which plate is the
top one.

The analogy is not bad, but don't
get carried away by it. The computer's
stack doesn't move at all. Rather, there
is a pointer to the most recent addition
to it. And instead of rising up, like
the stack of plates, the computer's
stack grows downwards (where "down"
means toward lower addresses; so you
can 1 t make the stack grow upwards by

turning your machine upside down). More
accurately, the stack pointer is adjust
ed downward when a new addition to the
stack is made, and it is adjusted upward
when something ~s retrieved from the
stack.

Now I'm going to confuse you. I have
been writing programs (such as the
example above) downwards toward the
bottom of the page; but the addresses
increase--they go upwards. That's quite
ordinary: you do the same when writing
a BASIC program:

10 REM
20 A=A+l
30

But now I want to illustrate a downward
growing stack, and I am tempted to make
the lower addresses actually be lower
on the printed page, like this:

9327
9326
9325

But I won't do that. So I'm going to
illustrate a downward growing stack by
a list of upward growing addresses which
go downward on the printed page. Got
that? Nevermind. You would probably hav·e
been better off had I not mentioned this
at all. Just remember that up is down
and down is up, and that there is a
gross equivocation going on. [Ed note:
At this point the author succumbed to
a fit of conversion hysteria and had to
be locked up for two weeks inside a mass
storage drum filled with octal notation.
Fortunately, he recovered just before
this month's deadline and was able to
finish this article.]

Back to the stack pointer. Only two
bytes (which could represent data or an
address)--no more, no less--are put onto
or taken off the stack during a stack
operation. That is, although the stack
area might be as big as you please, the
operation of adding something to or
retrieving something from the stack
always involves exactly two bytes. One
of the 8080' s registers is called the
Stack Pointer (SP). It is a two byte
register which always contains the ad-

23

dress of the most recent two byte
addition to the stack. Suppose, for
example, that the stack begins at 9327H
and grows down from there:

stack Pointer l\ddress Contents

9327
9324
9325
9326
9327

X
X

X

X

If a CALL instruction is encountered in
a program, the address of the next
instruction is PUSHed onto the stack,
and the stack pointer is adjusted down
by two bytes. In the example program
given earlier, the CALL 8832H would have
this effect: decrement the SP; store
the high byte of the address of the next
instruction after the CALL in the memory
location addressed by the SP; decrement
the SP again; store the low byte of that
next instruction in the memory location
pointed to by the SP; then jump to the
address given in the CALL instruction.

stack Pointer .Address Contents

9325
9324
9325
9326
9327

X
0A

85
X

The RET instruction retrieves (POPs) an
address from the stack: get the low byte
from the memory location addressed by
SP; increment the SP; get the high byte;
increment the SP; jump to the address
so retrieved.

stack Pointer l\ddress Contents

9327
9324
9325
9326
9327

X
0A
85
X

Notice that the contents of the stack
are not changed by the RET instruction.
Rather, the SP is merely repositioned,
i.e., points to a new address.

PUSH and POP
Explicit

manipulation
the stack 1 s

24

(as opposed to implicit)
of the stack pointer and

contents is possible with

some of the 8080 1 s instructions. The
two most common are PUSH <reg pair> and
POP <reg pair>. During a PUSH instruc
tion the stack pointer is adjusted down
two bytes and the two byte register pair

is copied onto the stack. The contents
of the register pair are not changed.
During a POP operation, the two bytes
on the stack are copied into the speci
fied register pair and the SP is adjusted
up two bytes. Thus,

LXI H,2395H
FUSH H

has the effect of storing 2395H on the
stack and adjusting the SP downward two
bytes. And

roP H

loads the register pair HL with the two
bytes on the stack and adjusts the stack
pointer back up two bytes. Notice that
the PUSH and POP instructions don't care
what is in a register pair or on the
stack. Moreover, there is no record kept
about where the information on the stack
came from. Thus,

LXI H,2395H
FUSH H
ffiP B

will (1) load HL with 2395H, (2) copy
the contents of HL onto the stack and
adjust SP down, and then (3) copy the
contents of the stack into BC and adjust
SP back up. The final result is that SP
will be where it was to start with and
both HL and BC will contain 239SH. If
you want to get two bytes off the stack
and still keep them on the stack, then

rop <reg. p:lir>
FUSH <reg. p3.ir>

can be used.
One of the main functions of PUSH

and POP is the temporary saving of
register contents. If you want to make
use of DE, for example, but you also do
not want to lose what's presently there,
then here's how to do it:

FUSH D
blah
blah
blah
roP D

;Save DE on stack.

;Retrieve DE.

Quite often a subroutine will make
extensive use of the registers, and in
order to avoid destroying important data
being held in those registers, the
subroutine might save some or all the
registers on the stack and retrieve them
just before RETurning:

SBRUJT: PUSH PSW
PUSH B
PUSH D
PUSH H
blah
blah
blah
POP H
POP D
POP B
POP PSW
RET

;Save all registers.

;blah

;Restore all registers.

(The PSW, remember, is the one byte
Flags register along with the Accumula
tor.) Notice that the registers must be
r es tored in the opposite order they were
saved , otherwise the contents of some
of the registers would be interchanged .
(Sometimes tha t is done on purpose.)
Notice also that the number of POPs must
equal the number of PUSHes. Why? Because

when the subroutine is CALLed, a return
address is automatically PUSHed onto
the stack. Then the subroutine PUSHes
some registers onto the stack. In order
to get that return address back again,
all those two byte additions to the
stack must be cleared away first.
(That 1 s why we call it a first-in
last-out stack.) If you POP too few, or
POP too many, what you get as the return
address with the RET instruction might
be very surprising.

POP QUIZ: What will this series of
instructions do?

LXI H,8A94H
ruSH H
RET

Answer: It will have the same effect as
JMP 8A94H.

BEXT TIME: Manipulating the stack point
er; more ways of getting data to and
from memory; addition and subtraction;
getting data from the keyboard. IC

8 K R A M B 0 A R D
(For V6.78 Compucolors only. V8.79 available soon.)

This 8K of additional RAM is addressed at 4000H-5FFFH, the
s p a c e unused by your Compucolor and available for PROM. Now you
can add additional RAM instead, allowing you to increase the maximum
RAM of your machine to 40K. Installation is easy, requiring a small
modification to the logic board. It is compatible with the Frepost
Computers, Inc. Bank Select ROM Board (see notice in this issue).

US$65 . 00 plus $2.50 postage and handling

Tom Devlin
3809 Airport Road
waterford, MI 48095

For mor e informat i on or a copy of the installation instructions,
s end a SASE . Al s o see t h e ar t i c le in t he next Colorcue.

25

2&

... ·, • ~ - - -. '.' : -.. :... j/. ·~·- - _· • - ' • ~-' ~ .. - ~: ._ - ,. - ~- '· -- :- • • "

*

*

Add 16K RAM
TO YOUR 16K COMPUCOLOR 11 (V6. 7B, VB. 79 & 3621)

for 0 fi l y $ 13 8 (U.S.)

• Completely assembled and tested.

• No soldering required. Just plug in.

• Full insta llat ion in struc t ions included.

• All RAM chips are in sockets (8).

• Spare RAM CHIP included.

• 90 Day warranty .

• Price includes air mail costs . (Aust.;$120, Canada ;$15B)

pp~ PROGRAM PACKAGE II,STALLERS,

B Hil]cres t Drive,

DARLINGTON,

WESTERN AUST RA LIA 6070

Add lo-w-er case
TO YOUR COMPUCOLOR 11 (V6. 7B, VB. 79 & 3621)

for only $40 (U.S.)

• Comp l etely assembled and tested.

• No soldering required. Just plug in.

• Full installation instructions included.

• Both 2708 EPROMS are in sockets .

• Switchable between Lower case and graphics . (switch incl .)

• 90 Day warranty.

• Price includes air mail costs . (Aust.;$36, Canada=$47)

pp~ PROGRAM PACKAGE INSTALLERS,
8 Hillcrest Drive,

DARLINGTON,

WESTERN AUSTRALIA 6070

*

*

Back Issues Sale

Back issues of Colorcue are an excellent source of information about
Compucolor computers, ISC computers, and programming in general. Inter
views, interesting articles, and programs are all there with a touch of
history.

The list below includes every Colorcue ever published. If it's not on the
list, then there wasn't one •

.RETR.OVIEW: Vol. 3, 4Fl (Dec 79/ Jan 80) includes: an interview with Bill
Greene; Compucolor-teletype interface; user group hot line; in traduction
to the Screen Editor; PEEKing at BASIC programs; talking to other computers;
making programs compatible with V6.78 and V7.89 software; software
modifications.

MULTI-ISSUES at $3.50 each
__ Oct, Nov, Dec 1978 __ Apr, May/June 1979
__ Jan, Feb, Mar 1979 __ Aug, Sept/Oct, Nov 1979

IBDIVIDUAL ISSUES at $1.50 each
Dec 1979/Jan 1980 Feb 1980

__ Apr 1980 __ May 1980

IBDIVIDUAL ISSUES at $2.50 each
Dec 1980/Jan 1981 __ Aug/Sep 1981

__ Dec 1981/Jan 1982

POSTAGE

Mar 1980
Jun/ Ju1 1980

Oct/Nov 1981

US and Canada -- First Class postage included.
Europe, S. America-- add $1.00 per item for air, or

$.40 per item for surface.
Asia, Africa, Middle East-- add $1.40 per item for air, or

$.60 per item for surface.

DISCOUNT
For orders of 10 or more items, subtract 25% from
total after postage.

ORDER FROII: Color cue
Editorial Offices
161 Brookside Dr.
Rochester, NY 14618

Color cue
Editorial Offices
161 Brookside Dr.
Rochester, NY 14618

[Address Correction Requested I

An - Publication

BULK RATE
U.S. POST AGE

PAID

Rochester; N. Y.
Permit No. 4 1 5

Colorcue

8K RAM Board

April/May I982 $2.

Colorcue
A Bi-monthly PUblication by and for
Intecolor and Compucolor Users

April/May, 1982
Volume 4, Number 5

3 Editors• Notes

Editors:
Ben Barlow
David B. Suits

Compuserve: 70045,1062

5 8K RAM Board for the Coapucolor II, by To• Devlin
Expand your machine to 40K

12 Classified Ads

13 In and Out of the Compucolor II, by Jane Devlin
How to take the back off--and put it on again

17 Combine Record Documentation with Record Access,
by Alan D. Matzger
Improve your random file routines

18 About Your Subscription
Keep COLORCUE alive!

19 Assembly Language Programming, by David B. Suits
Part V: Creating an INPUT routine

Advertisers: You will find our advertising policies attractive. Write for
details.

Authors: This is a user-oriented and supported publication. Your arti
cles/tips/hints are required to make it go. Send your articles or write
for information.

Colorcue is published bi-monthly by Intelligent Systems Corporation, with
editorial offices in Rochester, New York. Editorial and subscription
correspondence should be addressed to the Editors, Colorcue, 161 Brookside
Dr., Rochester, NY 14618. Product related correspondence should be
addressed to ISC, 225 Technology Park, Norcross, GA 30092, ATTN: Susan
Sheridan. Opinions expressed in by-line articles are not necessarily those
of the editors or of ISC. Hardware/software items are checked to the best
of our abilities but are NOT guaranteed.

Editors'
Notes

Aboard a Proud Ship
Some Compucolor/Intecolor owners,

for various reasons, have abandoned
their first machine and have struck
up friendships with the Atari 800 or
Apple II microcomputers. (I have yet
to hear of an ISC computer owner
switching to TRS-80, or even to the
Color Computer.) One may wonder about
the wisdom of such a switch: what
those other machines offer that the
Compucolor/Intecolor does not is, to
my mind, so miniscule as to not make
up for their serious deficiencies,
not the least of which is their little
toy keyboards. And I suspect that the
greater resolution available for graph
ics on the Apple II is hardly a
sufficient motive for discarding the
otherwise superior display which the
ISC machines have. Nor is the 6502
microprocessor, which the Atari and
Apple II computers use, a step up from
the old klunker 8080.

No, it is not, I suspect, the
hardware which entices an ISC computer
owner to abandon ship; it is, rather,
the wealth of independent software
and hardware vendors who flood the
market with unimaginably diverse pro
ducts for use with the Atari and Apple
II computers. And if you're consider
ing joining the ranks of the produc
ers-sellers, the market for Atari and
Apple , II software is still very
strong. How can a budding author hope
to make that kind of money in the
restricted Compucolor/Intecolor mar
ket?

ISC fans have been tempted away
even more by the recent introduction
of the IBM Personal Computer. I admit
that the PC appears to be a very fine
machine. But does it really represent
very much of a step up from the
Compucolor/Intecolor? Sure, there's
an 8088, but it grinds along at a
blindingly slow pace. It is ins truc
tive to read Vol I, No. 1 of PC
Magazine, a new publication dedicated
to the IBM PC. Its editor, Jim Edlin,

is pictured with two computers: the
new IBM PC is in the background, and
in the foreground is a ••• a Compucolor
II! "I have", Jim says, "what I believe
was the best personal computer of the
pre-IBM era, though you've probably
never heard of it. It's called a
Compucolor II. ••. 11 After expressing
some doubts about the PC in its present
form, Edlin says, "I 1m not quite ready
to put my Compucolor II away. But I
can see it won't be long." He antici
pates an evolution of the IBM PC, by
independent vendors if not by IBM
itself.

Still and all, I wonder if it
isn 1 t mere hype to talk about "the
pre-IBM era", as though the IBM PC is
really a significant advance. For my
own part, I am not at all interested
in the new machines which--good as
they surely are--offer not very much
more than popularity over the Compu
color II. I will not be ready to put
away my Compucolor II until I finish
the design and construction of my own
"step up". Don't hold your breath; it
will be a 68000-based high resolution
color graphics system. The sheer size
of the thing boggles my mind: the
display refresh memory alone will
occupy· 153K bytes.

No, it will be quite some time
before I find a better machine to move
up to. In the meantime, my Compucolor
II, for all its foibles and follies,
does me right proud every time.

--DBS

Rev Publication
The U.K. Compucolor Users' Group

has launched publication of their
newsletter, eo.p~olour. April was
their first issue. It was 40 pages,
including: Bill Donkin 1 s lengthy dis
cussion of how the directory and BASIC
programs (or "programmes 11

, if you
prefer) are stored on disk; notes on
programs in the group 1 s library; notes
on disk drive speed and alignment
adjustments; an index to Colorcue from
Volume 1 through Volume 3; and Dale
Dewey 1 s article on the TMS 5501. The
Secretary/Librarian is Bill Donkin.
Contact the group at 19 Harwood Ave
nue, Bromley, Kent, BRl 3DX, England.

-=
3

~ E N A I S S A N C E M A R K E T I N G A N 0 U N C E S
L 0 W C 0 S T B U S I N E S S P R 0 G R A M S

FOR YOUR COMPUCOLOR MODEL 4, MODEL 5

*GENERAL LEDGER (18K , 32K) ..•••. $ 59 . 95

1 - ACCOUNT PROGR AM : DISPLAY ACCOUNT DATA , LIST ALL ACCOUNTS , AD D
ACCOUNT , DELETE ACCOUNT , CHANGE ACCOUNT DATA.

2 - JOURNAL PROGRAM : ENTER JOURNAL DATA , DISPLAY JOURNAL DATA BY ENTRY #,
CHANGE ENT RY DATA.

3 PROOF PROGRAM : DISPLAY OR PRINT JOURNAL ENTRY PROOF SHEETS WITH
TITLES.

4 POST PROGRAM APPLIES JOURNAL ENTRIES TO ACCOUN TS.
5 RE PORT PRO GRAM PRINT BALANCE SHEET , PRINT INCOME STATEMENT WITH

TITLES.

INC LU DES : EAS Y TO UN DERS TAND INSTRUCTIONS, SAMPLE ACCO UNTS , SAMPLE ENTRY
FORMS, SAM PLE PR INTOUTS.

*I NVE NTORY CONTROL (16K, 32K l $ 34.95

GIVES THE FOLLO WI NG REPO RTS.

- DISPLAYS I TEM DA TA BY GUANTITY
2 - PRINT OR DIS PLAY ALL ITEMS ON FILE .
3 - DISPLAY ITEM DATA BY CLASS CODE.
4 - PRINT OR DISPLAY ITEM DATA BY VENDOR.
5 - UPDATING SECTION

< A) - ADD NEW ITEM
(B) - UPDATE ITEM GUANTITY
(C) - CHANGE ITEM DATA
(D) - DELETE ITEM

< 8 l - DISPLAY ITEM DATA BY ITEM #.

PROVIDES GUANTITIES AND DATA FOR 750 ITEMS OR MODELS.

*INVOICE CONTROL (18K, 32K l $ 49.95

INVOICE CONTROL PROGRAM PROVIDES DATA FOR 768 INVOICES PER DISK PER SIDE.
GIVES ON A DAILY BASIS MONTH-TO-DATE, YEAR-TO-DATE INVOICE INFORMATION ON TOTAL
SALES, ACCOUNTS RECEIVABLE, AMOUNT PAID, TAX DUE, FREIGHT CHARGES, INVOICE COST
AND PROFIT.

DISPLAYS = LIST ALL INVOICES , SEARCH BY CUSTOMER, INVOICE DATA, SEARCH BY P.O.
, LIST OF TOTALS (TOTAL SALES, SALES TAX , FREIGHT AND COST l.

PRINTS =ALL INVOICE DATA (MONTHLY, YEARLY), AIR DATA < BY CUSTOMER, OR ALL
INVOICES MONTH-TO-DATE . YEAR-TO-DATE), INVOICE TOTALS (M-T-D, Y-T-D
AMOUNTS PER INVOICE AND TOTALS FOR SALES . TAX , FREIGHT , COST AND
PROFIT l .

CALL OR WRITE FOR ADDITIONAL INFO.
OPTIONAL INVOICE PRINTING USES NEBS TRACTOR INVOICE FORMS •....... $ 19.95
OPTIONAL INVENTORY CONTROL INTERACTIVE WITH INVOICE PRINTING $ 29.95

MAXELL MINI DISK FOR COMPUCOLOR. BOX OF 10 $ 34.95
30i. OFF ALL COMPUCOLOR CORP. SOFTWARE IN STOCK. CALL

RENAISSANCE MKT.
7 SO. PIERSON RD.
MAPLEWOOD , NJ. 07040
201-782-0585

[] INVOICE CONTROL $ 49.95
[J GENERAL LEDGER $ 59.95
[] INVENTORY CONTROL $ 34 . 95
[J MAXELL DISK BOX GTY. ____ _

TERMS: PAYMENT WITH ORDER

IN NJ. ADD Si. SALES TAX

SHI P TO

FREIGHT: PREPAID IN USA

* AVAIL. FOR INTERCOLOR MAY, JUNE 1982 TAKING ORDERS NOW.

8KRAM Board
for the Compucolor II

by Tom Devlin
3809 Airport Ro~d

Waterford, MI 48095

For some time I had been casting
a wistful eye at the 4000- SFFF "Future
Space" section of the Compucolor II
memory map. ISC left this area open
to give us the option of installing
8K of EPROM for special programs. They
mounted connectors J9 on the logic
board to mate with an EPROM board and
programed PROM UB3 to supply chip
select signals to this board during
memory read cycles. Unfortunately very
little use has been made of this
feature.

My first thought upon discovering
this unused area was that it would be
a great spot for some RAM. This would
be far more flexible than EPROM in
that with RAM the program could be
changed at will or it could be be used
for temporary storage if the applica
tion required it. One of the nicest
features of placing RAM in this area
would be that BASIC wouldn't know it
existed so you could (ESC)-W without
worring about your utility program.

My search for suitable RAM chips
turned up the TOSHIBA 2016, a 2K x 8,
low power, static device. Four of
these provided the full 8K needed and
occupied the same physical space as
the 2716 EPROMS used on the Compucolor
add-on board.

The only problem was the address
decoding. rsc had intended this area
for EPROM and had made no provision
for accessing the chips during a write
cycle. Rather than replace the UF3
system decoder PROM and the UB3 chip
select PROM, I decided to disconnect
the appropriate outputs of the UB3

PROM and run the Al2-Al5 address lines
through the same J9 connector pins.
This was easy since Al2-Al4 were
already present on pins 11-13 of UB3
and AlS was available on pin 36 of
the 8080 CPU just a short distance
away. These four lines and the AO-All
lines already present on J9 allowed
access anywhere in the 64K memory
range. While I was mainly interested
in the 4000-SFFF area I left the door
open for future expansion into the
screen memory area via pads 0 thru V
on the board. If all goes well this
will be a part of another Colorcue
article •.

At this point I had almost every
thing needed. The only thing left was
to pick up the active low memory read
(MRD) and write (MWR) strobes. Two
wires from convenient locations on
the logic board to the new RAM board
completed the modifications.

The schematic shows the final
circuit. I decided to make the board
accept single 5 volt supply (Intel
type) EPROMS as well as the 2016 RAM
chips. Each board will accept 8K of
2016 RAM or 2716 EPROM or 16K of 2732
EPROM in two switch selectable 8K
banks. The schematic shows the jumper
and switch settings for each type of
memory chip. I also made provision
for stacking these cards and selecting
between them with a switch. Jumpers
A-B and C-D allow for easier stacking
by re-routing the MRD and MWR signals
from the lowest (bottom-most) board
to the upper one through connector
pins 13 and 14. If you use this

s

option, you MUST cut off pins 13 and
14 on the bottom of the lower board
or serious damage to the computer may
result because the logic board uses
these pins for +12 and -5 volt power.

Address decoding and chip selec
tion are handled by IC-1 (7418138),
a three line binary to 1 of 8 decoder.
Assuming that IC-1 is enabled by a
logic zero (ground) through one of
the two diodes, one of its outputs
will be low through a 2K or 4K block
within the 4000-7FFF range. The size
of the block has to match the size of
the memory chip installed and is set
by jumpering M-L or M-N. (If IC-1 is
not enabled, or we are outside the
4000-7FFF range, all eight outputs
will remain high.)

Pin 18 of any of the three types
of memory chips is the active low chip
enable (CE). If this pin is pulled
low, the chip "wakes up" and awaits
further orders. If pin 20, the active
low output enable (OE), is then pulled
low by MRD, the memory chip will output
a byte onto the data bus. In the case
of the 2016 RAM chip if pin 21, the
active low write input (W), is pulled
low by the MWR strobe, the enabled
chip will take the byte currently on
the bus and store it internally. If
CE goes low, but neither the MRD or
MWR follow (as might happen during an
I/O cycle) the enabled chip will do
nothing.

Pin 21 has other functions on the
EPROM memories. The 2716 uses it for
the programming voltage (VPP). For
normal operation this pin must be held
at +5 volts. The 2732 uses pin 21 for
the All address line to double the
storage capacity to 4k bytes.

Resistors Rl and R2 simply pull
the IC-1 inputs to a logic one (+5
volts) when the switches are open.
The 1N270 diodes specified are german
ium devices chosen for their lower
forward voltage drop compared to the
more common 1N914 silicon types.
1N914s should work fine with the
switches (in fact D2 is not needed if
you use switches for control) but the
lower drop of the 1N270s will give
some extra margin for possible future
card selection unde r software control.
The capacitors are for power supply
by-passing.

6

Installation on the V6.78 units is
straight-forward. Just follow the
REV.3 instructions. The situation is
a little more complex with the V8 . 79
types: the REV.3 logic boa rd was
changed to a newer REV .4 board part
way through production. Also, the
initial run of V8.79 UA5 FCS ROMs must
have had a bug because Compucolor
patched around one section of this
ROM to an EPROM located on the add-on
EPROM board (the only time this board
was ever used) and changed the UB3
PROM to reflect the change. If you
have one of these units with the add-on
board installed you will have to
update to the later UA5 ROM (PN 100695)
and replace the UB3 PROM so you can
remove and d1.scard this EPROM board
and use the J9 connectors for the RAM
card. I can supply a preprogrammed
2532 EPROM to replace the UA5 ROM and
the proper UB3 PROM if needed.

The REV.4 logic board used in the
final units is mostly the same as the
REV.3 board (a few changes to the
RS232 circuitry and the handshake mod
added), but for some reason ISC
switched from the 16 pin UB3 PROM used
on the older boards to a 20 pin part.
I have been unable to find a REV .4
board to make installation drawings
from. If anyone can supply a good
photograph or drawing of this board
I will try to get the information into
a future Colorcue.

If you elect to wire wrap a RAM
card, the PC layouts and assembly
drawing should, with the schematic,
give you all the information needed.
The 14 pin header assemblies are a
little tough to find, but you can make
your own by cutting a 28 pin wire wrap
socket in half lengthwise . Just be
sure that the socke t you pick has
large enough holes to allow you to
stack another board on top. Also, on
some sockets the pins are offset
slightly from the holes. If yours are
like this, make sure you keep the hole
center-to-center spacing at 3. 9" to
make stacking easier. (The Compucolor
J9 spacing varies a little from unit
to unit. The .65" pins on the headers
we use are long enough to fle x sl i ghtly
to make up fo r t his. I would recommend
using this length.)

If you do decide to roll your own,

-.I

f4) A II

~: 3 I ~ I • r I • r 1 • r I , 1 I
10) 111

CZt..J A'-J
(Z.SJ AS

fZ4! Af

{ZJ) A3

122J A2
fcl) A I

' /

t20J A~)----------~------~~~~+-r-~~-+-+-----.-+-r~~~+-+-~~----~~~-+-+-r~~~+-r---~

(C6J r5'/
) c.1 •! •!!z

4?, I~ 7ANT. >) {15) GNlJ

1'7) [)t!J

(!JJ £)! >

~ ~f ~·===· . =±==I ----4--fii' i 1!-t+tttj 1 Ill~. •+++++tq I 1-H+--111 ~· i ! +++++=ij Ill ~I I I II II

1'1£Ma!f
eDit.
271(.,
273Z

Jf-11/H
l'f~L

l'f•L
1'1•N

N

(

' ~v-,..
f1EJO?f TYI£ _jUt! PER

cO liD F E
27/f.. F-'>/.1
27.32 F~G

t
. l ffFt£12
C?

L

Ha---L-~~
~B

~
~~so
I 'f -P

'U

Q

~ R 3'c. ~G .3 -

I'"' 01
(16J AI~ . :

.I ~ <:!/ '~G-o
IB.i'A ~ 3 ·-

5

-{)u

:;:f I ~~
fmAIS k~

~·e ~, 0 •••
Dl rl --.) .5 G.i'lJ ~ ~r; ~ 7 7

..su.~ o---(J = u_ K~+
-...L rxeJ 4 · 7 K 2:UJITCJ-I A

--..:sLut Cll 8

-OY

Cllk!U-..YLCLJ
il4l' LJ ...YL/IT

ZtJtt. 27/C.. AI?..ST B.C f-Xr'I::'ETS l<f".3J 2 7-P
'-Rl:::WD 8 .C r...:x:rt:ETS ZJ'4J Z7J2

0 1982 by Tom Devl~n

"'

would you please drop me a line and
tell me how you made out?

Installing the RAM Card
on Rev. 3 Logic Boards

A word of warning. STATIC CHARGES
KILL MOS ICs. Just walking across the
floor can produce enough of an elec
trical buildup to totally destroy MOS
parts. The RAM chips are just as
sensitive as other parts of your
machine, so remember this warning
whenever you work on your computer.
To avoid this potential problem touch
the metal frame of the disk drive to
neutralize any charge you may have
accumulated. Do this as soon as the
back is off.

(1) Disconect the A.C. power cord
and all connectors from the rear of
the computer.

(2) Remove the back (3 screws top,
1 bottom). Be careful not to hit the
neck of the CRT during this step.

(3) Being careful to mark socket
placement, remove the three cable
connectors and the sixteen pin flat
cable for the d~sk drive from the left
side of the logic board (bottom cir
cuit board). Remove the logic board.

(4) Locate and remove PROM UB3
(82Sl23). (Figure lA.) Bend pins
1,2,3, and 4 out from the body of the
chip. Make sure that the pins don't
touch each other or anything else when
the chip is replaced in the socket.
If UB3 is not socketed you can cut
these pins off close to the board with
a sharp pair of wire cutters.

(5) Turn the logic board upside
down and locate the socket pins for
UB3. Using four lengths of insulated
jumper wire, make the following connec
tions (see Figure 2):

() pin 2 to pin 13
() pin 3 to pin 12
() pin 4 to pin 11
() pin 1 to UA2 socket pin 36

(8080, AlS output).
(6) Turn the logic board rightside

up. Plug the RAM board into connectors
J9. The end with the small parts goes
to the rear (edge card connector end)
of the logic board. Support the logic
board from the bottom to keep it from
flexing during this step.

8

(7) Connect a wire from the MWR
pad on the RAM board to pin 8 of J8
at the front end of the logic board.
You can connect directly to pin 8 of
the 16K add-on RAM card if you have
it, otherwise use a wire wrap pin.
See Figure 3.

(8) Locate the feed-thru pad shown
in Figure 1. Connect a wire from the
MRD pad on the RAM board to this point.

(9) Double check your work. Pay
close attention to the UB3 and UA2
chips to be sure t hat you have not
shorted two adjacent pins together
when you soldered the wir es to them.

(10) Re-assemble the computer.
Remember to reconnect all of the
cables removed during the disassembly.
The logic board is supported at the
rear by two tabs that fit into sl Jts
in the rear cover. Be sure to ge t
these in place.

With the power switch off recon
nect the keyboard and power cords.
Take a deep breath and turn the power
on. If the computer does not act
normally, turn the power off immedi
ately. Otherwise relax and wait for
the screen to light up.

Problems can be localized by re
moving the RAM card from the computer.
(You do not have to "unmodify" the
logic board.) If everything then works
normally, you either have a bad RAM
card or else you have connected the
MRD or MWR wires to the wrong places.

If the display "jitters" or the
colors don't quite line up don't
panic; you've probably just moved the
horizontal centering control. (The
small trim pot at the left rear edge
of the logic board.) Re-adjust it with
a small screwdriver. (The display will
move in steps as the control is turned.
Set the control for the best picture
midway between two steps.)

If all is well so far, put a disk into
the drive, enter FCS, and

FCS>SAVE RTEST 0-lFFF

to put 8K of fairly random data onto
the disk. Now try to load this data
into the RAM card with

FCS>LOAD RTEST.PRG;Ol 4000

If you don't get any EMEM error
messages, you are home free!

Software
Some software is already available

for the 4000H-5FFFH area. Quality
Sottware Associates (21 Dersingham
Cr., Thornhill, Ontario, Canada, L3T
4P5) has a greatly expanded version
of 1 THE 1 BASIC EDITOR for use with
the RAM card. It uses the full 8K and
is a joy to work with. If you have
already purchased 'THE' editor, send
them your disk and $6.00 and they will
run you a copy. This program will be
included in all future disks sold.
You can also relocate 'the Compucolor
MONITOR or MLDP programs using the
MENUs supplied with them. (Line 710
of the MENU program prevents ORGing
below 8200H, so justdeleteit.) I have
included a program to reORG version
3.20 of FRED! to 4000H.

The RAM card is compatible with
Frepost Computers' bank switching E
PROM system. Frepost has instructions
available. If, however, you install
the RAM card and later decide to
install the Frepost system, you will
have to return the logic board to its
original condition before proceeding.

The RAM card may also be purchased
assembled and tested for $65.00 plus
$2.50 postage and handling. (US funds
drawn on a US bank. Make checks payable
to Tom Devlin.) All ICs are socketed,
the printed circuit board is tin-lead
plated epoxy-glass, and all parts are
of high quality. It is covered by a
90 day parts and labor warranty. It
is currently available for all V6. 78
Compucolor lis. Owners of V8.79 units
will have to look inside your machines
before ordering. If your logic board
has a 16 pin UB3 PROM, you have the
same Rev. 3 logic board as in V6. 78

.............
~FIG-lA

I RIYS t,i', .3 a 4
/rl-""""-~..!.....l..:~~LJ...J....L..J.... .8 EN T CJlJT A r

~~ FR0/1. NOI:?WtL

UB2
8ZCB roe. B2:=!f3) '

'

111?0
_jUHPEP

~-----~ ~10PAD.

Figure 1

_)3-~PIN J!j/)5 ? CONNECTD/2

9

systems. If you also have an EPROM
board with one EPROM on it, you will
have to replace the UA5 masked ROM
and UB3 PROM to let you remove and
discard this EPROM board to free up
the J9 connectors for the RAM card.
We have a UA5 EPROM and UB3 PROM
replacement kit for $15.00 additional
when ordered with the RAM card. V8.79
units with the Rev. 3 logic board and
no EPROM board already have the cor-

jOOOOOOOOOOOO
UA:J

rect UA5 and UB3 chips installed and
are ready for installation of the RAM
card. If your machine has a 20 pin
UB3 PROM, you have a Rev. 4 logic
board. These require no extra parts,
but we have been unable to find a Rev.
4 board to make the installation
drawings from. Perhaps we can make
this information available in a future
article. a:

UB3

4 ODD®~

0

00000000000~
Figure 2

UA2.

BOTTOM
OF 130A/2D

~000 00000000000000~

p i~s-r-1 ® u lffillllll p
~ _1.3- ..5D Plfl BUS CD1'1Ne:.£...TOJ2.

Figure 3

IIIII }(WR~~~~~
Jl.ftPEe ,

10

c~
o•

I 2£>

A ~ IC!J~ ~~~~~~~ g
o o oo oo oo oo

0 0 0 0 0 0 c 0 0 0 0
Bo o o a o o o o o o a

C) Cl 4 0 0 "1 0 0 2 0 c 0 0
o o oo .:Joe oo oo
C) Cl 0 0 0 0 0 0 0 0
0 C) 0 ~ 0 0 0 0 0 c:::J c. 0 0 Cl 0 0 0 0 0 0 0

0 o o 00 c 0 QO C c
o oGo oo oo co co

0 ~ 0 q ? 9 C? g fl, f - ~

E 9 a c::::> c::::::::> c:::> c:::::::> MWRO ·o F H e" cs C4 C:) 0
Cl

0 1982 by Tom Devlin

0 REM
1 REM
2 REM
3 REM
8

1 REDRG 1 BY 'IOM DEVLIN 1982
ProGRAM 'IO REDRG I FRED! I • REXJUIRF.S 16K. WCRKS FOR
V3.20. WILL HAVE 'IO BE IDDIFIED FOR OI'HER VERSIONS.
RESET 'IOP OF MEM:>RY WITH AN <E'SC>-w WHEN IX:NE.

9 REM IDVE 'IOP OF MEM:>RY IXMN
10 POKE 32940,191:POKE 32941,158:CLEAR 50
19
20 PLOT 12,6,2,15
30 INruT "INSERT YOOR BASIC EDITING DISK AND HIT RE'IURN" ;A$
40 PRINT :PRINT "00 YOO HAVE AN <ESC> [P] JUMP 'IO 4000H?"
50 INruT " (ALL V8. 79 UNITS 00) ";A$:PRINI'
60 PRINT "THIS WILL TAKE ABOOT 'IWO MINUTES"
68
69 REM GET BOTH VERSIONS IN'IO 16K AT THE SAME TIME
70 PLOT 27 ,4:PRINI' "LQ'ill FRED16.PRG;01 ":PLOT 27,27
80 PLOT 27 ,4:PRINT "LQ'ill FRED32.PRG;01,9EC0":PLOT 27,27
88
89 REM sror FCS ERROR VIA CCI CODE
90 IF (PEEK(33231) AND 7)=1 THEN 10
99

100 L0=44928:REM
110 HI=40640:REM
120 RC=16768:REM
130 SZ=4189:REM
138

0AF80H,
09EC0H,
04180H,
0105DH,

FIRST BYTE 16K VER.SCN
FIRST BYTE 32K VERSCN
FIRST BYTE RAM CARD VERSION
ProGRAM SIZE

13 9 REM IDVE I FRED! I IXMN, CHANGING HIGH ADDRESS BYTES
140 FOR !=0 'IO SZ
150 POKE RC+I,PEEK(LO+I)
160 IF PEEK(HI+I)-PEEK(LO+I)<>64 THEN 180
170 POKE Rc+I,PEEK(LO+I)-110
180 NEXT
188
189 REM SEE IF WE NEED 'IO USE <ESC> ["']
190 IF ASC(A$)<>89 THEN 250:REM YES
198
199 REM DELETE USER JUMP SE'IUP (FILL WITH IDPS)
200 FOR M=16847 TO 16857
210 POKE M,0

11

220 NEXT
230 POKE 19521,80:REM CHANGE [A] TO [P] IN SIGN-ON MESSAGE
240 0010 260
248
249 REM SET USER JUMP TO 04000H IF :00 <ESC> [P]
250 POKE 16848,0:POKE 16849,64
257
258 REM SET UP JUMP AT 04000H WHEN IDN
259 REM USING OLD TOP OF MEM:>RY AruUST SPACE
260 DATA 62,195,50,0,64,33,15,66,34,1,64,0
270 FOR M=16864 TO 16875
280 READ D
290 POKE M,D
300 NEXT
308
309 REM CHANGE THE SIGN-ON MESSAGE TO 4000H, COLOR TO CYAN
310 DATA 6,52,48,48,48,72
320 FOR M=19468 TO 19473
330 READ D
340 POKE M,D
350 NEXT
358
359 REM SAVE I FRED4 I TO DISK AND RUN IT. (HIM?)
360 PLar 27 ,4:PRINI' "SAVE FRED4 4180 105D":PLar 27,27
370 PLar 27 ,4:PRINT "RUN FRED4"

Call for Information
An interesting use of ISC computers was devised by Mr. Shepard of Rochester
(present whereabouts unknown) who marketed the machines with a horse race
handicapping system. His disappearance leaves those owners completely out
of the saddle. If you're one of those owners, Colorcue can serve as an
information exchange for you. We will be happy to publish information (if
someone will provide it for us) or, if you wish, publish names of users
interested in contacting each other. Let us hear from you.

CLASSIFIED ADVERTISING

FOR SALE: Intecolor 3651. New in
original carton. 32K, 5 1/4 inch disk.
Disks (no games). Joystick option.
$2800 (list $3800). George Wilson
(404) 458-1431 (nights).

FOR SALE: Compucolor II, V6.78, 16K,
71 key keyboard, manual set, disks,
including assembler, Compuwriter, De
bug, games. Asking $1000. Charles
Lovejoy (800) 225- 2465 x1365, weekdays
9-5.

FOR SALE: Compucolor II, V8.79, 32K,
extended keyboard, modem, manual set,
disks, games. Great condition. $1200
or best offer. Pete Gammon (404)
3 93-96 90.

1%

I ..

In and Out of the Co~npueolor II
by Jane Devlin

3809 Airport Road
Waterford, MI 48095

Will someone explain what I'm
doing, sitting here with a screwdriver
in either hand and t.he Compucolor
crouched in front of me like a threat
ening beastie? I'm more at home with
knitting needles, crochet hooks or
quilting blocks, so the idea seems to
be that if I can get into and out of
this computer without major damage to
it, myself, or the immediate environ
ment, then ANYONE can. Nervous? Who's
nervous? ME! (I wonder if he'll prom
ise to count to ten if he hears a
scream and a crash? That should give
me a good running start!)

First, clear a space to work (as
I went along, I found it had to be
about three times the size of the
computer to allow the back to swing
out of the way and the logic board to
be pulled free). If you're working on
anything that you'd like to keep
scratch-free, cover it with a cotton
shee t or towel, ornewspapers. Nothing
synthetic, please! The Compucolor II
has MOS chips in it, and while with
rea sonable care there's no danger to
them in taking the unit apart, a stray
static charge might fry them. I'm told
it's a good idea to get all the tools
you 1 ll need together (to just take
the computer apart and put it back
together, all you'll need is one
regular screwdriver and one phillips
head) and then stay put while you're
working. (No fair scuffing your feet
on the carpet first).

Disconnect the AC cord from the
back of the set by grasping the
connector (not the cord!) and wiggling
it up and down while pulling. Find
the screws holding the back on; there
are three phillips heads across the
top and a nut with a screwdriver slot
at the very bottom. This last one is

at the end of a groove that resembles
the trench in Star Wars and you need
either a long screwdriver so the
handle extends past the back or a lot
of patience. You can tilt the set
forward where it will remain fairly
steady while you remove the bottom
screw (Fig. 1). Remember to put the
screws somewhere where you can find
them again.

Now, before you remove anything
else, note the two tiny green PC board
tabs sticking through the back on
either side of the edge connectors.
These will be important in reassemb
ling the computer. Tilt the unit back

Figure 1

down on its base and look down the
ventilation slits in the neck cover
(that's the part that sticks out the
farthest). You'll see a small board
attached to the neck of a big, black
glass bottle--the CRT. As you work
the back off in a straight backward
motion, be careful not to put any
pressure on that small board and thus
on the neck of the CRT. As you pull

13

the back free of those two PC tabs,
there will be a slight jerk as the
logic board drops a little; don't
panic, you didn't break anything. You
now have the back in your hands, but
it is still connected to the computer
by an 'umbical cord' of wires. Swing
the back gently to the left and it
will be out of the way without discon
necting any more wires than necessary.

You can now see the interior of
the computer. To the novice (like me)
it's a confusing jumble of metal
boxes, P.C. board, and wires running
everywhere. To your left as you look
into the set is a rectangular metal
box with a cylindrical projection and
a gray ribbon cable running off the
P.C. board attached to the box's left
side (Fig. 2,A). This is the working
end of your disk drive. The big, black,
glass 1 bottle 1 in the center is the
CRT, as I mentioned before (Fig.
2,B). Leave it alone. CRTs are capa

ble of storing jolts that can make
things very uncomfortable. This one
has a 'bleeder' to drain high charges,
but why take chanches? On the far
right (and facing to the right),
partially protected by an aluminum
frame that doubles as a heat sink for
three power transistors (those are
the little oval things that vaguely
resemble a streamlined flying saucer),
there is an intriguing board with all
sorts of pots that seem to beg to be
twitched or tweedled. DON'T--unless
you like non-working computers, sleep-
less night s
the infamous
awfully easy
alone!

and gray hair.
analog board,
to blow up, so

This is
and it 1 s
leave it

(At this point, it 's a good idea
to touch the disk drive case or some
other metal inside the set so you and
the computer will be at the same
electrical potential and thus protect
the circuitry.)

The board sitting on the bottom
of the case with three edge connectors
pointing right at you is the logic

board. This is the one that holds all
the chips that make the computer
compute, and it's here that most
modifications are installed. For the
sake of simplicity, I'm going to refer
to the side with the three edge
connectors as the rear of the board

14

(because it's in the rear of the set)
and the side disappearing into the
recesses under the CRT as the front
of the board.

There are three wired connectors
to the left side and the other end of
the ribbon cable from the disk drive
~n a DIP socket just beside them.
These four connectors have to be
disconnected before the board can be
pulled out, but before you start
yanking, take the time to mark the
connectors with masking tape, magic
marker or anything handy so you know
where to put them back. It can save
a lot of hassle ·in the long run if
they're keyed for replacement. (Two
of ours are, and two aren't.) Careful
ly work the connectors free and pull
the logic board toward you. (Now s ee
why I said you would need a lot of
space to work in?)

If you have a 32K machine, there
will be a funny looking (it's upside
down) small card on long spindley pins
toward the right front quarter of the
logic board. This is the 16K add-on
RAM card and it is placed in two
connector sockets known collectively
as J8. To the right of this area is
another set of widely spaced connector
sockets (J9). If you have an EPROM
board already installed, it will be
in the J9 sockets and will look about
the same as the 16K RAM card.

The chips have been designated
sequentially from the right rear cor
ner. The letter designation reads from
right to left across the board and
the numbers from the rear to the front.
Therefore, the chip in the right rear
corner is UAl, and in the front left
corner you will find UGll. It makes
finding chips on the board quite
simple. (But when it comes to the
schematic, it's everyone for them
selves!)

Now for the fun part--getting
everything back the way you found it.
If you look at the front edge of the
logic board between J8 and J9, you
will see a small notch in the P.C.
board. This was designed to fit onto
one of the plastic fins molded into
the case just under the CRT. Reconnect
the four connectors, being careful to
get them in the right places, and slip
the board into the case. Don't expect

to be able to see to guide that notch
onto the fin; you can't, and it has
to be done by feel and blind luck.
When it's engaged, the board will not
move sideways. Let the board rest on
the two rubber knobs on the bottom of
the case.

Tilt the computer forward again
and take a deep breath. Getting the
back on has been known to drive people
crazy. I struggled with trying to get
everything aligned for almost ten
minutes before I gave up and asked
for help. Tom made it look easy, but
then he's had a lot of practice. What
I hadn 1 t noticed was that there are
two small wedges on the bottom edge
of the back that have to fit into two
notches in the case. You can sort of

·~-----~-

:@

LOGIC 804Q.D (D)

1

..... r.t._1 '-''--' -"---·'---r~' ,, ,.

look through the ventilation slits to
keep track of what you're doing. Once
those wedges are engaged, the back
slips easily over the neck and onto
the rim. The two tabs on the logic
board have to be fit into their holes.
As the board is slightly raised when
they are in place, you have to lift
it gently with a pencil or some other
non-conductive object so the back can
slip the final quarter inch into
place. (Don't put too much pressure
on the P. C. board or you may crack
it.) Find where you hid the screws,
tighten them in, replace the line cord
and you're done!

As for me, I have an afgan, two
sweaters and a quilt to finish. ac

CI2T !8J

I II I I I

ANALCX,
BD4eo

(C)

Figure 2

IS

VERSATILE

EASY TO USE

ECONOMICAL

+
-~-.· -. ~~-·~~-·-

: A) I --__ _._.._ ---------- -- --' '

LENS DESIGN PROGRAMS

FOR THE COMPUCOLOR II

TRACE SET

The optical design aids which we offer now for the COMPUCOLOR have evolved from 20
years of experience in developing lens programs for the IBM 704, 7094, GE 235, 4DO, 635,
ModComp II, and HP 1000 computers. Those of you that already have a COMPUCOLOR
know that it is hard to beat in what you get for the money. These programs have been
written to give you the benefit of this Computer Explosion. We currently offer a set of pro
grams, two for the First Order Optics and one for the Rigorous Ray Tracing with spot diagrams.
We plan to offer an ongoing series of programs and updates.

The current programs are wriiten for a COMPUCOLOR with 16K memory and disc. The
programs ore provided on disc with a tutorial users manual in a notebook binder. The
manuals are written with the beginner in mind so that a high school student can use them.
The programs ore written with the professional in mind so that anyone can do practical
optical evaluation and design with a small investment in the computer and software.

FIRST and EFL arc first order evaluation programs which take the input of the lens descrip
tion i n radii, spacings, and indices and compute the image positions and magnifications
and plot a representation of the optical system on the screen. EFL computes the Front, Back
and Effective Focal Length and shows the nodes on the Screen-plot. Mirrors and Catadioptics
are hand! ed by all programs.

TRACE is a program to trace rays rigorously through spherical and conic section surfaces with
optional decentrations. The resulting array of rays can be plotted on the screen as a spot
diagram and listed by coorcJinates. The size and position of the best focus is computed, and
images of three weighted colors can be evaluated. The inputs and outputs are simple and
straightforward. In an hour of learning, you can be well on your way to constructive lens
evaluation and design.

F<t..CE SET includes : FIRST, EFL, and TRACE programs ••••• Price $250.00 (U.S. dollars)

ENCLOSE check or money order, Corporate Purchase Orders accepted.

Price subject to chany P without notice.

WOI ll V CORP0 RA li (:H

P 0 BOX 670 . 1.1£l80UA'I(. fl Cil iOA 32901

PHOH£ (JOSJ 727 ~ll :o

Combine Reeord Docu~nentation
~ith Record Access

by Alan D. Matzger
96e Guerrero st.

San Francisco, CA 94lle

Most business applications in
volve keeping records, updating them
from time to time and generating
reports from them. Such applications
involve several to many programs, each
of which does something with the
fields in a record--reading or modi
fying or writing them back. A while
ago I found I was getting lost inside
a record, forgetting or confusing
which field was in what location. For
a time I kept a formal, handwritten
list of what was what in there. Things
were a bit better, but lately I 1 ve
hit on a method whereby such documen
tation is incorporated into the body
of a program and is marvelously use
ful.

Recall the general format for the
GET and PUT statements: PUT file
<,record <,first>>; nexpr, sexpr [byte
count]. I guess I didn't read all that
too carefully at first, because I
thought that all except the "nexpr"
and "sexpr" had to be constants. My
early programs were overflowing with
GET and PUT statements for each and
every field accessed, all with the
appropriate numeric constants.

But one day in a flight of fancy
I played with variables in place of
constants and lot, they worked splen
didly. All at once, field access
became a matter of a few subroutines
and lots of DATA statements. And those
data statements, appropriately
REMmed, provided internal documenta
tion for the byte-by-byte contents of
the record. In what follows the vari
able FL is the file number used when
the FILE "R" • • • opened it; R is the
record number; SB is the starting byte
of the field; A$ or A is the receiving

variable for string or number; and L
is the length (byte count) of the
field.

So now the DATA statement contains
the file number (if appropriate), the
starting byte and field length. Thus,

lee DATA l,l,25:REM NAME
lle DATA 1,26,20;REM ADDRESS
120 DATA 1,46,15:REM CI~ & STATE

20e DATA 2,5,4;REM

The accessing subroutine might be:

400 READ FL,SB,L:IF L=4 '!HEN
GET FL,R,SB;A:OOIO 42e

4le GET FL,R,SB;A$ [L]
42e RE'IURN

Be careful that none of the string_
fields are four bytes long; should
one be, then use a different value
for L to denote a numeric field. (Then
be sure to remember that the actual
field length is indeed four so that
the SB of the next field is correct.)

The calling program RESTOREs the
proper line number for the field
desired. It will also somehow have a
value for R, the record number. (Here
is perhaps the only advantage of
BASIC's having only global variables.)
You then simply GOSUB 400 to get the
desired field. Thus, to print the City
and State field,

870 RESTORE 120:GOSUB 400:
PRINT A$

17

The PUTting subroutine may or may
not need a READ statement. Mine usu
ally don't because I GET or "pretend"
to GET whenever I work on a field.
The values for FL, R, SB and L remain
unchanged. By "pretending" I mean that
I keep other wanted information in
the DATA statement, such as the X and
Y coordinates of the field's position
on the screen. So even though there
may be nothing in the record to GET,
I'll pretend and at the same time get
the several field parameters.

My updating programs do usually
include the X and Y coordinates and
sometimes the color code; appropriate
PLOT statements in the subroutine make
for a pretty screen. The report pro
grams have appropriate values for TAB
positions. These extra pieces of in
formation are READ into other vari-

ables in the one READ statement.
Having discovered that variables

work as well as constants in GET and
PUT statements, I think my programs
are a whole lot cleaner and surely
are closer to being self-documenting.
But then, I suppose you knew that all
along.

P.S. As long as we're talking
about GETting and PUTting, here's
something I found disconcerting the
first time I ran across it. The LENgth
of the receiving string variable e
quals the byte count used in the GET
or PUT. A two character string GETten
by A$[20] is 20 characters long--the
two plus 18 trailing spaces. It took
me a while to figure out why my print
lines were overflowing. IC

• • About Your Subscription • •

Most of our subscribers • subscriptions will come up for renewal
after July. (Check your mailing label: the number indicates your
last issue number. The June/July issue is issue number 6.)

We need your subscriptions to continue publication . .
Since its beginnings in 197 8, Colorcue has been financed by In
telligent Systems Corporation. That financial assistance will ter
minate with the June/July issue. Whether we will be able to continue
publishing Colorcue will depend on whether you renew your sub
scription. There is a critical number of subscribers, below which
Colorcue will not have the funds to continue. Let us know of your
desire to see Colorcue flourish. Send us your renewal now so that
we may know in advance where we stand and so that you can help
guarantee the continued publication of what we believe to be an
outstanding magazine for Intecolor/Cornpucolor users.

Subscription for one year (six issues) is $12 in u.s., Canada and
Mexico; $24 elsewhere. Please make check or money order in U.S.
funds payable to "Colorcue".

At the same time, why not take this opportunity to let us know what
kinds of information you would like to see in Colorcue during the
corning year? would you prefer more hardware oriented articles?
Tutorials? Programs? Applications? Garnes? Perhaps you have something
specific in mind.

18

Assembly Language
Programming

by

David B. Suits

Part V: Creating
an DIPUT Routine

We have discussed several ways of
getting information from memory onto
the screen. Let's take up the subject
of getting information from the key
board into memory. The very first
thing we need to know is how to get
one character from the keyboard.

Suppose you were working in BASIC
but without the INPUT statement. How
would you get data from the keyboard?
If you can answer that question, then
you can probably devise at least one
perfectly useful method in assembly
language. Under normal conditions,
when a key is pressed, its code is
stored in location 81FEH (33278 deci
mal), and then it is output to the
screen. The codes range from 0 (con
trol @) and 1 (AUTO) through 17 (red)
and 18 (green), and then through the
printable ASCII characters, 32
(space), 33 (!), and finally up
through the special function keys,
240 (FO) through 255 (Fl5). The rou
tine which reads the keyboard and
stores the result in 81 FER if a key
was pressed is a ROM routine which is
automatically executed many times per
second. That is, it interrupts your
program, does its thing, and then
returns control to your program. This
happens in BASIC and in assembly
language, and it occurs so fast that

11:H~0 KB=33278
1010 POKE KB,0

you are usually unaware of it. There
are, however, several methods of alter
ing this routine so as to make it more
adaptable to your particular needs.
We'll get to that later. Right now,
let 1 s look at the quick and dirty
method, which can be illustrated with
the following flow chart. A simple
BASIC subroutine is given in Listing

N

GOT A
CHARACTER!

1. An equivalent assembly language
program is given in Listing 2.

Last time I explained that labels
may be used in place of constants
(such as addresses) in an assembly
language program. Thus, the instruc
tion "JZ LOOP" is ir.terpreted by the

1020 A=PEEK(KB):IF A=0 THEN 1020
1030 REM GOT IT!
1040 RETURN

Listing 1. A simple BASIC program to wait for a key press.

assembler as "Jump , if the zero flag
= 1, to the instruct ion which is at
the address LOOP:". But suppose I
had not included the "LOOP:" label
off to the left in Listing 2. How
would the assembler know where to make
the program jump to in response to
"JZ LOOP"? It wouldn 1 t. Simi l arly with
KBCHAR. The instruction LXI H,KBCHAR
will be translated as "put the t wo
byte number represented by KBCHAR in t o
the HL register pair". But wha t two
byte number is that? It i s the EQU
instruction which gives the assembler
that information. It says, in effect,
that whenever the word "KBCHAR" ap
pea rs, make it EQUal (or EQUivalent)
to--or, better yet , EQUate it with-
81FEH. (It is roughly similar to an
assignment statement in BASIC, as in
line 1000 of List ing 1; whenever KB
appear s, 3327 8 is meant.) By the way,
since you can load the HL pair with
any two byte number, and since all
addresses are two byte numbers, you
can even load HL with the value of
LOOP . That is, the label "LOOP:" is
merely an address in the program. So
if we wanted to, we could have all
sorts of instructions which referred
to it . For example

JMP LOOP
LXI H,LOOP
CALL LOOP

and so on. Although you are not allowed
to have duplicate labels, you may
refer to any label you please as often
as you please. Notice also that labels
which specify the location of an
instruction in your program (such as

GETCHA and LOOP) must always be f ol
lowed by a colon. But assignment (that
is, EQUate) statements , such as
"KBCHAR EQU 81FEH" , have no colon; if
you put one in, the assembler will
signal an error. That's because KBCHAR
does not indicate the location of an
ins t ruct i on in your program. Rather,
i t is merely a convenient way of
writ i ng the number 81FEH (or wha t ever
number it is which you EQUate t o
KBCHAR). That convenience makes your
programs easier to r ead : "LXI H,
KBCHAR" is a bit more meaningful than
"LXI H,81FEH". This also makes things
easier to change in case you need to
do so. Most, if not all, of the EQUate
statements are traditionally grouped
together near the beginning of the
program or routine. If you were to
learn that, say, 81FEH i s not after
all the correct number, then you need
only change the appropriate EQUate
statement, and the assembler will make
all the required corrections for you.

The EQUate statement is one of
several instructions which are some
times called pseado-ops because they
don 1 t end up in the final machine

· language program created by the assem
bler. Every time KBCHAR appears, it
is translated into 81FEH. But the
instruction ''KBCHAR EQU 81FEH"
itself disappears; it is an instruc
tion to the assellbler to act in a
certain way. Thus, if the assembler
were to assemble the get a character
subroutine in Listing 2 starting at,
say, 9000H, the machine language code
it would produce would be the string
of numbers in the Contents column
below:

;Subroutine to get a character from the
; keyboard. NOTE: this is a workable,
; although not very efficient, way of
; doing it.

%0

KBCHAR

GETCHA:

LOOP:

EQU 81FEH

LX I
MVI
MOV
CPI
JZ
RET

H,KBCHAR
M, 0
A,M
9
LOOP

;Load HL with 81FEH.
;Set keyboard char=9.
;See what's there.
;If zero, keep looping.
;I.e., wait for key.
;Return with key in A.

Listing 2. An assembly language subroutine to get
one character from the keyboard.

Address Contents
9000 21H LXI H
9001 0FEH 81FEH
9002 81H
9003 36H MVI M
9004 00H 0
9005 7EH MOV A,M
9006 0FEH CPI
9007 00H 0
9008 0C2H JNZ
9009 05H 9005H
900A 90H
900B 0C9H RET

Another important pseudo-op is
the ORG (ORiGin) statement. It in
structs the assembler that you wish
the following series of instructions
to be located in memory beginning at
the a-:ldress specified. A popular place
for aLsembly language programs for
ISC machines to begin is address 8200H
(because that's where you go with ESC
T). So you 1 11 find a number of programs
beginning with "ORG 8200H". Often
there is only one ORG in the whole
program, but occasionally there are
more. Perhaps, for example, you want
the program to live at 8200H, but for
some reason you want a particular
subroutine located in very high memo
ry:

ORG 8200H

;main program

ORG 0FAC0H

;a subroutine

END

Finally, the KRD pseudo-op merely
tells the assembler to stop assem
bling. It must be the last line in
your assembly language program. More
over, it must be followed by a carriage
return (to signal the end of the line
on which the END occurs). Failure to

include the carriage return is a
common source of frustration for be
ginners; the assembler will insist
that it didn't find the END statement,
eventhough it's right there in front
of its nose.

Logical OR
Back to reading the keyboard.

(Forgive me for these frequent, but
important, digressions.) I want to
make the get a character routine more
elegant. Several new 8080 instructions
can help. The first is the ORA <reg>
instruction. This takes the contents
of <reg> and logically ORs them with
the contents of the Accumulator; the
result ends up in the Accumulator.
(The contents of <reg> are unaltered.)
What is a logical OR? It is simple.
It says, for each bit in <reg> and
the corresponding bit in the Accumula
tor, if either one is a 1, then the
result is a 1 for that bit. Otherwise
(i.e., if they're both 0), then the
result is 0 for that bit. Some examples
are given in Figure 1. Notice that
the Accumulator may be logically ORed
with itself. The result will be it
self. Why bother? Ah I You see, the
ORA <reg> instruction affects the
carry, sign, parity and zero flags,
and it is the zero flag which I am
interested in here. If the Accumulator
has all zeros, then ORA A sets the
zero flag. Otherwise, the zero flag
is not set. That is, we now have a
nondestructive test to see if the
Accumulator is zero. Since it is a
one byte instruction, it can replace
the more cumbersome CPI 0 instruction
which was used in the original get a
character routine:

ORA A
JZ

;A=0?
;Yes.
;No.

This is really no big deal, of cours e.
We save one byte of space and negligi
ble execution time. But I find this
way of doing things to be more elegant
and actually easier to read and under
stand. (There is also an OKI <num>--OR
immediate--instruction which logical
ly ORs the byte of immediate data with

the contents of the Accumulator.) the Accumulator into memory location
<addr>. The get a character routine
will now look like Listing 3, assuming
KBCHAR EQU 81FEH.

STA and LDA.
A more important refinement to

the get a character routine is possi
ble by understanding alternative meth
ods of moving data to and from the
Accumulator. Instead of accessing a
memory location indirectly via the
address in HL, we can get to a memory
location directly wi t h the instruc
tions LilA. <addr>, which loads (i . e. ,
copies) the contents of <addr> into
the Accumulator, and STA <adr>, which
stores (i.e., copies) the contents of

Exclusive OR
There's one more new instruction

to investigate: the logical exclusive
OR. The XRA <reg> instruction takes
the byte in <reg> and exclusive ORs
it with the byte in the Accumulator.
(The contents of <reg> are unaltered.)
What is an exclusive OR? It says for
each bit in <reg> and the correspond
ing bit in the Accumulator, if exactly

1 0 1 1 0 0 1 1 Initial contents of Ace.
1 0 0 0 1 0 1 0 Contents of B.

1 0 1 1 1 0 1 1 Contents of Ace. after ORA B.

0 0 0 0 1 0 0 1 Initial Contents of Ace.
0 0 0 0 0 1 0 1 Contents of H.

0 0 0 0 1 1 0 1 Contents of Ace. after ORA H.

0 0 0 0 0 1 1 0 Initial contents of Ace.
0 0 0 0 0 1 1 0 Contents of Ace. after ORA A.

Figure 1. Examples of ORA <reg>.

1 0 1 1 0 0 1 1 Initial Contents of Ace.
1 0 0 0 1 0 1 0 Contents of B.

0 0 1 1 1 0 0 1 Contents of Ace. after XRA B.

0 0 0 0 1 0 0 1 Initial contents of Ace.
0 0 0 0 0 1 0 1 Contents of H.

0 0 0 0 1 1 0 0 Contents of Ace. after XRA H.

0 0 0 0 0 1 1 0 Initial contents of Ace.
0 0 0 0 0 0 0 0 Contents of Ace. after XRA A.

Figure 2. Examples of XRA <reg>.

GETCHA: MVI A, 0 ;A=0
STA KBCHAR ;Contents of KBCHAR=0.

LOOP: LDA KBCHAR ;Get byte at KBCHAR.
ORA A ;=0?
JZ LOOP ;Yes. wait for a key.
RET

Listing 3. The modified get a character routine.

22

one of them is 1, then that bit of
the result is 1. Otherwise (i.e., if
they're both 1 or both 0) the result
is 0 for that bit. Examples are given
in Figure 2. Notice that the Accumula
tor may be logically XRAed with it
self. The result will necessarily be
zero. Like the ORI <num> instruction,
there is an XRI <num> instruction; it
exclusively ORs the byte of immediate
data with the contents of the Accumu
lator. And, like the ORA <reg> and
ORI <num> instructions, the exclusive
OR instructions affect the carry,
sign, parity and zero flags. (Unlike
the inclusive OR instructions, the
exclusive OR instructions also affect
the auxiliary carry flag.) Often the
XRA A instruction is used instead of
MVI A,O, simply as an elegant way of
setting the Accumulator to zero. (But
remember that it will affect the
flags, whereas MVI A,O will not.) Now
we can write the get a character
routine as in Listing 4.

Well , that routine is fine for
getting a single character. But what
about getting a whole string of char
acters? Let's write a routine which
will act something like BASIC's INPUT
statement. First, however, we must
make yet another digression.

CHRiliT
As I mentioned before, there is

a keyboard scanning routine in ROM
which is automatically executed a
nul! 'ber of times every second. If a
ke' is pres sed, its code is put in to
81 r~EH, the character is sent to the
s c reen (echoed), and then the routine
returns to your program. It is the
part where the character is echoed on
the screen that we want to interrupt
so as to be able to disallow certain
keystrokes. If, for example, the AUTO
key is pressed, we might want to be
able to ignore it. Or perhaps we want
to ignore the down arrow or erase page

GETCHA:

LOOP:

XRA
STA
LDA
ORA
JZ
RET

A
KBCHAR
KBCHAR
A
LOOP

key, or.... A popular routine to do
just this may be found in many assembly
language programs for ISC machines.
The location 81FFH holds a byte which
the keyboard scanning routine looks
at in order to see whether it should
echo a character which has just come
in from the keyboard. Now, if we could
allow a character to come in from the
keyboard and be stored in 81FEH but
fool the computer at just the right
time into thinking that a character
hasn 1 t come in, then we will effective
ly have cut off the echoing of charac
ters. It so happens that location
81FFH is used as a keyboard character
flag:if the contents of 81FFH=o, then
the character won't be echoed on the
screen. Somehow we will have to add
these instructions at the appropriate
spot:

XRA A
STA 81FFH

Fortunately, there is a "jump vector"
at location 81DFH (33247 decimal).
Ordinarily the contents of 81DFH are
such that the keyboard scanning rou
tine looks at that memory location
and goes off to echo the character on
the screen. We can interrupt that
process at this point by putting the
number lFH (31 decimal) into this
spot. Now the keyboard scanning rou
tine, when it finds 1FH, will JMP to
location 81C5H instead of its usual
spot. What is at location 81C5H? We'll
put still another JMP instruction
there so that the routine will jmup
to our own routine, namely, XRA A and
STA 81FFH.

All this must sound a bit Rube
Goldberg, but it is a versatile scheme
which allows us a good deal of control
over what happens. It is important to
remember, however, that all this is
occuring many times per second--inter
rupting our regular pLogram in order

;A=0.
;Contents of KBCHAR=0.
;Get contents of KBCHAR.
;Wait until
; a key is pressed.
;Return with char in Ace.

Listing 4. Thrice modified get a. character routine.

23

to do so. So we must be careful that
our interrupt routine does not alter
the flags or the contents of any
reg i ster. We ough t to make sur e t o
save and later restore anything wh i ch
will be af fected. Hence, the CHaRacter
INTerrupt routine, since it uses the
XRA A instruction, must first save
the Accumulator and flags. (See List
ing 5.)

But first, how do we get the
keyboard interrupt routine to jump to
CHRINT instead of to its own echoing
routine? Put the jump vector number
lFH into location 81DFH. That's easy :

MVI A, lFH
STA 81DFH

Now put a JMP to the CHRINT routine
into loca t ions 81C5H- 81C7H. That is ,
we want :

81C5H J MP
81C6 H ?
81C7H ?

The J MP is easy . The 8080 JMP i nstruc
tion in OC3H (195 decimal) . So :

MVI
STA

A,0C3H
81C5H

; = I JMP I •

Now we need only put the low byte of
CHRINT i nto 81C6H and the h i gh by te
i nto 81C7H. Bu t what are thos e bytes?
That is, what is the address of CHRINT?
If it begins at, say, 9000H, then the
low byte is OOH and the high byte is
90H. But is CHRINT really to be found
at 9000H? Not necessarily. It is
wherever the assembler puts it. We
could force the assembler to put it
there with an ORG statement, of
course:

ORG 9000H
CHRINT: PUSH PSW

XRA A
STA 81FFH
POP PSW
RET

ORG 8200H

;Your program.

But we run a terrible risk: perhaps
the program at 8200H will be long
enough to overwrite 9000H and beyond,
thus destroying our CHRINT routine.
We could always put CHRINT way, way
up in high memory, just t o make
sure •••• But there's a far eas ier way
t o handle all of this .

Wha t will LXI H,CHRINT do? It wi l l
load t he HL pair with the address of
the label CHRINT, what ever t hat hap
pens t o be. We don' t have t o know the
address; the assembler figures that

, out for us, just as it al so f i gur es
out where to j ump to with something
like JMP LOOP. Now that we have
CHRINT' s address in HL, we need to
put it at 81C6H-81C7H. We could do it
as in Listing 6. But there 1 s a more
elegant way.

SBLD and LHLD
The contents of the HL pair can

be copied into memory with the SHLD
<addr> instruction. (Store HL Direct.)
The contents of L are stored at <addr>,
and then the contents of H are stored
at <addr>+l. Similarly, LHLD <addr>
(Load HL Direct) will load L with the
contents of <addr> and then load H
with the contents of <addr>+l.

Just what we need I We have the
address of CHRINT in HL, and we know
where we want to put that address:

KBFLAG EQU 81FFH ;Location of k~yboard char flag.

CHRI NT:

24

PUSH
XRA
STA
POP
RET

PSW
A
KBFLAG
PSW

;Save Ace. and flags.
;Ace. =0.
;Pretend that no key was pressed.
;Restore Ace. and flags.

Listing 5. The char acter i nterrupt routine .

LXI H,CHRINT
SHLD 81C6H

We can now write the routine which
sets up the jump to the CHRINT routine.
(Listing 7.)

Don't get confused between the
LXI H and LHLD instructions. LXI
H,<addr > wi l l put <addr> into HL. LHLD
<addr> will load the contents of
<addr> and <addr>+l into HL. Some
examples are given in Figure 3.

The Input: Routine
Using CHRINT ~s easy. At the

beginning of your program, set up the
jump vector lFH and the jump to CHRINT.
Once that has been done, CHRINT will
have been spliced into the normal
read-keyboard-echo-to-screen routine.
Nothing will appear on the screen

unless we explicitly put it there.
CHRINT, along with something like the
get a character routine, form the
basis of our input routine.

Just what do we want the input
routine to do? Let's specify that it
is to recognize only uppercase ASCII
characters, from 11 11 through 11

]
11

• A
backspace (left arrow) will cause the
previous character to be erased, and
a carriage return will end the input.
Let's also specify that no more than
128 characters will be allowed.

Next time
Try your hand at writing a full

fledged assembly language program for
the input routine. I 1 11 show you my
version in the next issue. IC

LXI H,CHRINT ;Get address of CHRINT.
MOV A,L ;Low byte in Ace.
STA 81C6H
MOV A,H ;High byte in Ace.
STA 81C7H

Listing 6. Setting up the

MVI
STA
MVI
STA
LXI
SHLD

A,lFH
81DFH
A,0C3H
81C5H
H,CHRINT
81C6H

jump to CHRINT. First version.

;Jump vector 31.

; =' JMP'.

Listing 7. Setting up the jump to CHRINTo Final version.

Before LXI 0,98880 After LXI 0,98880

Address contents HL Address contents HL
9000H 0AH 73A4H 9000H 0AH 9000H
9001H 3DH 9001H 3DH

Before LHLD 98880 After LOLD 98880

Address contents HL Address contents HL
9000H 0AH 73A4H 9000H 0AH 3D0AH
9001H 3DH 9001H 3DH

Before SOLD 98888 After SOLD 98888

Address contents HL Address contents HL
9000H 0AH 73A4H 9000H 0A4H 73A4H
9001H 3DH 9001H 73H

Figure 3. Examples of the LXI H, LHLD and SHLD instructions.

25

LARGEST SOFTWARE CENTER
FOR COMPUCOLOR + INTECOLOR

INTELLIGENT
COMPUTER

SYSTEMSrNc.
CHECK THESE EXAMPLES OF HIGH QUALITY SOFTWARE LISTED IN OUR CATALOG!

CTE SCREEN EDITOR

Order number: CT833
Price: USS 40.00

DEBUG

Order number: CT841
PRICE: USS 30.00

TERMII

Order number: CT821
Price: USS 70.00

The new editor is a high speed machine language editor progrtlm which will
move block, copy, delete or print text. CTE will change lower cas' characters
to upper case yellow characters for those who do not have lower case
installed. CTE will allow the insertion of cyan colored control characters
(these charpcters are not counted as text, so printing will be normal) in the
text for printer use. CTE has a global search-and-replace function on all
ASCII characters 0-127 ~n both forward and reverse.
CTE has an active character, line page counter on the screen at all times and
is updated on every key press or use of HOME key. CTE has all single key
commands plus any keyboard can be used. CTE will allow you to set your
printer's baud rate and print all the text or marked text only. CTE has a
fast typematic keyboard action. CTE will set up it's text buffer to the
memory size of your computer or honor the memory size auestion from BASIC at
BOAC hex.
CTE is an excellent low cost wordprocessor.

DEBUG is a machine languaqe EDITOR, DISASSEMBLER, HEX AND ASII DUMP, MASTER
DEBUGGER, and more. Use any serial printer (with user selected print format),
select Baud rates, print ASI I/HEX dumps (in compressed or standard mode) to
the printer & CRT with a floating address header for every 60 lines
(printer) or 24 lines (CRT), move, copy, compare, verify memory blocks ,
disassemble programs, test all memory locations, search for a string of data
ll -16) bytes long etc.

TERMII is the most powerful communications program for the CCII and
Intecolor. It includes: up/down loading of disk files (all types, with byte
for byte verification); dumb terminal communications up to 9600 baud;
send/receive and buffer all types of terminal outputs (binary, text, random
files, pictures, etc.) at 110 to 4800 baud, print/save c;ll buftered data to
the disk, display all in-coming & out-going data to the CRT in HEX and/or
ASCII.
You can also set upper/lower case character colors. Half/full duplex, pa r ity
ODD/EVEN/NONE, turn on/off ECHO BACK feature, Xon/Xoff protocol, and special
menu HELP command. All commands can be toggled on/off. All keyboard type-outs
are in one color and port inputs in another color (both selectable) . Select
large or small character mode, and many more features too numerous to
mention.

in Australia: For I ntecolor: Color Computer Systems, ATTN: Don Sforcina
58 Valley Road, Hornsby, NSW 2077, Phone: 02-476-2480

in Australia: For Compucolor: Trevor Taylor
1/6 Mcintosh St., Chat swood, NSW 2067

in Germany: I CS, Attn: Heinz Sork,
Graue Burgstrasse 18, 5303 Bornheim 4, Phone: 02227-3242

~--------------in Canada:

in USA:

ICS, 21 Dersingham Cres., Thornhill, Ontario L3T 4P5
Phone: 416-889-8557 SOURCE: TCM101

ICS, 12117 Comanche Trail, Huntsville, AL 35803
Phone: 205-881-3800 SOURCE: TCB610

I

...

•• •• •• ••• I ••

•• •• •• •• •• •• •• •• •• •• •• ••

INTELLIGENT
COMPUTER

SYSTEMS INC.

INVOICE/
ORDER

Order number: EMlll
Price: US$ 38. 00

GRAPHICS
CHECKBOOK

Order number: EM201
Price: US$ 38.00

LABEL

Order number: EM109
Price: US$ 15 . 00

PERT
PLANNING

Order number: JW 104-

Price: US$ 38.00

The INVOICE/ORDER program prints automatically the name and address of your
company together with the personalized invoice, stating the item numer,
description, number of units and the total price. This program runs together
with any kind of printer, even using Epson's ability for print densities. The
program is easy to operate and wrong entries can be corrected without
difficulties. It allows entry of 10 lines comments, special discounts,
shipping charges, taxes, etc. It is asking for the mode of payment, even for
the credit card number. The totals (with customer name and address) can be
stored ~n a data base which will be generated automatically .
The ORDER program has the same features as the invoice program, and has in
addition of the data base with the order totals a data base for frequently
used vendors and their addresses .

This is the first graphics checkbook on the market. You can specify your own
15 expenses and 6 deposit categories. The program will print tables, sort
according to the date, display/print totals of one or more specifies
categories, and generate a graphic display or printout of the monthly money
flow, or the totals for each category within a given year or month. This is
an excellent tool, when tax time is co~ing .

This program generates individual personalized labels of your family, your
own company, or organizations which you have contact freqently. It can be
used with the IDS "Paper Tiger" printer and all Epson printers, or printers
wh~ch are able to print in different print densities . You can store the
labels in different categories. This way, you can print the same label agsin
later at any time .

This program allows you to create 7 PERT plans on one 5 1/4" disk with 200
activities each. You may create, change, modify, and analyze your PERT plans
to detect the critical path, enter the actual dates, and calculate the ending
date within the given uncertainty range. This program is a "must" for program
and production managers .
Included with the PERT program are
the end date from a beginning
days, and to calculate the number
dates .

two programs which allow you to calculate
date by adding a certain number of working

of working days between any two given

The perfect MODEM for your communications:

HAYES SMART MODEM fully automatic, programmable

The perfect DISKETTE for your programs;

VERBATIM DISKETTES 10 blank diskettes
10 formatted diskettes

The perfect low-cos t PRINTER for your paperwork;

C .I toh 8300 Dot Matrix 132 columns

125 CPS, bi-directional

MASTER CHARGE, VISA AND AMERICAN EXPRESS CARDS ACCEPTED

MASTER CHARGE, VISA AND AMERICAN EXPRESS CARDS ACCEPTED

us$ 235. 00

US$
US$

24.00
2 9. 00

us$ 375. 00

Color cue
Editorial Offices
161 Brookside Dr.
Rochester, NY 14618

(Address Correction Requested I

An m Publication

BULK RATE
U.S. POST AGE

PAID

Rochester, N. Y. ~
Permit No. 4 1 5

Colorcue
R II E' I L:" ... ·:·

• I J"•, '•I

F1
F.: 1 U 1 F3U3
E:3U1P3U3
L1
D2P3D1P1

C U 8 E

L3D2L 1 D2F.: 1 D3 P3
E:1D383
D1 L 1 D31_3
P 1 D3F.:3E: 1 r<:383P 1
F.: 1 D3P381 F-::383P 1
E:1D383L1B3L3E:1
F1D2F3D3F1D2F3P1F3P3F1
D1
81U1D3P1U1D3F3U2D2B3D1P1U1D3F1U1D3L3U2D2P3D3
E:1U103P1U103F3U2D283D3F1U103L3U103B1U2D2F3D1
D2F1U2D2B1U3D1L3U3D1F3D2
L1U1D3B1U1D3P3U2D2L3D1F3U2D2E:1U1D3P3U1D3F1D3
P2U1D3F2U3D1

1:• II E' I L/ ... C'
(":, • I f\ .• 1

C U 8 E
1 - I t·~ STPUCT I Ot-4:3
2 - t'1! >=: :~< PLR'r'
3 - MRTCH & SOLVE

:::;ELEC: T

••• UP
.. ••• ..

====== FROtH 1111 - F.: I GHT

June I July I982 $2.

Colorcue
A Bi-monthly Publication by and for
Intecolor and Coapucolor Users

June/ July, 1982
Volume 4, Number 6

3 Editors' Notes

4 New Products from ISC

Editors:
Ben Barlow
David B. Suits

Compuserve: 70045,1062

5 Rubik's Cube Demystified, by Roger Safford
Have the computer solve it

9 Assembly Language Screen Dump to MX80 Printer
by Steve Reddoch
A fast version of a program originally in BASIC

13 CALL Subroutine Linkage, by Ben Barlow
Getting two languages together

17 Keyboard Reading in BASIC, by Steve Perrigo
The INs and OUTs of keyboard scanning

20 Assembly Language Programming, by David B. Suits
Part VI: The Input Routine

25 Classified Colorcue Index, by James A. Kavanagh
A comprehensive CCI code

27 About Your Subscription

Advertisers: You will find our advertising policies attractive. Write for
details.

Authors: This is a user-oriented and supported publication. Your arti
cles/tips/hints are required to make it go. Send your articles or write
for information.

Colorcue is published bi-monthly by Intelligent Systems Corporation, with
editorial offices in Rochester, New York. Editorial and subscription
correspondence should be addressed to the Editors, Colorcue, 161 Brookside
Dr., Rochester, NY 14618. Product related correspondence should be
addressed to ISC, 225 Technology Park, Norcross, GA 30092, ATTN : Susan
Sheridan. Opinions expressed in by-line articles are not necessarily those
of the editors or of ISC. Hardware/software items are checked to the best
of our abilities but are NOT guaranteed.

Editors'
Notes

As we mentioned in the last issue,
this issue is the last issue subsidized
by ISC. From this point on, Colorcue' s
continued existence will depend on you.
We need a certain number of renewals to
make its publication worthwhile--not to
make a huge profit, but to keep the
enterprise from becoming a public service.
Subscriptions have begun to roll in on a
regular basis. We thank those early re
uppers (we'll hold your checks until we
reach our magic number); your response
has been gratifying. The suggestions for
articles that we've received along with
the renewals will be an excellent source
for planning next year's content. Keep
them coming.

Compucolor users interested in start
ing a user group in the northern New Jersey
area should contact Amod Patwardhan, 21
Beachmont Terr., N. Caldwell, NJ 07006
(201) 226-8619.

The CUWEST user group has a fully
working Scrabble game available for the
cost of a disk and airmail postage. The
game, written by Chris Teo , holds a
dictionary of over 700 two and three letter
words. The computer's moves take only
about a minute. Send a check for $9 payable
to CUWEST to Doug Grant, CUWEST librarian,
2 Brookside Ave., South Perth, Western
Australia 6151.

Doug Van Put te, who wrote the 3-D
Graphics article in the Feb/Mar is sue,
suggests these changes to his program:

285 FOR L=l TO 3:A=A(L)*3.14159/180:
IF A(L)=O TIIEN 295

290 GOSUB 560: GOSUB 450
295 NEXT L
550 delete this line
580 RETURN

A new version of 1 TIIE' BASIC Editor
has been released by Quality Software
Associates, 21 Dersingham Crescent, Thorn
hill, Ontario, Canada L3T 4P5. (See origin
al review in the Dec/ Jan issue of Color-

cue). The new version features typamatic
keys, improved cursor movement, and many
other improvements. If ordered in EPROM
or for the Devlin RAM board (see Apr/May
Colorcue), 1 TIIE 1 Editor will also contain
a full set of FCS commands, an erase line
command, an origin command to move a BASIC
program, and a print command for programs
and variables. A super program made even
better!

We 1 d like to have some articles on
languages. We have been using BASIC and
assembly language for years. But what of
the less well-known languages available?
A tiny-c interpreter is available; so is
FORTH and, of course, FORTRAN, about which
we will have a series of articles in the
coming months. Whatever happened to PILOT?
Do you remember rumors of a compiled
language from ISC called ALGAE? It was an
interesting approach to a block struc
tured, procedure-oriented language, but
apparently it was never officially re
leased. Anyone for LISP? It is available
on a few microcomputers, but is anyone
running LISP on an ISC machine? (One of
your anxious editors is drooling at the
thought.) There are rumors of a BASIC
compiler (actually, two of them) in the
works. One in Germany and the other in
California. Will their authors and/or
users please stand up? By the way, there's
a money maker! Suppose you wrote a BASIC
compiler, even a simplified, stripped down
version. Double precision integers instead
of floating point numbers. Maybe omit trig
functions and random file handling. You'd
still have a very marketable product. How
much would you sell it for? Let's make it
cheap, so as to encourage lots of sales.
$50? I'll take one for that price. (At
$75 you'd be testing the patience of my
poor bank account, and at $100 I would,
reluctantly, walk away.) Now, how many
can you sell? That 1 s difficult to esti
mate, but at $50 surely you 1 d sell at
least five or six hundred of them. Let's
see ••• $50 x 600 = $30,000. There's a tidy
sum! We have had thoughts of just such a
project for some time now, but it has
always been pushed to the back burner.
Perhaps, if no one else produces one (after
all, a compiler is a difficult beast to
create), we'll get back to work on it.
Consider this a challenge. First one there
wins. C

3

-- -- -----------=============~==~==============================~~------------==~~-------

NEW PRODUCTS FROM ISC

TERIIIJI.AL SOFTWARE
ISC has released FlexWare, a terminal

firmware package for ISC 8000, 8300 and
8900 machines. FlexWare's three asynchro
nous communications protocol modes with
parameters definable from the keyboard or
host allow ISC terminals to be interfaced
to a variety of hosts. FlexWare's editing
functions are accessed through ANSI se
quences, and color via ISO standard color
sequences. FlexWare 1 s built-in expansion
capabilities allow the user to interface
his own firmware extensions and special
functions by simply adding EPROMs.

Optional function keys can consist of
keystrokes in local or on-line modes.
Function keys can also be loaded with
executable machine language patches. Flex
Ware has a d1.sk I/0 option that allows
simultaneous capture of incoming data.
The CRT d1.splay may be subdivided into as
many as 32 discrete regions, each with
its own roll mode, colors and character
size. S1.ngle p1.ece price is $250.

GRAPHICS SOFTWARE
ISC has released IGS (Intelligent

Graphics System), an advanced color graph
ics programming language with over 100
graphics commands which can be issued by
any host computer. IGS may be used alone
or driven by other computer languages.
Features include seven type fonts, auto
matic labelling, scaling and rotation of
grids and axes, rotate and zoom, and
real-time plotting. IGS runs on ISC 8000R
and 8300R series terminals and computers.
Introductory price for IGS and 8301R
terminal is $3490.

TEKTROJIIX 4014 EMULATOR
ICS's 8001R terminal with 8 color

dot-addressable d1.splay is available with
TekLronix 4014 emulation package. The ISC
terminal emulates the Tektronix storage
tube d1.splay by using the "shrink mode",
in which the terminal receives vectors
and fits them to its own 480 x 384
resolution. Color is added to the data by
using the intensity b1.t in the 4014 data
string. The emulation package also sup
ports the screen dump to Printronix print
ers and Printacolor 8-color graphics print
ers. The 100 piece price is $3275.

4

DEC VT52/VT100 EMULATOR
This software package allows the ISC

terminal to behave like VT52 or VT100 in
DEC environments. Color cod1.ng is used to
emulate the VT100's reverse video, under
score and bold. 100 piece price, including
terminal, is $2465.

IBM 3275 EMULATOR
ISC's 8001 terminal with 13" or 19"

display allows for an 80 character by 24
line d1.splay with a 25th line for status.
Sottware is now available so that the
terminal may be attached to a host with
binary synchronous communication (BSC).
Color control is provided by the 3270 data
stream. 100 piece price for terminal and
software is $4055.

UL-APPROVED TKRIIIli.AL
ISC has received Underwriters' Labora

tory approval for a new version of its
model 8001G 19" color terminal. The new
terminal, the 8001G/82, meets UL 478
(electronic data processing) and FCC Class
A regulations. While the digital circuitry
of the 8001G/ 82 remains unchanged from
the original 8001G, the analog circuitry
has been completely redesigned, including
a new switching power supply and switch
selectable 115 or 220 input voltage. 100
Piece price is $2870.

HEW TEIHIIJI.AL
The IS/2405 has an 80 column, 24 line

color alphanumeric and graphics display
with a single-board design based on the
8085 microprocessor. There are 12 function
keys providing 36 programmable functions,
each of which can store up to 40 charac
ters. The terminal has a resident set-up
mode for selecting physical I/0 parameters
which is retained by 2K of CMOS RAM even
during power off. The IS/2405 also has 4K
of screen RAM and 8K of EPROM for the
operating system and an RS-232C printer
port and a communications port that can
be configured for RS-232C or current loop
interface at 19.2K baud. The standard
single-piece price is $1995, but before
October 1, 1982, the price is $1200.

For information on any of the above
products, contact Marketing Services, In
telligent Systems Corporation, 225 Tech
nology Park, Norcross, GA 30092, (404)
449-5961. c

Rubik's Cube Demystified

by
15

Roger Safford
Safford Ave.

Perry, NY 14530

The Rubik 1 s Cube fad may be on the
down cycle, but fortunately programming
for fun is not. The program listing which
follows is not just for the eight year
old down the street who has no problem
solving the cube in 37.5 seconds. He
assuredly will find it a challenge trying
to match up the colors with the handicap
of not being able to tumble the Rubik 1 s
Cube in his hands. This program is also
for those who don 1 t have an eight year
old to show them how to solve the Cube,
and for those who followed the array of
patterns described in the book but ended
up ·with a colorful mess not unlike the

one they started with. Unlike the book,
however, this is not a set of patterns.
You enter the color orientation matching
that of the Cube in your hands, and the
computer will print a list of moves which
will solve the cube. If there is no
solution (if someone has moved the stick
ers or d~sassembled it), the program will
let you know. The program will also let
you try to solve it yourself by entering
single or multiple move commands.

The program RUBIKS uses approximately
13K. Have fun. [Yes, and have fun typing
it in I We suggest a team of eight year
olds be hired for the job. --Eds.] IC

0 lSI a:: • (")
OWIO
LL.:>-4"
LL.<t
<I
Ul 0 •

rc>.o .
WLL.Z

LL. •
CC<t>
WUJCC
tn rc
0 ~1 w
re-o.

w
"' 0 :J 1-
u 0

tn
Ul
::<: '5I
~ lSI

"' IS)

:J -rc
rc
<I

:E:EEE:EW
WWWWW..J
a:rcrcrcrcu

z
rc
:J

Ul 1-w w
a:. rc
:J u .,. .,.

<I .,..,. ... m
~z a:.uu
<IU:I- 1-
lr:JZ 1-1-1-Z
Ot-H zzz~ ...

wcr &---o::
oa:o. -a:::a:::cra.G~ .,._ -a.a.u

1..!1..... •• •• •• U1 _.
WI I alii1~1~11Sl
Z>->- :JoS&ISl-a:.
............. (]) :J
t-xXfot'JO !Ii{J')
::1 ••. ma:.a:.m::~o
0(,JOJO ":::l::J::JUlf!l
lr-.t<ti-<DUJUJUJO ..
Dl0J':U *OOOtn<.O
:J. ·--tnl!ll!l "*
UJ>>-Jit-······...0-

.. •:J I l!Jl.JJU) *I
XX :J***t-1

• .a:- 1- ~- 1- I :J
l'•JOJO..f. I++&-

... ... tL OJ 0 & lSI +
--••.-1.-f ... -1-* (rJ
Nt....jf"')- * * * :JCJ
~~ II::J:J:J+IIZ
UUO>-+++(T'I>tt:

... . I- IS' r:o r:n •• ::::l
l..D ~D en a:J t..D r"- 11 U1 1-

....... f'1 II II II> OJ W
1-1-11 +>>->"+Ct:
O O!-<D•·""<~'<il"
..J..J *ISI<lJ<D&*I
uc.a:::-...:tlfJa:J-- ..
""O:J++++:J:J
--LL+l.Ol.OtJJU)+
++"I-****I-I-

:ENN19-1-I-t-I--X
W II II II II II II II II II W
O::NNNXXXXXXZ

(!;
1-
<I
Q 111

.,..... M <'l
..JII1 M• 1'- (IJ0J -(1'1
<I .<D- <D -.tM 1'- • • .<t
ZIJ1,. _.. .. .-t ('IJ-- ...
0 - !J) - (") ()J 4" - (.T\
1-4 .,.,,.r--., (IJ IJ1 1.11 (lJ ,... .,. .,.("')
I- -.t" ... ('lj - !Jl --t 1$1 ('IJ ...
<I0Jf'.f'l ·1'-<~"<D .(IJ<t0JOJ
I- ... (<'] •• 4" ...:t 1.11 I") OJ
O& ... r<')- -aJcn....o ...
a::: a')t'"') .-a:Jf"JQ) ... -.;tM...:tt--.

.. r·1 ..- -.1":t
I r•1 • <t ~1 • - 1'- ~1 <D CO <t •
1 ...:t OJ f'1 ... 0'1 ...:t r•1 r·~ r•1 f<J
I ~ .,.(\J 1..£) -.1"
1 ..:t ,..tJl tn (]'I ~...,J ...;t- ('IJ tJ1.s. ..
1 -:r ..:tr'1 -:r -
1 ••. • r•J - .e1 f'l • ..;- .~1
1 - en u1 u1 a:J 1.11 ('IJ - ~...,J ... & ..
I (lJ -:t ,..._;t r") ..:t ...0
I • • .6>19 .r--& • • • •
I tn ~ r•) 1.11 \)J - 4" ...:t ..:t OJ (\j 1.[)
I <t ~l <t •• • • · ~l ·~1 •
I r--.. ..:tQ)Lil--+
1 Mf~-r~..:tr~r"'l..:tOJ('rJt.[}M
I M .. M - ..
I .. (l"'' .. O"r (IJ & - (") .. & .. IJ1
I 1J1 r•1 f'.. ..;t M 1.0 -l.fl t..O OJ ..:t ..t'

a:<I<t<I<I<I<I<I<t<I<t<I
EJ-1-1-I-1-I-1-I-1-I-1-I
W<I<I<I<I<I<I<I<I<I<I<I<I
cr:oooooooooooo

oo
1111-1-1-
~J 0 0 II
~J (!) tn-....... a::
IS) I-I-~

.;
0

f'l II II U <II
W~J--" Q z .. a.m...... ,......
Hf$1--Ct:: E
~(•J u u- 11
::Jru u .,.
0 --II 0
tt:OO.UJ- "ISIISI&&S<Sl
QlJ-~-o. -(T'I(T'I())(T'I(;l(T'I
:J 0 u u - t"'~J (tj (lj ~"J (\j (tJ

0 ••
1-
o
tn •

LL.:J

UltniiiiU Zll>

z::~c~: 1-zru~~~~~~ ~~
0 ~~a. xa: ·000000 ~1Ul Z
~zuu~ W::J~~>tntn~l!ltntn a:
1- 0 u z 1- Cl ~J .,. ::::
a: .. --11 .. w~~~111~n~ 1-WI-
1-UJGcr:J- &et:iii(T'I<.0111~1'-& ali:>W
a .. - ·· & o-- - 01 :J C!J o o:
Ct:et:UUI- &ZH Ul~E"

.. 11 Jill -WEWlUWWWW 00: -
10--- I~cr:a:a:a:cr:a: m-o
I .tt:oO 01-..JOOOOOO 11>~1-
IO.~~- 1- <I!-I-1-I-1-1- ZE..JX
1 uuu &:>UJUJUJUJUJUJZ w aw
10""" -~IIWWWWWW:J II-:>Z
l<t--- uo:::a:n:a:tt:a:cr:a: 1-zz ..
IWtt:OD ~ " ~~<Sl
1cr:--- ~-zzzzzzz ..;-a: &
I u U U U Z 0:: 1--1 -c lJJ W W lJJ W IJI W 0. Z lSI
I 111 II II II a: 0 •• • I I I I I I I :J " <I 0J
I ---:JLL.NII>I-1-J-I-1-I-I- 1'-
IOUlO.Uli-"ICl o-UJO
I ~-- - W Ltl-- = = = = = = = Z --I-
I uuua:-•~~>o:::a:~~~D~<t&
I - •• •• •• •• 0 t- : : : : : : = O"r ,..:
111---~ ~~IIIIIIIIIIIIII~J&f'l II

Hmnm oozw~~~~~~~ - ~-
~~-J-:JW..JEE:EE:EE:EO:JI-Z

:Eet:UUUXUl..JII I- o~rc
WOIIIIIIWOIIiiiLL.LL.LL.LL.LL.LL.LL.OLL...J&:r:O
O:~~t-~Z~QE~-~~---~-~Q~

s

G" 309
310
315
318
319
320
325
328
329
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
.440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595

REM ---------------- CORNER !DENT. DATA
DATA 6,39,4,18,40,5,42,38,3,54,41,2
DATA 1,14,53,13, 17,52,49,16,51,37,15,50

REM ---------------- EDGIE !DENT. DATA
DATA 8,47,9,44, 10,45, 11,46,36,23, 12,22
DATA 24,21,48,20,7,35,31,34,43,33, 19,32

REM ---------------- MOVE BUILD SUBROUTINES TO LINE 905
D$="D2"
D$=DS+I$+"1D2"+I$+"3"
D$::::0$+ 11 02 11

DS=D$+F$+"3D1"+FS+"1":RETURN
DS=F$+"3D3"+F$+"1"
D$=D$+"D2"
DS=D$+I$+"1D3"+IS+"3":RETURN
D$="D3"
DS=DS+I$+"1"
DS=D$+"U1"+H$+"3U3":RETURN
DS="D3"
D$=DS+I$+"2":RETURN
D$="D1":GOTO 360
D$="D3":GOTO 360
DS=F$+ 11 3°
D$=DS+I$+"3" :RETURN
D$="U3"+F$+"3U1":RETURN
DS=G$+"1"
DS=D$+"U2"+G$+"3U2":RETURN
O$="D1":GOTO 385
DS=H$+"1D2 "+H$+"3":GOTO 360
D$=G$+"3D2"+G$+"1":GOTO 355
D$=H$+"3D3"+H$+"1":GOTO 360
DS=I$+"3D2"+I$+"1":GOTO 360
D$="D1":GOTO 335
D$=F$+"3"
DS=D$+"U3"+F$+"1U1":RETURN
D$="D2":GOTO 370
D$="D1":GOTO 370
D$="D2":GOTO 385
DS=H$+ "1":GOTO 375
D$=8$+"1"
DS=D$+"U1"+HS+"1U3":RETURN
DS=H$+"1"
D$=DS+I$+"1":RETURN
D$=IS+"3":GOTO 375
DS=GS+"3D2"+GS+"1":GOTO 345
DS="D1":GOTO 345
DS="D3" :GOTO 345
D$="D3":GOTO 335
DS="U2"+GS+"1U2"
RETURN
DS=GS+"1D1"+G$+"3":GOTO 355
D$=FS+"1D2"+F$+ " 3":GOTO 345
DS=GS+"1D1"+G$+"3":GOTO 345
DS=HS+"1D2"+H$+"3":GOTO 340
DS=IS+ "1D1"+!$+"3":GOTO 340
D$='''':0N CM GOTO 535,330,3£0,395,355,330,535,405,41~,420
ON CM-10 GOTO 375,425,430,350,435,440,445,450,455,355, 465
ON CM-21 GOTO 470,37~,475,535,535,535,535,535,535,480,400
ON CM-32 GOTO 4.85, 4'35, 51Z15~ 385,510 , 340,515,345,520,525,415
ON CM-43 GOTO 530,490,500,460,380,540,545,550,555,560,335
DS="":ON CM GOTO 430,355,J90,360,395,525,480,375,405,4t0
ON CM-10 GOTO 420,475,540,445,350,435,440,330,535,370,365

600 ON CM-21 GOTO 4b5,470,38~,535,535,535,535,535, 535,415,505
605 ON CM-32 GOTO 400,485,495,~· 25,535,520,340,515,345,335,455

610 ON CM-43 GOTO 460,530,43~,500,385,510,56~,545, 55~,555,45~

615 D$="":0N CM GOTO 540,395,355,390,360,335,415,420,375,405
620 ON CM-10 GOTO 410,380,510,440,445,350,435,525,480,470,370
625 ON CM-21 GOTO 355,465,385,535,535,535,535,535.535,455,495
630 ON CM-32 GOTO 505,400,485,475,430,345,520,340,515,450,535
635 ON CM-43 GOTO 500,460,530,490,425,535,555,560,545,550,330
640 D$='''':0N CM GOTO 51~ ,360,395,355 ,390,450,455,410,420,375
645 ON CM-1~ GOTO 405,385,535,435,440 1 445,350,335,415,465,470
650 ON CM-21 GOTO 37~,365.425,535,535,535,535,535,535 , 535,485

655 ON CM-32 GOTO 495,505,400,380,54~,515,345,52~,340,330,480
660 ON CM-43 GOTO 490,500,40~,530,475,430.550,555,560,545,525
665 DS="":ON S GOTO 690,690,695,685,695,695,695,685
670 ON S-8 GOTO 685,695,685,690,680,690,695,695,695
675 ON S-17 GOTO 685,685,695,695,685,685,690,695,680
680 FS= "B":GS= "L ":GOTO 700
685 FS="L":GS="F":GOTO 700
690 FS="F": GS=·"R":GOTO 700
695 F$="R":GS="B"
700 D$=FS+"1D3"
705 DS=DS+F$+"3"+GS+"1"+F$+"3"+G$+"3"+FS+"1"
710 RETURN
715 D$=F$+"1D2"+F$+"3D3"+FS+"1D2":GOTO 705
720 D$="":R=2:0N CM-7 GOTO 765,770,775,780,750
725 R=l : ON CM-19 GOTO 750,755,760,745
730 R=2:IF CM=24GOTO 755
735 IF CM=36GOTO 745
740 ON CM-43 GOTO 785,790,795,800,750
745 DS="L1U1D3B1UID3R3U2D2L3":0N R GOTO 775,790
750 D$="F1U1D3L1U1D3B3 U202F3":0N R GOTO 780,795
755 DS="R1U1D 3F1U 1D3L3U2D2R3 ":0N R GOTO 755,800
760 DS="B1U1D3R1U1D3F 3U2D2B3 ":0N R GOTO 770,785
765 DS=D$+JS+"F\U!D3L1U1D3B3U2D2F3"+K$:RETURN
770 DS=DS+J$+"DlR1UID3F1UlD3L3U2D2R3D3"+KS:RETURN
775 DS=DS+JS+"F3U2D2B1U1D3 R3U 1D3F1"+KS:RETURN
780 DS=DS+J$+"FIU1D3!...2U1D3B2U2D2F3"+K$:RETURN
785 DS=D$+J$+"FIU1D3L3U1D3B 1U2D2F3"+KS:RETURN
790 DS=D$+JS+"FIU3D1B2U3D1 L2U2D2F3"+K$:RETURN
795 DS=D$+J$+"FlU2D2B1U3DlL3U3D1F3"+KI:RETURN
800 DS=DI+J 'i' +"D3L1U1D383U 1D3R1U2D2L3D1"+KI:RETURN
805 ON R-1 GOTO 810,815,820,825,830,835,840,845,850, 855,860
810 DS="R2U 3DlB2U1D3'':RETURN
815 DS="B2U1D3R2U3D1 ": RETURN
820 D$="U2D2F2U2D2B2":RETURN
825 DS="F2U3D1R2U1D3":RETURN
830 DS="L2U3D1F2U1D3":RETURN
835 DS="R2U1D3F2U3Dl":RETURN
840 DS="B2UJD1L2U1D3":RETURN
845 DS="R2L2U1D3F2B2U3D1":RETURN
850 DS="F2U1D3L2U3D1":RETURN
855 DS="L2U1D382U3D1":RETURN
860 DS="R2U2D2L2U2D2":RETURN
865 D$=" R3L1 Ul R3L1Fl R3L1 D1 R2L2U1 R3L1F 1 R3Ll Dl R3Ll 82": RETURN
870 D$="R1 L1U1R3L1F1 R3L1D1R2L2U1R3L1F1R3L1D1R3L1B2R2":RETURN
875 DS="B3F1D1B3F1LIB3F1U1B2F2D183F1L183F1U183F1R2":RETURN
880 DS="B3F1U183F1R1B3F1D1B2F2UlB3F1RlB3F1D1B3FlL2":RETURN
885 D$=" R3L3Ul R3L1F 1 R3L1 01 R2L2U1 R3L1F 1 R3L1D1 R3L1B2L2": RETURN
890 D$=""
895 D$=D$+"R3L1D1R3L1B1R3L1U1R2L2D1R3L181"
900 DS=D$+"R3LlU1R3L1F2":RETURN
905 GOSUB 865:PLOT 3,0 ,WW,6,7:WW=WW+l:PRINT DS:GOTO 895

-..1

939 REM ---------------- INITIALIZATION (START l
1000 DIM CC54l
1005 A$=CHR$(240l+"eeeDVVV"+CHR$C255 l
1010 B$=CHR$(240l+"fff"+CHR$C255l
1015 C$=CHR$(240l+"UUU"+CHR$C255l
1020 FOR Z=1 TO 49 STEP 5:CCZl=3
1025 CCZ+1l=1:CCZ+2 l =7:CCZ+3l=5:CCZ+4l=4
1030 CCZ+5l=2:NEXT Z
1035 PLOT 27,24,5,5,14, 12
1040 PLOT 3, 35, 1: PRINT "UP BACK LEFT"
1045 PLOT 3, 21, 14:PRINT "FRONT RIGHT DOWN"
1050 PLOT 3,2,2,5,3:PRINT "RUB I K ' S"
1055 PLOT 3, 11,4,6,4:PRINT "C U 8 E":GOSUB 115
1060 PLOT 15,6,2,3,0,7:PRINT "1 - INSTRUCTIONS"
1065 PRINT "2- MIX & PLAY":PRINT "3- MATCH & SOLVE"
1070 PRINT :INPUT " SELECT ";D$
1075 IF D$="1"GOTO 2200
1080 IF D$Cl"2" AND DSCl"3"GOTO 1035
1085 PLOT 3,0, 15
1090 INPUT "DISPLAY EACH MOVE C YIN >? ";E$
1095 E=1:IF ES="Y" THEN E=2
1100 IF D$="3"GOTO 1300
1198
1199 REM ----------------MIX AND PLAY ROUTINE
1200 INPUT "HOW MANY MIXES ";U
1205 M$="RUBLDF":DS="":F=1:IF Ul31 THEN U=31
1210 FOR J=1 TO U:D=INTCRNDC8l*5+1)
1215 D$=D$+MIDSCMs,D, 1)
1220 D$=D$+RIGHT$CSTR$CINTCRNDC8l*3+1ll, 1)
1225 NEXT J:GOSUB 245:GOSUB 115
1230 PLOT 3,0, 17, 11,28,11
1235 PLOT 3,4, 16:INPUT "ENTER MOVE C TYPE 'QUIT' TO END l ";D$
1240 F=E:GOSUB 245:IF F=1 THEN GOSUB 115
1245 GOTO 1230
1298
1299 REM ---------------- MATCH AND SOLVE ROUTINE
1300 GOSUB 1805:WW=16
1303
1304 REM ---------------- SOLVE TOP EDGIES
1305 F=E:F$="R":G$="8":H$= "L":I$="F":FOR EG=1 TO 4
1310 RESTORE 320:EX=CC25+EGl•CC25l :FOR EY=1 TO 12:READ R,S
1315 IF EXClCCRl•CCSl THEN NEXT EY:EY=C C25l:GOTO 2000
1320 EY=12:NEXT EY:CM=R:IF CCSl=CC25l THEN CM=S
1325 ON EG GOSUB 590,615,540,565:IF O$=""GOTO 1335
1330 PLOT 3,0,7+EG,5,3:PRINT DS:GOSUB 245:GOSUB 115
1335 DS=F$:F$=G$:G$=HS:H$=I$:IS=D$:NEXT EG
1338
1339 REM ---------------- SOLVE TOP CORNERS
1340 FOR EG=1 TO 4:RESTORE 310:EX=CC25l•C<26l•CC29l
1345 IF EG<4 THEN EX=CC25l•C<25+EGl+CC26+EGl
1350 FOR EY=1 TO 8:READ R,S,T:Q=CCRl•C<Sl+CCTl
1355 IF EXCIQ TH~N NEXT EY:EY=CC25l:GOTO 2045
1360 EY=8:NEXT EY:CM=T:IF C<Rl=CC25l THEN CM=R
1365 IF C<Sl=CC25l THEN CM=S
1370 ON EG GOSUB 590,515,640,565:IF DS=""GOTO 1380
1375 PLOT 3,0, 11+EG,6,6:PRINT DS:GOSUB 245:GOSUB 115
1380 IF CCEG+25l <>CCEG+49l THEN EY=C<25l :GOTO 2040
1385 D$=F$:F$=G$:G$=HS:H$=l$:I$=D$:NEXT EG
1388
1389 REM ---------------- CHECK FOR VALID CORNER COLORS
1390 FOR EG=1 TO 4:RESTORE 310:EX=CC30l*C<25l•CC29l
1395 IF EG<4 THEN EX=CC30l+CC25+EGl•CC26+EGl
1400 FOR EY=1 TO 4:READ R,S,T:Q=C<Rl+C(Sl•C<Tl

1405 IF EXCIQ THEN NEXT EY:EY=CC30l:GOTO 2025
1410 EY=4:NEXT EY,EG
1413
1414 REM ---------------- PATTERN TO FLIP BOTTOM CORNERS
1415 S=0:RESTORE 310:FOR I=0 TO 2:FOR J=0 TO 2
1420 READ R:IF CCRl=CC30l THEN S=S+3~I+J
1425 NEXT J,I:IF S=0GOTO 1445
1430 PLOT 3,0,WW,6,2:WW=WW+1:GOSUB 565:PRINT 0$
1435 IF WWl20 THEN PLOT 3,0,28:PRINT "NO SOLUTION":GOTO 2050
1440 GOSUB 245:GOSUB 115:GOTO 1415
1445 FOR CM=2 TO 5:IF CCCMl=C<CM+J6lGOTO 1460
1450 NEXT CM:GOSUB 715:PLOT 3,0,WW,E.,2:WW=WW+1:PRINT D$
1455 GOSUB 245:GOSUB 115:GOTO 1445
1460 FOR J=25 TO 29:IF CCCMl ClCCJl THEN NEXT J
1465 EG=J-CM-24:IF EGC0 THEN EG=EG+4
1470 ON CM-2 GOTO !485, 1490, 1495
1475 IF CC4l=C<40lGOTO 1510
1480 F$="B":G$="L":GOTO 1500
1485 F$="L'':G$="F":GOTO 1500
1490 F$="F":G$="R":GOTO 1500
1495 F$="R":G$="B"
1500 GOSUB 715:PLOT 3,0,WW,5,2:WW=WW+l:PRINT D$
1505 GOSUB 245:GOSUB 115
1510 IF EG=0GOTO 1525
1515 D$="D"+RIGHT$CSTR$CEGl, 1l:PLOT 3,0,WW,5,2:WW=WW+1
1520 PRINT D$:GOSUB 245:GOSUB 115
1523
1524 REM ---------------- FINAL CORNER CUBIE CHECK
1525 FOR EG=1 TO 4:IF CCEG+37l=CC25+EGl THEN NEXT :GOTO 1540
1530 EY=C<26+EGl :IF EG=4 THEN EY=CC26l
1535 EX=CC30l+CC25+EGl+EY:EY=CC30l :GOTO 2020
1538
1539 REM ---------------- SOLVE BOTTOM EDGIES
1540 FOR EG=1 TO 4:RESTORE 320:EX=CC25+EGl+C<30l
1545 FOR EY=1 TO 8:READ R,S
1550 IF EXC>CCRl*CCSl THEN NEXT EY:EY=CC30l:GOTO 2000
1555 EY=8:NEXT EY:CM=R:IF CCSl=CC30l THEN CM=S
1560 R=INTCEG+EG+EG/3-EG~EG•1.5+EG/5+5. ll
1565 IF CM=12*RGOTO 1590
1570 J$="":IF EGl1 THEN JS="D"+RIGHT$CSTRS<5-EGl, 1l
1575 K$="":IF EGl1 THEN K$="D"+ RIGHT$CSTR$CEG-ll, 1l
1580 GOSUB 720:IF D$=""GOTO 1590
1585 PLOT 3,0,WW,5,5:WW=WW+1:PRINT D$:GOSUB 245:GOSUB 115
1590 NEXT EG
1593
1594 REM ---------------- CHECK FOR VALID EDGIE COLORS
1595 RESTORE 320:Q=CC25l•C<29l :FOR I=0 TO 3:READ R,S
1600 IF QClCCRl+CCSl THEN NEXT I:EY=CC29l :EG=1:GOTO 2000
1605 Q=I:I=3:NEXT !:FOR EG=l TO 3:RESTORE 320
1610 P=CCEG+25>•C<EG+25l:FOR EY=1 TO 4:READ R,S
1615 IF PClCCRl+CCSl THEN NEXT EY:EY=C<EG+25l:GOTO 2000
1620 EY=4:NEXT EY,EG
1623
1524 REM ---------------- POSITION CENTER EDGIES
1625 RESTORE 320:P=CC25l+CC27l:FOR 1=0 TO 3:READ R,S
1630 IF PClCCRl+CCSl THEN NEXT I:END
1635 R=Q•3+I:IF ICQ THEN R=R+1
1640 I=3:NEXT I:IF R=1GOTO 1555
1645 GOSUB 805
1650 PLOT 3,0,WW,5,7:WW=WW+1:PRINT D$:GOSUB 245:GOSUB 115
1653
1654 REM ---------------- FLIP CENTER EDGIES
1655 R=1:IF C<Bl ClCC25l THEN R=R+4

ClJ 16&0
1665
1670
1675
1&80
1685
1690
1695
1700
1705
1800
1803
1804
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
18&0
18&5
1870
1875
1880
1885
1888
1890
1895
1900
1905
1910
1915
1998
1999
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
20&0
20&5
2070
2075
2080
2085
2090
2095
2100
2105

IF C19l OCI27l THEN R=R+2
IF Cl10l OCI28l THEN R=R+1
IF R=1GOTO 1695
ON R-1 GOSUB 865,870,875,880,885,890,905
PLOT 3,0,WW:IF LENID$ll50 THEN PRINT RIGHT$1D$,42l
PLOT 6,7:IF LENID$)(50 THEN PRINT D$
GOSUB 245:GOSUB 115
FOR EG=26 TO 29:IF CIEGl llCIEG+18lGOTO 2050
NEXT EG
PLOT 3, 10,30:PRINT "ALL DONE"
INPUT "HIT RETURN WHEN READY ";WW$:RUN

REM ---------------- SUBROUTINE TO SET CUBIE COLORS
PLOT 3,4, 17:PRINT "ENTER COLORS VIA COLORED KEYS"
FOR S=0 TO 5:FOR T=0 TO 2:FOR U=0 TO 2:Z=S+U•6+T*18
ON S GOTO 1825, 1830, 1835, 1845, 1855
X=IT+Ul*6+51:Y=112+1U-Tl*5:GOTO 1850
X=T•5+45:Y=85+U*10-T*6:GOTO 1850
X=T*5+54:Y=75+U*10+T*5:GOTO 1840
X=T*&+92:Y=94+U*10+T*6
GOSUB 1870:GOSUB 105:PRINT C$:GOTO 1865
X=T*6+110:Y=l03+U*10-T*6
GOSUB 1870:GOSUB 105:PRINT B$:GOTO 1865
X=<T+Ul*6+97:Y=82+1U-Tl*6
GOSUB 1870:GOSUB 110
NEXT U,T,S:GOTO 1900
X1=INTIX/2l-1:Y1=32-INTIY/4l :PLOT 3,X1,Y1
PLOT £,0,32,25:INPUT "";WW$
IF WW$="0" THEN RETURN
WW=ASC<LEFT$1WW$, lll-15:IF WW>7 THEN WW=WW-64
IF WW(l OR WWl7GOTO 1870
IF WW<>6 THEN CIZ+1l=WW:RETURN
GOTO 1870
PLOT 3,4, 17:INPUT "ANY FURTHER CHANGES I Y/N) ";WW$
IF LEFT$1WW$,1l="Y" THEN PLOT 11,28,11:GOTO 1805
FOR EG=7 TO 15:PLOT 3,0,EG:PRINT SPCI20l:PR!NT :NEXT EG
FOR EG=16 TO 31:PLOT 3,0,EG, 11:NEXT EG:RETURN

REM ---------------- ERROR MESSAGES FOR INVALID CUBES
PLOT 3,0,29,5,65:PRINT "CANNOT FIND";
GOSUB 2070:EY=CI25+EGl :GOSUB 2070:PRINT " EDGIE"
PLOT 6,2:PRINT "SOMEONE SWITCHED THE STICKERS"
GOTO 1800
PLOT 3,0,29,5,65:PRINT "SWAPPED COLORS AT";:GOTO 2030
PLOT 3,0,29,6,55:PRINT "CANNOT FIND";:EY=C<30l
GOSUB 2070:EY=CI25+EGl :GOSUB 2070
EY=EX/CI301/EY+. l:GOSUB 2070:PRINT " CORNER'':GOTO 2010
PLOT 3,0,29,5,66:PRINT "SWAPPED COLORS AT";:GOTO 2050
PLOT 3,0,29,6,65:PRINT "CANNOT FIND";:EY=CI251
GOSUB 2070:EY=C<25+EGI :GOSUB 2070
EY=EX/CI25l/EY+. 1:GOSUB 2070:PR!NT " CORNER":GOTO 2010
PLOT 3,0,29,5,65:PRINT "YOUR CUBE MUST BE DISASSEMBLED"
PLOT 6,2:PRINT "AND PUT TOGETHER CORRECTLY 1 ":GOTO 1800
ON EY-1 GOTO 2080,2085,2090,2095,2100,2105
PRINT" RED";:RETURN
PRINT" GREEN";:RETURN
PRINT" YELLOW";:RETURN
PRINT" BLUE";:RETURN
PRINT " PURPLE"; RETURN
PRINT " INVALID" :RETURN
PRINT" WHITE";: ETURN

2198
2199 REM ---------------- INSTRUCTIONS
2200 PLOT 3,0,16:PRINT "MODES OF PLAY"
2210 PRINT :PRINT " SELECT MIX & PLAY AND I'LL MIX THE CUBE FO

R YOU TO SOLVE. "
2220 PRINT :PRINT " SELECT MATCH & SOLVE AND YOU CAN MATCH MY

DISPLAYS TO"
2230 PRINT " YOUR HAND HELD CUBE THEN I'LL GIVE YOU A LIST OF

MOVES"
2240 PRINT "

ET YOU"
WHICH WILL SOLVE THE CUBE FROM THAT POSITION OR L

2250 PRINT " KNOW YOU HAVE AN INVALID CUBE'
2260 PLOT 3, 12,30: INPUT "HIT RETURN TO CONTINUE ";WW$
2270 PLOT 3,0, !&:PRINT "HOW TO ENTER MOVES"
2280 PRINT :PRINT " MOVES ARE ENCODED BY USING THE FIRST LETTE

R OF FACE TO BE"
2290 PRINT " ROTATED. THIS IS FOLLOWED BY A NUMBER FROM ONE <

1 l TO "
2300 PRINT " THREE 13l TO INDICATE THE NUMBER OF QUARTER TURNS

IN A "
2310 PLOT 11:PRINT " CLOCKWISE DIRECTION AS YOU FACE THAT SIDE

2320 PLOT 11:PRINT :PLOT 11
2330 PRINT " FOR EXAMPLE: F3 TURNS THE FRONT FACE THREE 13) QU

ARTER"
2340 PRINT" TURNS. (WHICH EQUALS ONE CCW TURN)":PRINT
2350 PRINT" MULTIPLE MOVES MAY BE WRITTEN AS FOLLOWS:"
2360 PRINT " D1U3R2D3Ul < NOTICE NO SPACES' l"
2370 PLOT 3,12,30:INPUT "HIT RETURN TO CONTINUE ";WW$
2380 FOR I=30 TO 16 STEP -l:PLOT 3,0, I, ll:NEXT I
2390 PRINT "MISC. FUNCTIONS:":PRINT
2400 PRINT " A 'YES' RESPONSE TO THE DISPLAY EACH MOVE QUERY W

ILL DO"
2410 PRINT "

R, WHEN"
2420 PRINT "

s "
2430 PRINT "
2440 PRINT "

THE"
24:50 PRINT "

YBOARDl,"
24:55 PRINT "

E THE"

JUST THAT AND ALLOW YOU TO SEE EACH MOVE. HOWEVE

DONE IN MATCH AND SOLVE MODE, MY SOLUTION SPEED I

GREATLY REDUCED. ":PRINT
IN MATCH & SOLVE ~lODE COLORS ARE SET BY PRESSING

COLOR KEY PAD COR THE COLORED KEYS OF THE STD. KE

FOLLOWED BY RETURN. THE BLACK CURSOR WILL INDICAT

2460 PRINT " CHANGE LOCATION.
2470 PLOT 3,12,30:INPUT "HIT RETURN TO START ";WW$:RUN

Is Your Subscription Expiring?

Assembly Language Screen Dump
To MXSO Printer

by Steve Reddoch
1158 Via Bo1zano

Santa Barbara, CA 93111

After typing in the BASIC language
version of the screen dump program (Aug./
Sept. Colorcue), I typed RUN and waited.
And waited. BASIC was just too slow, or
I'm too impatient. In any case, I sat down
right then and rewrote the program in
Assembly Language, and after working out
the bugs, it 1 s as fast as the original
was slow.

The program follows the original to
the letter (almost). The BASIC statements
are included as comments, and serve to
guide the reader, even one unfamiliar with
the 8080 instructions, through the code.
The translation looks easy. It was, but
it's misleading. Much use was made of the
fact that many of the numbers never get
greater than 127 (one byte) and there are
no floating point numbers. Not all BASIC
programs would lend themselves to such a
simple translation. Since most of the
multiply instructions are by powers of 2,
rotate instructions are used. The only
tricky instruction is at line 9520, but

9 REH

some study will lead to an understanding
of its logic, if you're so inclined.

The program is set up to be CALLed
from a BASIC program, and it occupies the
top of memory. When RUN, it is brought
into memory and protects itself by chang
ing BASIC's end of memory pointer to just
ahead of itself. It sets the CALL vector
to point to the CALL entry point, sets
the baud rate and returns to FCS, and then
to the BASIC CALLer. When CALLed, the
label named CALL: is given control, and
the program begins to translate the screen
(plot characters only) into Epson graphics
characters in the standard character set,
and print them line by line. Screen plot
blocks are 2 dots wide and 4 dots high;
Epson blocks are 2 dots wide and three
dots high. When printed, the image looks
a little higher than when on the screen,
but that shouldn 1 t prove objectionable.
A sample BASIC test program is shown which
exercises the routine.IC

BRING IN ASSEMBLY LANGUAGE ROUTINE
10 PLOT 27,4:PRINT ·RuN EPSPLTU:PLOT 27,27:CLEAR 1000
11 REM
PUT INTO VECTOR PLOT MODE
20 PLOT 12,2,242
21 REM
PLOT 50 RANDOM VECTORS
30 FOR X= OTO 50
40 PLOT RND <2>a 127,RND <2>* 127
50 NEXT
51 REM
PRINT SCREEN
60 Z= CALL <O>

9

=

I

ASSEMBLY LANGUAGE SCREEN DUMP FOR MX-80 PRINTER

BY STEVE W REDDOCH

ASSEMBLY LANGUAGE VERSION OF A BASIC PROGRAM BY MARK
FAIRBROTHER PUBLISHED IN AUG/SEPT 81 COLORCUE
CALLABLE FROM BASIC PROGRAM BY:
10PLOT 27,4:"RUN SCRDMP.PRG":PLOT 27,27
11CLEAR 1000 COR WHATEVER)

200Z=CALL CO>:REM PLOT WHATEVER IS ON SCREEN

;---
PROGRAM LISTING IS FOR MACRO ASSEMBLER

;---
ENTRY START ;FOR REG. ASSMBLR, MAKE INTO ORG STMNT

AT DESIRED LOCATION E.G.

SCREEN

LO
OSTR

LOFL
KEYBD
CAL LV
MAX BAS

ORG AOOOH

EQU 7000H ;28672

EQU 3392H ;17CSH FOR 8.79
EQU 33F4H ; 182AH FOR 8. 79

EQU 81F9H ;81F9H
EQU 3EB3H ; 0911H
EQU 8202H ;8202H
EDU SOACH ;80ACH

LINKAGE ROUTINE
WHEN PROGRAM IS RUN FROM BASIC, THIS ROUTINE ESTABLISHES
THE NECESSARY LINKAGES AND POINTERS. IT ALSO SETS THE
BAUD RATE OF THE RS232 PORT.

START: PUSH PSW
H

MSGO:

PUSH
PUSH

LXI
SHLD
MVI
LXI
STA
SHLD

LXI
CALL

;SAVE NEEDED REGISTERS
D

END OF BASIC IN FRONT OF PGM
H,START-1
MAXBAS ;SET
A, CJMP>
H,CALL SET UP CALL VECTOR WITH

JMP INSTRUCTION AND
ADDRESS OF DUMP ROUTINE

CALLV
CALLV+1

H,MSGO
OSTR ;SET BAUD RATE

POP D
POP
POP
MVI
RET

DB
DB
DB
DB
DB

H
PSW
B,O

3,64,0
15
27,18
7
239

RETORE REGS
INDICATE "NO ERRORS" TO FCS
RETURN TO FSC

GET RID OF CURSOR
SMALL LETTERS
CESCl CRl
BAUD RATE *** FOR DIFFERENT RATES,
END DATA SEE BELOW

;BAUD RATES:
; 1 - 110 BAUD
;2 - 150
;3 - 300
;4 - 1200
;5- 2400
;6 - 4800
;7- 9600

CALLED ROUTINE, ENTERED FROM BASIC BY
Z=CALL COl ...•. CALL VALUE NOT USED

CALL:

EXIT:

;9020
BEGIN:

S9020
;9030

;9040

S9040

;9050

;9060

PUSH PSW
PUSH H
PUSH B

LOA LOFL
PUSH PSW
MVI A,14
STA LOFL
MVI A, 199
OUT 8
JMP BEGIN

POP PSW
STA LOFL
MVI A!'207
OUT 8
POP B
POP H
POP PSW
RET

MAIN ROUT! NE

FOR Y = 0 <TO

XRA A
STA VY
EOU $

PLOT 14
MVI A, 14
CALL LO

FOR X = 0 CTO
XRA A
STA vx
EQU $

CALL CI
CPI 10
JZ EXIT

CH = 160
MVI A, 160
STA VCH

M = 1
MVI A, 1
STA VM

IM = 2
MVI A, 2
STA VIM

;SAVE NEEDED REGS CAND UNEEDED AS WELL>

;SAVE LOFL VALUE

;NEW LOFLAG TO DIRECT ALL OUTPUT TO PTR

;LOCK OUT KEYBOARD CLOWER CASE Y'Sl

;RESTORE LOFL TO PREV VALUE

;UNLOCK THE KEYBOARD

;RESTORE REGISTERS
;RETURN TO BASIC PGM

126 STEP 3)

126 STEP 2>

;CHECK FOR INTERRUPT

;IF ONE, QUIT.

IF Y = 126 THEN IM
LOA VY
CPI 126
JNZ S9060E
MVI A, 1
STA VIM

'•'

~
~

S9060E
;9070

EQU
FOR I

XRA
STA

89070 EQU
;9080 FOR J

XRA
STA

S9080 EOU
;9090 SX = X +

LDA
MDV
LDA
ADD
8TA

;9100 SY = Y +
LDA
MDV
LDA

0

0

$
<TO IM>

A
VI
$

(TO 1 >
A
VJ
$
J
vx
B,A
VJ
B
vsx
I
VY
B,A
VI

ADD B

;9110
STA VSY

GOSUB
CALL

9500
89500

;9120 IF PT
LDA
CPI
JNZ
LDA
RAL

-1 THEN M = M * 4: GOTO 9160
VPT

S9120E
;9130

; 914<)
S9140:

;9150

;9160
S9160:

;9170

RAL

-1
S9120E
VM

;ASSUME TOP 2 BITS CAN NEVER BE ON

STA VM
JMP
EOU

S9160
$

IF PT >
LDA
CPI

0 THEN CH = CH + M
VF'T
0

JZ
JC
LDA
MDV
LDA
ADD
STA

M = M
LDA
ADD
STA

NEXT J
LDA
INR
STA
CPI
JNZ

NEXT
LDA
INR
STA
MDV
LDA
CMP
JNC

PRINT
LDA
CALL

S9140 ;IF PT = 0
S9140 ;IF PT < 0
VM
B,A
VCH
B

VCH

* 2
VM
A ; DOUBLE IT
VM

<TO 1 >
VJ
A
VJ
2
89080

<TO IM>
VI
A
VI
B,A
VIM
B
S9070

CHR$ <CH>;
VCH
LO

;COMPARE TO 1 STEP OVER LIMIT
;IF LESS, GO BACK TO TOP OF J LOOP

;COMPARE VIM WITH VI
;IF VIM>= VI <IF VI<= VIM>

;9180 NEXT X <TO 126 STEP 2>
LDA
INR
INR
STA
CPI
JNZ

;9190 PRINT
MVI
CALL
MVI
CALL

vx
A
A
vx
128
S9040

A, 13
LO
A, 10
LO

;BY 2

;COMPARE TO ONE STEP PAST LIMIT
;AND RESUME LOOP IF NOT OVER

;9200 NEXT Y <TO 126 STEP 3)

LDA VY
INR A
INR A
INR A
STA VY
CPI 129
JNZ 8902(1

;9210 PRINT CHR$ < 12>
MVI A, 12
CALL LO
JMP EXIT

;INC BY 3

;COMP WITH 1 STEP PAST,
;GO IF LESS

;FORMFEED

;LEAVE.
;9220-9240 REPLACED BY EX IT
S9500 EQU $
;9510 F'T = 0

XRA
STA

A
VPT

;9520 AD :;
LXI
LXI
LDA
RAR

SCREEN+ 2* INT(SX/2)
H,SCREEN

+ 128* INT<SY/4)

S9520A:

;9530

ANI
RLC .
MDV
DAD
LDA
RAR
RAR
ANI
RRC
MVI
JNC
MVI
ANI
MDV
DAD

D,O
vsx

07FH

E,A
D
V8Y

03FH

E,O
S9520A
E,080H
07FH
D,A
D

F·EEK <AD>
A,M
VDA

;SX /2
;MAKE SURE TOP BIT'S OFF
;2*INT<SX/2) IN A

;SCREEN + 2*INT<SX/2) NOW IN H

SY/4
INT< MAKE SURE TOP 2 BITS OFF)
THIS IS THE SAME AS SHIFTING LEFT 7
BITS. WE DO IT BY SHIFTING RIGHT 1,
WITH SHIFTED BIT INTO CARRY, PUTTING
THE CARRY BIT INTO E, AND lHE RIGHT
SHIFTED BYTE (WITH CLEARED TOP BIT>
INTO D.
ADD INTO ADDRESS

;PICK UP BYTE WHOSE ADDR JUST FOUND
DA =

MDV
STA

CL =
INX
MDV

PEEK <AD + 1>
H

;9540 IF CL
A,M

>127 THEN

;9550

ANI
JNZ

PT = -1
MVI
STA

;9560 RETURN
RET

128
S9570

A,-1
VPT

;PICK UP CCI BYTE
9570:REM IF DA IS A PLOT BLOCK

;CHECK FOR PLOT BIT IN CCI BYTE
;IT WAS ON

; IT WAS NOT.

;9570 DO = 4* <SX AND 1> + <SY AND 3)
S9570: LDA VSX

... ...

;9580

;9590

CI:

CII:
CI 12:

ANI
RLC
RLC
MDV
LDA
ANI
ADD

PT =
MDV
MVI
LXI
DAD
MDV
MDV
LDA
ANA
STA

B,A
VSY

;SX AND 1

;4 * <SX AND 1>

3 ;SY AND 3
B ;A NOW IS 4 *<SX AND 1) + <SY AND 3)

MS <DO) AND DA
E,A
D,O ;DE NOW HAS DO IN IT
H,SOUTAB ;POINT TABLE
D ;ADD IN DO OFFSET,
A,M ;PICK UP BYTE,
B,A
VDA
B ;A NOW HAS MS<DO> AND DA
VPT

RETURN
RET

PUSH H
PUSH D
PUSH B ;SAVE REGS
XRA A ;DO A LOOP SO THERE
DCR A ;WILL NOT BE A KEY BOUNCE
JNZ CI I2 ;SPIN FOR 255 COUNTS
CALL KEYBD ;THEN CALL KEYBD SCAN
POP B ;RESTORE THINGS
POP D
POP H
RET ;RETURN

;*** A TABLE OF A PLOT SQUARE ***
SOUTAB: DB

DB 2
DB 4
DB 8
DB 16
DB 32
DB 64
DB 128

;*** PROGRAM VARIABLES ***
VY: DS
VX: DS
VI: OS
;
VJ: DS
VM: OS
VIM: DS
;
VDA: DS
VCH: DS
VSY: DS
VSX: DS
VPT: DS

END START

;VARIABLE FOR ACROSS THE SCREEN LOOP CTL
;VARIABLE FOR DOWN THE SCREEN LOOP CTL
;VAR FOR VERTICAL SPOTS PER EPSON PLOT
BLOCK. 3 FOR ALL BUT LAST PASS, WHEN 1.
;LOOP VARIABLE FOR HORIZ SPOTS PER BLOCK
;EPSON PWR OF 2 SPOT CODES, REL. TO 160
;VERTICAL SPOTS LOOP LIMIT. WOULD BE 3
EXCEPT LAST PASS REQUIRES BUT 1
;DATA CHAR FROM SCREEN
;EPSON PLOT CHARACTER
;CCII Y PLOT POS. (0 TO 127>
;CCII X PLOT POS <OT0127>
;RETURN VARIABLE FROM "IS DOT ON"" SUBR.
·-1 IF NOT ON,

>O IF DOT PRESENT

...._
ol --... --..... --~ --~-.... -. --

1 r .. -.. .. . I J
I
._ -.-..... ._ .. I! r
I ._ ••a I ._.. •

.. '"'I'A"'- • •

I .. --,.._ ...
o I ..._ .-I.. II -

1 ,.'I"· I -.. "o .,. .. _. 'It _.... .-. I I .-~I ._ I _.1 •• ':'1". ..- II "o o" 1_.

11 -- II" (I I I -"'U'
I -. "o" I "f"..Jf'.. L -I -r-" ol" I

11 ro1. .-l..r"lo-. .,........,...r I
II' _. "L-" .. '1 I I "o ..1:.\.f . .""' I •.- ol"
~ ~',::;1':;-::.:-; :;'! t•:...... "; -r
• .. _,_-. I '1• 'I n'l... .. I .._.- .. • _. __ I "• .r; ', I r"ol 'I .,_. I _.., ..
• o" •.... olr r'T'I.- I &..· ·~·-.. 1_.- I I •_.._ .. - ' • r .. 1 r r• 'J.. ...-. 1 1
• I • •..a •.cc~. r. Nr·l"!, .,- _.
I I _. ""• --:~--· - \.1 I •.- ~"'"• L" ,.._ ..r -. t"~':t.,... 1 r. u ·- r
I •.. _.... .-_.. •,•_.,.. I I r-oiL I 'II -

I I .. .~--v:. •.A • I I I I __...,..
_. .,.. .- ...- -: · ·r. 1 -. • --- _. ··-. .. __,.,. --.... 1 I-..-I o" 1" 111,. I_.---. o" "o _.

-- II I .._. _. _. -I "•" ' s-'1""-
-- II _. I _. -"...a.,/;'.1 I r . .-1

... II_. ._ _._-.. .u• I .._.. I
-. II _..... .- I........ I r"'l. I .- I "o

-. 1..- 1.- .- 1r 1•.1 _.,. -. \
-. ol"l .- I .- "ol"• I r I r"l _. I I

"t I ol" •" _. •.r. I r I I m I "o I
... 'lt..-1 1-" 1 .. '11 I I

... I ... I _._. [i' ~ I = I • I
= • a a a JW•.a 1. .- ._ _.

I I ._ .- ..- -r-.. ro I .. _..-
1 I ._ .., .-."1".& &-
1 I ._ .-1 I -._

1.1' - _.1 I_..,. __ ._
II • I -. -&

I I _. I --- • .. -- ..-... --. --1 ...

Cueties

PLOT 12,2:F=.3:X=64:Y=X:FOR J=0 TO 200:
A=F*J:X=X+SIN(J)*A:Y=Y+COS(J)*A:PLOTX,Y:
NEXT:PLOT 255

CALL Subroutine Linkage

by Ben Barlow

Volume 1, Number 1 of Colorcue con
tained the first assembly language CALL
able subroutine (the famous "Scrolling
Patch"), and many have appeared since.
Recently we have published CALLable sub
routines to sort strings and handle pro
tected fields on the screen. It 1 s about
time to explain what they are, why they
are, and how they work.

First, what are they and why are they
used? A CALLable subroutine, or assembly
language patch, is a piece of code s1milar
to a GOSUB subroutine, but coded in 8080
assembly (i.e., machine) language. It is
connected to a BASIC program, and the
BASIC program CALLs it much like it GOSUBs
to BASIC subroutines. Figure 1 illustrates
this type of linkage. (Some computer
languages offer the ability to "drop into"
assembly language from a high level lan
guage, which would bring the assembly
language routine "in line", but BASIC is
not one of these.)

Such routines are most frequently used
when speed is required or desired. The
scrolling patch used in the Star Trek
program, for example, had a need to
manipulate a small portion of the screen
as if it were a scrolling CRT terminal
screen. BASIC could have done the job,

PEEK1ng and POKEing, but would have been
just too slow to be effective. The sort
routine (Oct/Nov Colorcue, p. 21) has been
written in BASIC, but was speeded up by
a factor of 50 when recoded into assembly
language. The Soundware routines, on the
other hand, wouldn 1 t work if they were
coded in BASIC; fast execution is needed
to control the sound.

Figure 2 shows how CALLable subrou
tines are most often positioned in memory,
stuffed away almost at the top. (Although
the routines can be placed in other
locations, the top of memory is the easiest
and safest place. Other locations are left
as an "exerc1se for the reader".) One
obvious question is how to get the subrou
tine up there. The most common methods
are:

(1) A series of DATA statements, wi~h
READs and POKEs from BASIC, suitable for
short routines, but tedious, very tedious,
for something the size of the sort routine.
This type of placement is illustrated by
the scrolling patch, but is useful only
for small routines.

(2) Using FCS to LOAD a previously
assembled routine and establishing the
linkages through BASIC POKEs. This method
saves most of the trouble of converting

A.L. fCOU77AJ£

JMP··· ~
RTN:

i!:o.CAL-t...(F) ~JMP ftT~ ~ ---
-

Fipre 1

statements, but it is still a non-optimum
mix of function between the BASIC and the
assembly language program.

(3) Using FCS to RUN a previously
assembled program which t hen proceeds to
set up its own linkages. This is the method
used in recent Colorcue ar t icles; it ke eps
the BASIC program small, reduces the
chance for error (and the need to do hex
to decimal conversions), and is simple to
program.

cause a jump to the beginning of the
assembly language routine. Normally, this
location contains a JMP to an error routine
in BASIC. When BASIC interprets a CALL,
it sets up registers as d~rected, and then
JMPs to the CALL vector location. If the
vector contains a JMP to your patch, it's
entered. If not, the CALL immediately
returns to the interpreter, and acts as
a NOP (No OPeration) statement. There are
two ways to get the JMP to your routine
into the CALL vector: Linkage to the subroutine is estab

lished by putting a JMP (jump) instruction
into the CALL(x) jump vector location
(33282 or 8202H for the hex fanatics) to

(1) POKE it in from BASIC. Assuming
your routine begins at location OFEODH in
memory, the following code in Listing 1

r---, will set up the vector.

ASSEMBLY LAN&LlAC::£ Rr//.

V'ar:

r3A5 /C VAR IA8LE5

Val":

17AS/C. P£o&R.4NI

~---------------------i 8t9A

7l7" 8 1-----------------------t goo o

Figure 2

14

(2) Store it from the assembly lan
guage routine . Given the same assumptions
a s above , the code would be as given in
Li s ting 2 .

Loading the rout ine into memory and
establishing linkage to it is no t t he end
of the i ni tital i zation phas e . Without
t aking precautions to protect t he r out i ne ,
BASIC would overwri t e (read destroy) it
at the first opportunity . By putting the
routine at the top of memory, however, it
is a simple matter to "fake out" BASIC
and protect our rout i ne. This i s done by
changing the system's pointer t o the top
of usable memory, mak~ng i t po i nt just in
front of the routine we wi sh to protect.
When BASIC subsequently allocates string
space, it will check the "top of memory"
location (32940, or 80ACH) and not go
beyond. Figure 3 shows what this looks
like. There are two ways to set this

73A51C VA«J4!3LES

\

'-1-:;r.:;;-oP=oF;:::-n:M;;;'"';;N~D~Z=•vv -;;~;;:o:;;,/1/TtE=r.;~,----; BOAC.

Figure 3

pointer (wouldn't you guess?):
(I) By executing BASIC POKEs, as ~n

Listing 3.
(2) By executing 8080 instructions in

the setup section of the routine (Listing
4).

Once the routine is loaded into memory
and linked to the BASIC program, it is
used by executing the CALL statement in
BASIC, e.g. :

60 Z = CALL (F)

As one might expect frqm an understanding
of BASIC, the variable F is given to the
subroutine, and the value returned by the
subroutine is assigned to the variable z.
There are restrictions on F and Z; F will
be converted to a two byte integer value
(giving it a range from 0 to 65535), and
Z will be similarly limited.

On entry to the subroutine, BASIC will
have placed the value of F (after convert
ing to an integer) into the 8080's D and
E registers (E is the low order byte). To
return a value, which the interpreter will

15 RT = 65037:REM FE0DH

place into Z, the subroutine must exit
(RET) with the value in the D and E
registers. During the routine, H and L
should be preserved.

Now that we understand the concepts,
let 1 s look at a small assembly language
routine (Listing 5) that illustrates them.
There are several interesting topics re
lated to the ones discussed in this
article:

Impl~ed parameter passing, i.e. us
ing BASIC variable values directly in an
assembly language routine.

Linking to an assembly language
routine from things other than CALLs, e.g.
interrupt routines, such as User Timer
no. 2 or the keyboard, the serial port,
or BASIC output.

Implementing multiple functions in
a single subroutine without POKEing new
addresses.

These are topics for a future article,
though you can find examples of some of
them in past Colorcue pieces. Write your
editors and let them know what you'd like
to see. C

16 POKE 33282,195:REM The JMP op code
17 POKE 33283 ,RT AND 255 :REM '!be low order byte of the address
18 POKE 33284,INT(RT/256):REM The high order byte of the address

MVI A,l95
srA. 33282
LXI H,CALL

Listing I.

;The JMP op-code. can be (JMP) if Macro-A<:isembler.
;or 8202H
;CALL is the entry point of the routine.

Listing 2.

19 TM = 61439:REM 0FDFFH, one location in front of routine
20 POKE 32940, TM AND 255 :REM The low order byte
21 POKE 32941, INT(TM/256) :REM The high order byte

LXI H, START-1
SHLD 80AOI

Listing 3.

;One byte in front of code
;Stuff into top of rnem ptr (32940)

Listing 4.

IS

SHORT ASSEMBLY LANGUAGE PROGRAM TO DEMONSTRATE
CALL SUBROUTINE LINKAGE FROM BASIC.

THE PROGRAM CHANGES SCREEN COLOR TO THE CCI CODE
PASSED TO IT BY ITS CALLER.

THIS PROGRAM CONSISTS OF TWO PARTS:
1. THE "'RUN"' PART, WHICH IS RUN THRU FCS FROM

BASIC, AND WHICH ESTABLISHES LIN~·:AGES.

2. THE "'CALL"' PART, WHICH IS CALLED FROM A BASIC
PROGRAM, AND ACTUALLY DOES THE WORK.

SYSTEM EQUATES - ADDRESSES OF THINGS WE'LL NEED

CALLVEC
TOPMEM
SCREEN

START:

CALL:

LOOP:

EOU
EQU
EOU

ORG

PUSH
PUSH

MVI

STA
LXI
SHLD

LXI

SHLD

POP
POP
MVI
RET

33282
3294(1
7000H

OFOOH

H

;ADDRESS OF VECTOR FOR CALL STATEMENT
;ADDRESS OF TOP OF MEMORY POINTER
;ADDRESS OF SCREEN MEMORY

;UNCOMMENT THIS (OR ANOTHER> ORG
STATEMENT FOR REGULAR ASSEMBLER

PSW ;SAVE REGISTERS WE'LL USE
WE'LL USE THE FCS STACK; 2 PUSHES WON'T HURT

A, (JMP> ;GET JUMP OP CODE <CAN ALSO USE 195
FOR REGULAR ASSEMBLER>

CALLVEC ;PUT IT INTO CALL VECTOR
H,CALL ;GET ADDRESS OF CALLABLE SUBROUTINE
CALLVEC+l ;AND PUT IT INTO VECTOR, GIVING:

JMP CALL

H,START-1 ;GET ADDRESS OF LAST BYTE OF "'SAFE"'
;MEMORY,

TOPMEM ;AND PUT INTO BASIC'S POINTER.

F'SW
H ;RESTORE REGISTERS THAT WERE USED,
B,O ;SET B=O TO INDICATE NO ERRORS,

;AND RETURN TO FCS.

CALLED SUBROUTINE. ENTERED FROM BASIC WHEN
Z = CALL<F>

EXECUTED. REGISTER DE <REALLY JUST E> CONTAINS CCI CODE

PUSH
PUSH

LXI
MDV

INX
INX

MOV
ANI
CPI
JZ

POP
POP
RET

H
PSW ;SAVE REGISTERS WE'LL USE

H,SCREEN+l ;POINT TO FIRST CCI IN SCREEN MEM
M,E !PUT NEW CCI CODE DOWN

H
H

A,H
OFOH
070H
LOOP

PSW
H

;STEP TO NEXT CODE; IT'S TWO BYTES AWAY .

;CHECK TO SEE IF WE ' VE GONE PAST 7FFF
;ZAP OUT LOW ORDER 4 BITS
;IF IT GETS TO 80, IT'S TOO FAR.
;STILL IN RANGE.

;DONE. RESTORE SAVED REGISTERS AND

;LEAVE

END START

Listi.Ja& 5.

5 REM THE FIRST THING TO DO IS LOAD AND LINK TO SUBROUTINE
10 PLOT 27,4:PRINT "'RUN QALP"':PLOT 27,27:REM LINK UP TO AL SUBR
OUTINE
15 CLEAR 100:REM MUST BE HERE, RIGHT AFTER THE RUN CMD.
25 PLOT 27 , 24,6 ,2,1 5
30 FOR Y= OTO 31
35 PLOT 3,0,Y
40 FOR X= OTO RND <2>• 63
45 PLOT 32+ X
50 NEXT :NEXT
55 PRINT
60 PLOT 3,0,0,6,2,11:INPUT "'ENTER CCI CODE: "';CCI
65 Z= CALL <CCI>
70 I F CCI< 256THEN 60
8 0 FOR CC I= OTO 255:Z= CALL <CCil:NEXT : END

Listi ng 6 .

Keyboard Reading In BASIC

by Steve Perrigo
cjo Harding Lawson Associates

P.O. Box 3885
Bellevue, WA 98009

Several months ago, an article in
FORUM (1) by B.F. Muldowney of Australia
caught my eye. The article was titled
"Advanced Keyboard Reading" and outlined
a method to interrogate the keyboard for
single or multiple key closures. At the
same time I was looking for a simple
joystick modification that could provide
more than up, down, right and left. The
solution was in the use of the Atari
joystick and a keyboard scanning tech
nique. An article describing keyboard
scanning for the joystick appeared in the
March/April issue of FORUM. An update was
published in the May/June issue.

Since the publication of articles
regarding joystick modification. software
using joysticks has begun to appear on
the market. Most notable (as of this
writing) 1s CHOMP (2), a vers1on of
Pac-Man. As a result of the article
explaining a method to install and use
the joystick and keyboard scanning tech
nique, I received several requests to
explain a simplified version of how to
read the keyboard in BASIC. It should be
noted that most of this material is a
representation of material from Muldown
ey's article.

To understand keyboard reading you
must look at the keyboard from the compu
ter's point of view. Figure 1 1s a
schematic drawing of just that. To under
stand this article you should rely heavily
on this Figure. In addition, it is very
important to note that this method only
determines whether or not a particular
key is physically depressed at any one
time. It does not matter whether that key
is in a shift, control or command status.
That is why on the schematic you may not
see some keyboard characters that appear
on your key caps. In all cases I have
listed the non-shifted, default characters
represented by a key closure.

As depicted in Figure 1, the keyboard
is accessed by 16 lines in, any of which
may be interrogated individually, and one
line out which will tell you the status
of the keys along the interrogated line.
The keyboard is interrogated through port
7 using the OUT 7, "line number" statement.
For example, the statement OUT 7,10 will
send a s1gnal through line 10 to interro
gate the closure/non-closure status of
the 5, E, U, F5, AUTO and MAGENTA keys.
Note that only one of the 16 lines may be
interrogated at any one time.

After the keyboard is interrogated
with OUT 7, "line number", you must then
check for an answer from the keyboard.
This is done by checking the value in port
nu~ber 1 by means of the INP(1) statement.
The value is retrieved using the form
X=INP(l), and X will be in the range
128-255. Note that in Figure 1 each of
the horizontal grid lines is assigned a
value in the box on the far right. These
values are 1, 2, 4, 8, 16, 32 and 64.
(Notice any relationship among those num
bers?) When a key is closed along an
interrogated vertical line (i.e., OUT
7, "line number"), the ultimate result is
that the value 255 is decremented by the
value assigned to the corresponding hori
zontal grid line. Now an example. Suppose
you interrogate line 10 as described above
with the OUT 7,10 statement. If, for
example, the E and F5 keys are both closed,
then the corresponding value of X that
you retrieve with the X=INP(l) statement
will be 2 45. That .is, 2 for the E closure
and 8 for the F5 closure for a sum of 10,
which is subtracted from 255, resulting
in 245. I'll talk more about simultaneous
closures later.

Now for another example. Suppose you
wanted to detect the closure of any of
the keys 2, 4, 6 or 8. How would you go
about it? Answer: scan for each closure

1.7

independently. First scan line 13 for the After using this short routine you
closure of 2, then line 11 for the closure should have a feel for how this system
of 4, then line 9 for the closure of 6, monitors the keyboard for single key
and finally line 7 for the closure of 8. closures. Now try the routine with multi
Immediately after executing each OUT 7, ple closures and examine the results.
"line number" statement, check the value Depress the 4 key and keep it depressed.
of INP(l) for a value of 254 (=255-1) Now add the D key, then the T key and so
indicating that the key is closed. forth, pressing all of the keys along one

Prior to scanning the keyboard, you of the lines into the keyboard. You will
will want to lock out the keyboard (and see that the same line is being interro
some other built in routines) by an OUT gated and that the decremented value
8,0 statement in your program. In this changes as the sum of the multiple closures
mode all the keys, including AUTO, ERASE changes.
PAGE, ATTN/BREAK, etc. may be depressed Of course a slick method like this
and their intended functions will be can't exist without a hitch. And here it
ignored by the computer. With this lock is. There are times when the keyboard can
out command your program will run, but no signal the closure of a key that is not
characters from the keyboard will be really depressed. Refer to the schematic.
echoed to the screen, thus keeping a "clean Suppose that you simultaneously close the
screen" during program execution. At the H, G and W keys while you are monitoring
end of program or function execution you along lines 7 and 8 for key closures. As
will want to reenable the keyboard with usual, while interrogating along lin r~ 8
OUT 8,255. for closures, the value of INP(l) will be

Try the routine in Listing 1 to check 249. (If you don't understand this yet,
the values of the keys depressed. Make return to go and start over.) However,
sure you understand why it operates the when you interrogate along line 7, the
way it does before you proceed. value of INP(l) will also be 249, indicat-

01'1e or +hese /iheS wilh +~~ Ov.f(1,-) (olo'>"'tl"d.

(NP)

Figure 1. Keyboard scanning lines and aecrement values.

18

[ntcrf'Oj" tc
r .. p (I) fof'
o. vo.lv.e ot

2,SS· 5\An'\.

ing that both the H and X keys are
depressed. Why? Because when you interro
gate the keyboard with OUT 7,7, the signal
travels down line 7 and then, because the
H key is depressed, the signal travels
along the horizontal line which decrements
the value by 2. But when it reaches the
closed G key, the signal also goes down
line 8 to the closed W and out along the
next horizontal line, which decrements
the value by 4. Simple? Not really; but
it does make sense. Needless to say, when
design1ng software using this technique,
be sure to avoid this problem.

Now you should have a general idea of
how the technique works. As you can see,
it is a cumbersome method of getting a
character from the keyboard. The real
value of keyboard scanning is when you
are monitoring for multiple closures,
especially in game situations.

I will make a quick digression into
why this system works so well for the
Atari joystick modification. Basically,
the Atari joystick has five switches in
it. For ease of programming, the primary
joystick is wired into the four main
directions of the number keypad, namely,
the 2, 4, 6 and 8 keys. The joystick fire
button is wired to the 5 key. The joystick
is designed so that an angle closure will
close two keys simultaneously. For exam
ple, the diagonal vector of up and to the
right corresponds to the closure of the
6 and 8 keys. With the keyboard scanning
technique we can detect the double closure
and with a short routine interpret that

10 REM KEYBOARD SCANNING PROGRAM
20 PLOT 29,27,11,6,3,12
30 OUT 8,0: REM DISABLE KEYBOARD
40 FOR I=0 TO 15

intended direction. Listing 2 is a short
routine to do that. It returns a value of
0 (no key closure) to 9, corresponding to
the positions of the numbers on the number
key pad. If you come up with a more
efficient routine in BASIC to do this,
let me know.

By now you have probably noticed that
the system as described will not detect
the closure of certain keys, namely, the
SHIFT, CONTROL, COMMAND and REPEAT keys.
(The ·only key closure that cannot be
detected is the CPU RESET because it has
a direct line to the processor.) Those
key closures and several others are detect
able using the following similar method.
Use OUT 7,128 and interrogate INP(1) for
a value of 127-SUM (instead of 255-SUM as
before). The decrement values are given
in the Table. You will notice that the
COMMAND key is not listed. Remember that
it is actually the simultaneous closure
of the SHIFT and CONTROL keys. 1C

Decrement

I (divide) 1
0 (letter 0) 2

(underline) 4
F15 (Function key) 8
Control 16
Shift 32
Repeat 64

Table of Keys and Decrement Values
Used with the OUT 7,128 Command

REFEilEIICES

50 OUT 7,I: REM SCAN EACH LINE INTO KEY?OA RD (1) B.F. Muldowney, "Advanced
Keyboard Reading", FOI.UM Inter
national, Vol. I, No. 5 (Nov/Dec,
1981), pp. 64-65. And seeS.
Perrigo, "Joysticks Standard for
the Compucolor", FOI.UM, Vol. II,
No. 2 (May/ June, 1982). (FOIWM
is the publication of the Canadi
an Compucolor Users' Group. c/o
Editor, 21 Ders ingham Cres. , Thorn
hill, Ontario, Canada L3T 4P5.
I highly recommend that any seri
ous user join this group.)

60 X=INP(1): REM GET A VALUE FROM THE KEYBOARD
70 IF X<>255 GOTO 100: REM CHECK FOR ANY KEY CLOSURE
80 NEXT I
90 GOTO 40

100 IF X=X1 AND I=I1 GOTO 80
110 X1=X: Il=I
120 PRINT I,255-X,X: REM PRINT CLOSURE VALUES
130 IF X=251 AND I=15 GOTO 150: REM QUIT IF "Q"
140 GOTO 80
150 OUT 8,255: END: REM REENABLE INTERRUPTS & END

Listing 1. Keyboard Scanning Routine.

10 OUT 8,0
20 T=0
30 OUT 7,13: IF INP(1)=254 THEN T=T-3: REM DOWN (2)
40 OUT 7,11: IF INP(1)=254 THEN T=T+S: REM LEFT (4)
50 OUT 7,9: IF INP(1)=254 THEN T=T+7: REM RIGHT (6)
60 OUT 7,7: IF INP(1)=254 THEN T=T+9: REM UP (8)
70 IF T>9 THEN T=T-6
80 T=ABS (T)
90 IF T=0 THEN T=l

11!0 OUT 7,10: IF INP(1)=254 THEN T=6: REM FIRE (5)
110 T=T-1
120 OUT 8,255
130 RETURN

Listing 2. Scanning the Number Keypad.

(2) "CHOMP", a highly recommend
ed program for the joystick,
available from ICS, 12117 Coman
che Trail., Huntsville, Alabama
35803, and other CCII software
dealers for $29.95.

I9

Assen~bly Language
Program~ning

by

David B. Suits

PART VI: The Input Routine

In this installment we' 11 finish up
the input routine begun last time, and
we'll be taking another look at using the
assembler.

The program in the listing is my
version of the input routine, fancied up
a bit just for purposes of demonstration.
It not only accepts input (both upper and
lower case, contrary to my proposal in
the last issue), but, just for fun,
reprints the input in a different color.
This verifies that the input string did
indeed get stored in memory. In case you
still have doubts, after you've assembled
and run the program, you can use the
Machine Language Debug Package to look at
what 1 s in the input buffer (starting at
822EH, if you use my program). After the
input is reprinted, the program loops back
and asks for another line of input. It
will loop forever this way, and you 1 11
have to push CPU RESET to get out of it.

The two columns of numbers at the left
of the listing are the hexadecimal numbers
which are the machine language code which
the assembler generated from my assembly
language text. (The rest of the material
is the source code which I typed in using
the Screen Editor.) The column at the far
left is the address (the program starts
at 8200H), and the next group of numbers
indicate the contents of the memory loca
tions starting at that address. For exam
ple, at 8202H the 3EC3H represent two
bytes. The first byte, 3EH, is the code
for the MVI A instruction, and OC3H is
the byte of immediate data to be moved
into A. That is, it is a translation of
the assembly language line MVI A,OC3H.

%0

(Remember that the assembler takes all
numbers as decimal unless followed by H
for hexadecimal or B for binary or 0 or
Q for (ugh!) octal. Moreover, all numbers
must begin with a digit; that's why JC3H
must be written the way it is.)

Somewhere before the first statement
in the program, I must tell the assembler
where the program is to reside in memory.
The ORG 8200H tells it that.

Notice that I've probably .gone over
board in my use of EQUate statements. For
example, instead of using the number 13
throughout as the code for a carriage
return, I 1 ve used CR and I've told the
assembler that CR is to be EQUated with
ODH (=13 decimal). I've used hexadecimal
everywhere, merely for the sake of adven
ture.

After the EQUates comes the label
INBUFF. You can tell it's a label of an
address because it has a colon after it.
The DS means Define Storage, and the numb'er
to the right of that indicates how many
bytes, namely, LIMIT+l. Since LIMIT is
EQUated to 40H (=65 decimal), the assem
bler knows to reserve, or skip over, 41H
bytes and to assign the label INBUFF to
the location of the first byte (822EH).
When characters are read from the key
board, they will go here. Next come two
bytes reserved for holding the address of
(i.e. pointing to) the next available
location for a new character in INBUFF.
The program really doesn 1 t make any use
of that pointer (although it looks like
it is going to at 828DH-82 90H), but if
you dec~de to add a lot of bells and
whistles to the program, you might have
need for such a thing. Anyway, I put it
in just in case. (Or was it to confuse
you? I can't remember now.) As it stands,

the instruction at 8290H is not necessary;
the contents of HL always keep track of
the next spot in the buffer, and so HL is
used as the buffer pointer.

Next come the labels SETUP, PROMPT
and REPRNT. These define addresses at which
a string of Defined Bytes (sort of like
BASIC's DATA) can be found for use with
the OSTR routine. If you translate the
hex numbers on the left into ASCII, you'll
see that the assembler has translated
YELLOW into 13H (= 19 decimal), the Tin
TYPE SOMETHING into 54H (= 84 decimal),
and so on. In BASIC if you PLOTted these
numbers (in decimal) you would get the
words "TYPE SOMETHING:" in yellow. But
you knew all that from our previous work,
right?

The very last line of my program is
END TEST (followed by a carriage return).
The END signifies the end. (Natch I) The
TEST tells the assembler that the starting
address for the program is at the label
TEST. Didn't it know that already? Well,
yes; that is, it assumed it. But while
the ORG statement told the assembler where
the program is to be loaded, the TEST at
the end tells it where to begin execution.
It is assumed that the two are the same
unless told otherwise, so technically the
TEST is not necessary. But if I had written
END INPUT, then the program would load at
8200H, but execution would start at 828DH.
But I (almost) always make the start
address the same as the load address; you
will too. For now, anyway.

Dealing with the Assembler
It would be a tax on anyone's patience

to have to plunk in the TEST program one
byte at a time. Even using the MLDP would
not lessen the burden very much. So it's
time to use the assembler.

I use ISC's assembler (not the Macro
Assembler, please), but if you 1 re using
someone else's assembler, the same, or
similar, procedures will probably apply.
First, write your program using a suitable
text editor. (The Screen Editor is per
fect. If you have the old Text Editor,
throw it away and buy the Screen Editor.)
Just type it right in and save it on disk.
Now run the assembler. It will sit there
blinking stupidly at you. You have several
choices. You can quit and go watch Rockford
Files re-runs. Or you can put your text
disk in the drive and tell the assembler
to assemble your program:

>ASM TEST

Or you can have the assembler assemble
the program and save the result on disk:

>ASM TEST TO CDO:

(Depend~ng on your disk drive type, you
will use CDO: or MDO: or whatever you call
your drives. Actually, just the drive
number and a colon should be necessary.)
If you have two drives, you can take the
text off one and save the assembled program
onto another. For example:

>ASM !:TEST TO 0:

When the assembler is assembling your
program, the assembled listing (as in
Listing 1) will flash by on the screen.
Be prepared to hit the ATTN/BREAK key to
have it pause, especially if you see a
line in red flash by, because that will
mean that the assembler has picked out an
error and you will want to re-edit the
source file accordingly and then give it
to the assembler for another try. If you
want only the errors, if any, to be
displayed, then add /E when you tell the
assembler what to do. For example:

>ASM TEST/E

Usually I have the assembler just assemble
the program without saving the result, so
that I can be assured that the program is
error free. When I am satisfied, I run
the assembler again and have the object
file (i.e., the assembled code) written
to disk (and printed on the printer at
the same time).

.LDA and .PRG Files
The result which is saved on disk is

called a load file (.LDA). It is not quite
the final, machine language program which
you can run. The .LDA file can be loaded
into memory with

FCS>LOA TEST

(The .LDA extension is not necessary,
since it is the default type for the LOAD
command.) Now you can run the MLDP and
test the program. \o1hen you 1 re confident
that it is the way you want it, leave the
MLDP, return to FCS and type:

21

FCS>SAV TEST.PRG <;version, if you
wish> startaddr-endaddr

task. Or how about a machine language
patch to a BASIC program? (See Ben's
article in this issue.)

For my program, I would type:

FCS>SAV TEST.PRG 8200-82FE

The result is a copy of the memory contents
from 8200 to 82FE and is a machine language
program which can be run just like any
other .PRG file.

Try my input routine. Then try adding
variations. (Have the input string reprint
ed backwards, for example.) Fiddle around.
We've come a long way since last year.
There are many tricks still to be learned,
but you ought by now to have a fundamental
grasp of 8080 assembly language program
ming. What you need now is practice. Why
not try converting some simple BASIC
programs into A.L.? That's often an easy

In the issues ahead we'll explore
tables and vectors, animation, and simple
number crunching. And we'll start looking
at some of the more esoteric features of
the routines in your machine's ROM: disk
file handling, talk1.ng to your printer,
and so on. In the meantime, if you've
specific areas of interest you'd like to
see covered, please drop me a note.

8200

8200
8202
8205
8208
8208
8200

8210
8213

8215
8219
821C

821F
8222
8225
8228

822B

22

(82121121)

3EC3
32C581
21F782
22C581
3E1F
32DF81

217182
COF433

217382
COF433
C08D82

218A82
CDF433
212E82
COF433

C31582

<0000)
(000A)
(001A)
(001218)

See you next issue! (Unless your sub
scription expires.) IC

TEST -- An almost do-roc•thlrog progr"aro to get a strirog
characters from the keyboard and then reprint
that stri r.g.

ORG 8200H

;First set up JUrnp to CHRINT.

TEST: MVI A,0C3H ;=' JMP'
STA NOECHO
LXI H,CHRINT
SHLO NOECHD+1
MVI A, IFH ;Jump vector.
STA KBJVEC

LXI H,SETUP ;Clear screen, etc.
CALL OSTR

;******************************
;
;Here is the mair1 program loop.
;
;******************************

MAIN: LXI H,PROMPT
CALL OSTR
CALL INPUT ; Iroput is echoed i Yt greer ..

;Now repr int the input string in cyan.

LXI H,REPRNT
CALL OSTR
LXI H,INBUFF
CALL OSTR

JMP MAIN ;Back for another round.

;******************************
;
;Equates and storage.
;
;******************************

CR EQU 0DH
LF EQU 0AH
LFTARO EQU 1AH
ERSLIN EQU 0BH

Cat•r i age ret urn.
Liroe feed.
Left arrow for backspace.
ERAS:::: LINE key.

of

"'

(121020)
<00EF>

(00EF>
(0012)
(0013)
(012>16)
(001Z1C>

<007E>
(0040)

(8!f'E>
W:FF>
(81C5>
(81DF>
(33'32)
(33F4>

B22E (0041)

B26F (0002)

8271 0CEF

8273 0DI2>AQIA
8276 13545'350
827A 4520534F
B27E 4D455448
8282 4'34E47JA
8286 QID0A12EF

828A 0D16EF

8280 212E82
8290 226F82
8293 0Eil>IZI

8295 CDEB82
8298 FE0D
829A CAD182
8290 FE0B
829F CAC882
82A2 FElA
82A4 CAC2B2

82A7 FE20
82A9 DA9582
82AC FE7F

SPRCE EQU 221H ;Just a regula>' space.
EOLINE EQU 0EFH ; I, rn choosir•g 23'3 as eYtd of l i r.e byte

so that the i r.out car. be repriY.ted
with the OSTR rout i r.e.

EOM EQU 0EFH ;EYtd of st>• i rog byte for OSTR.
GREEN EQU 12H
YELLOW EQU 13H
CYAN EQU 16H
PAGE EQU 0CH ;Erase oage.

MAX KEY EQU 7EH ;Key codes above this are ignored.
LIMIT EQU 40H ;Max r•ur.lber of characters allowed ..

KE<CHRR EQU 81FEH ;H·:•lds code of l'lloJSt recent key pr"ess.

KBFLAG I:::G>U 81FFH ;Keyboard character ready f 1 a g.
NOECHO EQU 81C5H ;Hc·lds JMP to CHRINT rout1r.e.

KBJVEC EQU 81DFH ;Hcolds i Y"•O!Jt lltf•lO vector.

!...0 EOU 33'32H ;Sends char in A to screen. <V6.78>
OSTR EQU 33!'"4H ;Pr1nts string erod i rog i Y'l 23'3. <V6.78>

;Note: Set LO and OSTR as appropriate for your system. If your
machiree lS V8.79 or V'3. Bill, you wi 11 use:

LO EQU 17C8H
OSTR EQU 182AH

INBUFF: DS LIMIT+! ;Buffer for rnaximum number of chars
; plus the end of 1 i ne byte.

INBFPR: DS 2 ; Poi r.ter to rse)(t spot in INBUFF.

SETUP: DB PAGE,EOM ;Very siro1ple.

PROMPT: DB CR,LF,LF
DB YELLOW,'TYPE SOMETHING:'

DB CR,LF,GREEN,EOM

REPRNT: DB CR,CYAN,EOM

;******************************
;
;Here are the subroutines.
;
;******************************

;INPUT -- Subroutine to get a string of characters from the
keyboard until carriage return.

INPUT:

INPUT!:

Upper and lower case ASCII characters are allowed,
as well as the ERASE LINE, CARRIAGE RETURN, and
BACKSPACE <LEFT ARROW> keys. All other characters
are i groored.

The input prompt is assuro1ed to have been printed.

CHRINT must be set up.

ENTRY: No register values expected.

EXIT: <C>

D,E
<HL>

;Initialize.

LXI H,INBUFF
SHLD INE<FPR

count of characters in buffer,
excluding the end of line byte.
urochanged.

-> end of input buffer.

;Buffer poi rster poi rots tc• first
j i 1"1 the input buffer.

spot

MVI C,QI ;Use register c for cour.t of characters.

CALL GTCHA ;Get a character from keyboard.
CPI CR ;End of i nout '?
JZ INPUT4 ;Yes. Go finish up.
CPI ERSLIN ;Nc ... ERPSE LINE ~ey?
JZ INPUTJ ;Yes. Go et"'ase the 1 ir.e.
CPI LFTARO ;No. Left art"'C•w?

JZ INPUT2 ;Yes. Go backsoace.

;At this point we're exoecting a normal pt"'inta~le

;character. Anything out of that range must be
; ignored.

CPI
JC
CPI

SPACE
INPUT!
MAXKEY+l

;Is SPACE> character?
;Yes, so igr.ot"'e it.
;No. Is MAXKEY+l) character?

23

24

82AE 029582

82B1 47
8282 79
82B3 FE40
8285 CA9582

8288 70
B2B9 23
82BA 0C
828B 78
82BC CD9233
828F C39582

82C2 CDD482
82C5 C39582

82C8 CDD482
82CB C2C882
82CE C39582

8201 36EF
8203 C9

8204 79
8205 B7
8206 CAEA82

8209 3E1A
82DB CD9233
82DE 3E20
82EIZI CD9233
82E3 3E1A
82E5 CD9233
82E8 2B
82E9 00
82EA C9

82EB AF
82EC 32FE81
82EF 3AFE81
82F2 B7
82F3 CAEF82
82F6 C9

82F7 F5
82F8 AF
82F9 32FF81
82FC Fl
82FD C9

82FE (8200)

0 ERRORS

JNC INPUT! ;No. Ignore the character.

;The input character <still in A> is valid. But
;see if there is still room in the buffer for it.

MDV
MDV
CPI
JZ

MOV
INX
INR
MDV
CALL
JMP

B,A
A,C
LIMIT
INPUT!

M,B
H
c
A,B
LO
INPUT!

;Save character temporarily.
;Get count of characters.
;Has it reached 1ts limit~
;Yes, so ignore the character.

;Put character into buffer.
;Bump buffer pointer.
;Increment count of characters.
;Get character again for echoing.
;Echo character on screen.
; Back fot"' mc,re.

;Come here upon findir.g a left arrow.

INPUT2: CALL 8CKSP
.JMP INPUTl

;Delete previous character.
;That was easy!

;Come here with ERASE LINE.

INPUT3: CALL BCKSP
JNZ INPUT3
JMP INPUT!

;Delete a character.
;Continue until count of characters
;Then back for ne~ input.

;Come here with carriage return.

INPUT4: MVI M,EOLINE
RET

;Put end of line byte into buffer.
;Return to calling routine.

;BCKSP -- Subroutine to delete the previous character (if
there is OY•e>.

BCKSP:

ENTRY: <C> = present count of characters.

EXIT:

MDV
ORA
JZ

A,C

CHL> -> spot in buffer of previous char + 1.

<C> = new count of characters.
CHL> adjusted accordingly.
CZ> if buffer er•lpty.
CNZ> if buffer not emoty.

A
BCKSPl

;Get count of characters.
; Is it zero?
;Yes, so don't backspace.

;Get rid of the character on the screen.

MVI
CALL
MVI
CALL
i'IVI
CALL
DCX
OCR

A,LFTARO
LO
A, SPACE
LO
A,LFTARO
LO
H
c

;Adjust buffer pointer.
;DecreMent count of characters.

IZI.

BCKSPl: RET ;Return with CZ> or CNZ> as appropriate.

;GTCHA -- Simple subroutine to wait until a key is pressed.

ENTRY: No register values expected.

EXIT: Character in A.

GTCHA: XRA
STA

GTCHAl: LDA
ORA
JZ
RET

All else unchanged.

A
KBCHAR
KBCHAR
A
GTCHAl

;Keyboard character interrupt routine.

CHRINT: PUSH
XRA
STA
POP
RET

PSW
A
KBFLAG
PSW

END TEST

Classified Colorcue Index

by James A. Kavanagh
Gnostech, Inc.

222 s. Easton Road, Suite 15
Glenside, PA 19038

There have been two Colorcue indices
published: the first appeared in the
January, 1980 1ssue, and the second in
the June, 1980 issue. They are arranged
by article names only and not by topic or
subject.

Exclusive OR DE with HL (XORHD) III.6-12
FCS from assembler III.5-13
Graphics (cursor movement) III.2-19
IBM I/O terminal (USC 1035) III.5-15
Interfacing with Teletype III.l-7
I/O II.7-14, II.8-9, III.l-18 III.2-19,

III.3-16, III.3-18, III.3-26, III.4-18,
III.4-26, III.5-13, III.7-3, IV.3-5,
IV.5-19, IV.6-00 This index includes all issues of

Colorcue, including the present issue. It
is arranged by subject, a1 though author
names are included if the name appeared
in two or more articles.

Keyboard input III.7-3, IV.5-19, IV.6-00, IV.6-20
Multiply DE by HL (MULHD) III.6-12

I compiled this index for my own
convenience, and so I cannot guarantee
its accuracy or completeness. It is intend
ed more for the intermediate programmer
and less for the beginner and the non-pro
grammer. There is little reference to
elementary topics or to application pro
grams such as games.

The format used is V. I-P, where V is
the volume number, I is the issue number,
and P is the page number. The December
1980/January 1981 Colorcue appeared with
out Volume/Issue numbers. For the purposes
of this index, that issue will bear the
designation III.7.

Appending (programs) II.3-2, II.5-6
Apple II.S-13, II.5-14
Arrays II.6-6, III.4-7
ASCII codes III.4-14
Assembly Language

Add A to HL (ADHLA) III.6-12
AND DE to HL (ANDHD) III.6-12
ASCII to binary III.3-16
Binary to ASCII III.3-16
Binary to 1 hex nibble (B2HEX) III.4-20
Binary to 2 hex chars (LBYT) III.4-19
Block move (MOVDH) III.4-20
Carriage return/line feed (CRLF) III.4-19
Communication III.6-4
Compare, dble precision (CMPHD) III.4-19
Compatibility 6.78 vs 8.79 III.l-22
Cursor movement II1.2-19
Debug IV.2-3, IV.2-6
Divide DE by HL (DIVHD) 11I.3-16, III.6-12
Error codes II.4-2

NOR (l 1 s complement).HL (NOTH) III.6-12
OR DE with HL (ORHD) III.6-12
Printer program III.3-18, III.4-26
Programming 1I.7-14, 1V.l-17, IV.2-6, IV.3-19,

1V.4-19, IV.5-19, IV.6-20
Protected fields (input) IV.3-5
Shift DE left HL times (SHLHD) III.6-12
Shift DE right HL times (SHRHD) 111.6-12
Sort 1V.2-21
Subtraction, dble
2 1 s complement HL
Utility routines
Wait routines

precision (SUBHD)
(NEGH) III.6-12
III.4-18, III.6-12

20 milliseconds (WATL) I11.4-19
0.5 milliseconds (WATS) 11I.4-19

Barlow, Bent, IV.2-4, IV.3-13 , IV.~ -1';1
BASIC l~.t-S,

Chaining (Menu) II.l-6
Changing directory name II.5-3
Code line format III.l-16

III.4-20

Editing (FREDI) II.S-8, II.8-3, II.S-4
Editor ('THE') IV.3-25, IV.6-3
Fixing sequence numbers III.l-16
Format of code line III.l-16
Formatting numeric fields I.7-18, II.8-6,

III.4-8
Input flag, input table I.3-2
Keyboard input II.2-3, IV,6-17
Random files (see Random files)
ReORGing FREDI IV.5-ll
Sequence numbers III.l-16
String manipulation I.3-4
Structure of code line III.l-16
Tokens II.4-4, III.l-16, II1.4-16
Variable listings III.3-24

Bell III. 7-16
Binary to ASCII III.3-16
Book reviews III.7-18
Break (generation) III.3-12, III.6-21
CALL function III.7-9
Chaining (Menu) II.l-6
Characters

Large special II.8-7
String manipulation I.3-4

25

Clarke, de France III.1-27, III . 2-9, 111.2-24
Clock, real time 1.2-2
Color

Codes 1! . 3-11, III.2-16
Misc . 11.3-3, III.2-18, III.3-25, III.6-19
Printer, ink jet III.7-16

'Comments & Corrections', etc. I.3-6, II.2-6,
II.3-), II.4-9, II.5-6, II.7-17
II.7-19, 11.8-15, III.3-26, III.6-22,
III.7-13, IV.2-3, IV.2-20, IV.4-3

Communication III.l-14, III.l-18, III.3-26, III.6-4
Community access bulletin board III.5-22
Compatibility: 6.78 vs 8.79 III.l-22
Comp-U-Writer III.7-15, IV.4-15
COPY, FCS command III.5-21
COPY (screen display) II.6-13
Cross reference listing, V6.78 III.7-6
Curnin, Peter III.3-3, III.4-3
Cursor movement III.2-19, III.5-4
Costom character sets III.4-12
Date routine 11.7-17
Debug IV.2-3, IV.2-6, IV.4-23
Devlin, Tom IV.l-13, IV.5-5
Directory

Changing name II.5-3
Format 11.5-11, III.5-9
Printout 1.8-15
Supplemental (non-FCS) III.2-4

Disk dup II.l-4
Disk recovery 111.6-20
Dotted lines II.l-2
Dup II.l-4
Dust cover II.4-2
Editing

Basic, FREDI 11.5-8, 1.8-3 11.8-4, IV.5-ll
Basic, 'THE' IV.3-25, IV.5-9, IV.6-3
Screen, text I1I.l-13

Epson Printer IV.l-14, IV.2-4, IV.2-15, IV.3-13
Factoring numbers II.5-5
FCC (on Compucolor) IV.l-3
FCS

Copy III.5-21
From assembler III.5-13
Input flag , input tabl e I. 3-2
Printing direct or y 11.8-15

(See also Directory)
Files

Creating data files II.2-4
Random (see Random files)
Recover from errors II1.6-20
Transferring from other computers III .6-4
LDA and PRG between disks III.6-21

Formatting (numeric fields) II.7-1 8, II.8-6,
III.4-8

Fortran III.7-17
FRED! (BASIC Editor)

Gline II. 7-3
Graphics

II .5-8, II.8-3, II.8-4,
IV. 5-11

Bar graphs III.7-13
Circular plots 1.2-3
CRT Mode plotting IV.4-17
Cursor movement III.2-19, III.5-4
Dotted lines 11.1-2
Re-entrant plot submodes I II.2-ll
Sca l i ng I II.7-13
Spher e IV.2-15
3-D III.2-6, IV.2-15, IV.4-7

Green, Bill II.4-2, 11.8-3, III.l-4 , III.l-6,
III.4-23, III.5-15, III.6-9, III.6-22

Handshake III.2-26, III.3-26, III.5-21, IV,l-10
Hardware mods III.2-26, III.3-l2, III.3-26,

III.4-21, III.5-21, III.7-16,
IV.l-5, IV.l-13, IV.3-13, IV.5-5,
IV. 5-13

Hogan, Brian III.l-26, III.2-7
Hudson, Tom 11.5-14, III.4-7, III.5-3

2&

IBM I/O terminal (USC 1035) III.5-15
Index €-eompueo-lor) II.3-12 , IV.(o-2-5"

Input flag, input table 1.3-2
I/O 1.2-6, 1.2-7, I.3-2, II. 2-3, II . 7-14 , II . 8- 9,

III.l-6, III.l-18, III.2-19, 111.2-24,
111.2-25, 111.3-12, 111.3-16, 111.3-18,
111.3-16, III.4-18, III.4-26, III.5-21,
111.6-4, IV.l-5, IV.l-14, IV.3-5

I/0 controller (TMS 5501) III.l-6 3
Interface, serial to parallel IV.3-. ~. 1V.4.3
Interfacing with Teletype 1II.l-6
Interrupts 111.2-25
Keyboard

Input 1.2-7, 1II.2-24, I1I.4-ll, III.7-3,
1V.5-19, IV.6-17, IV.6-20

Lockout II.2-3, III.2-25
Keywords (see Tokens)
Light pen 111.3-14
Line length 11.5-15
Linked lists II.3-5, II.4-5
Lissajous figures IV.2-18
Literature II.3-10, 111.2-11, 111.4-13,

III.6-7
Manazir, R1chard III.2-19, III.4-17, III.5-21
Map, system memory III.l-21
Martin, Dennis 11.3-3, III.1-16, III.4-15

III. 5-9
Matzger, Alan IV.2-21, IV.5-17
Memory map III.l-21, III.7-6, III.7-10
Menu (chaining) II.l-6
MX-80 (see Epson)
Networking III.l-14
Newcombe, F. Lee 11.2-4, II.8-6
Noise, power line 111.5-16
Numeric base conversion III.5-ll
Numeric field formatting II.8-6, III.4-8
OP code table 111.6-9
Pascal triangle I1I.2-7
Personal software 1I.4-7, I1.7-12
Photographing screen II.6-2
Plot table IV.2-17
Power line noise III.5-16
Printer (color ink jet) III.7-16
Printer (Epson) (see Epson)
Printer interfacing II1 . 2-25 , IV . l-5
Printer program III . 3-1 8 , II1 .4-26
Printer, screen t o MX80 IV. l -14
Printing d1re ctory I I .8-15
Publishing/selling programs 1.2-5, II.6-5
Raffe, Bernie IV.3-5
Ram, add on II.4-9, IV.5-5
Random files II.6-9, II.7-12, IV.5-17
Random number III.l-26
Real time clock 1.2-2
Rosen, Howard IV.l-27, 1V.2-27, 1V.4-15
RS232 1.2-6, 11.5-7, 111.1-6, 111.1-]8,

III.3-26, 1II.5-15,lii.J -5' 1 lY.3·13
Screen character position III.2-13
Screen display copy II.5-13
Screen editor III.l-13
Screen save 111.5-3
Screen to MX80 IV.1-14, IV.2-15, IV.6-9
Scrolling patch I.l - 2
Selling/ publ i sh i ng programs I.2-5, II.6-5,_ 1II.7-3
Serial port (see RS232)
Shank , Bill 11.7-19, I I I .l - 9
Smi th , Bob V. 1V . 2-17, IV.4-17
Software (for Compucolor) 1.8-14, II.4-7, II.5-7,

(see also II.6-4, II.7-6, III.l-13,
Personal software) 1II.l- 27, III.2-14,

Sort routine (CALLable)
Sound board 11.5-7
Source network III.l-14

1II.5-18, 1V.4-3, IV.4-18
IV.2-21

Space saving in arrays III.4-7
Steffy, Myron II.5-13, 11I.3-24,
String manipulation 1.3-4

III. 7-9

Stroop phenomenon 11.2-2
Suits, David 11.2-6, 111.2-11, 111.3-25, 111.6-19

IV.1-3, IV.l-19, IV.2-3, IV.2- 6,
IV.3-19, 1V . 4-19, IV.S-19, IV.6-20

Taylor, Denise 111.2-25, 111.3-25
Taylor, Trevor 111.2-25 , 111.3-12, 111.3-25,

111.4-21 , Il1.6-4, IV.2-18
Teletype (interfacing) III.l-6
Texc editor I1I.l-13
1 THE' Editor (see Editing , BASIC)
TMS 5501 (see I/O controller)
Tokens (BASIC) Il.4-4, 111.1-16, 11!.4-15
TRS-80 Il.S-13, II.5-14, Ill.Z-23 , III.6-4
Ungerman, Mike 111.2-23, III.6-21

Cueties

User groups II.2-6, II.5-3, 11.7-5, III.l-9,
111.1-10, 111.3-15, I11.4-13,
111.5-8, 111.6-13, 111.7-19,
IV.l-17, 1V.4-3, 1V.5-3

Van Putte, Doug IV.4-7
Variable listings (BASIC) 111.3-24
Williams, A.E. II.J-5, II.4-5
Word processing III.7-15, IV.4-15
Ys, lower case IV.l-13, IV.2-3

PLOT 12:FOR Z=0 TO l:FOR X=0 TO 255:A=28672+X*4+
128*INT(X/32)+Z*2048:POKE A,X:POKE A+l,l28*Z+2:
NEXT:NEXT

• • About Your Subscription ~,. •

Most of our subscribers' subscriptions will come up for renewal
after July. (Check your mailing label: the number indicates your
last issue number. The June/July issue is issue number 6.)

We need your subscriptions to continue publication.

Since its beginnings in 197 8, Colorcue has been financed by In
telligent Systems Corporation. That financial assistance will ter
minate with the June/July issue. Whether we will be able to continue
publishing Colorcue will depend on whether you renew your sub
scription. There is a critical number of subscribers, below which
Colorcue will not have the funds to continue. Let us know of your
desire to see Colorcue flourish. Send us your renewal now so that
we may know in advance where we stand and so that you can help
guarantee the continued publication of what we believe to be an
outstanding magazine for Intecolor/Compucolor users.

Subscription for one year (six issues) is $12 in u.s., Canada and
Mexico; $24 elsewhere. Please make check or money order in u.s.
funds payable to "Colorcue".

At the same time, why not take this opportunity to let us know what
kinds of information you would like to see in Colorcue during the
corning year? would you prefer more hardware oriented articles?
Tutorials? Programs? Applications? Games? Perhaps you have something
specific in mind.

27

Color cue
Editorial Offices
161 Brookside Dr.
Rochester, NY 14618

[Address Correction Requested I

An !9 Publication

BULK RATE
U.S. POST AGE

PAID

Rochester; N. Y.
Permit No. 4 1 5

	Vol. 4, No. 1, Aug/Sep 1981
	Vol. 4, No. 2, Oct/Nov 1981
	Vol. 4, No. 3, Dec/Jan 1982
	Vol. 4, No. 4, Feb/Mar 1982
	Vol. 4, No. 5, Apr/May 1982
	Vol. 4, No. 6, Jun/Jul 1982

