

Colorcue

A bi-monthly publication by and for
Intecolor and Compucolor Users

Editors:
Ben Barlow
August/September 1982 David B. Suits

Volume 5, Number 1 Compuserve: 70045,1062

3 Editors' Notes
5 Reader Feedback

7 FORTRAN Programming, by Howard Rosen
An overview for beginners

9 Plot 3D Fiqures with FORTRAN 80, by Doug Van Putte
Faster than a speeding BASIC program

13 A Music Tutorial Using the Compucolor II and
Soundware, by D. B. Grant
Notes for the real begginer

17 Assembly Language Programming, By Ben Barlow
Part VII: M80 -- The Macro Assembler

25 Another Debugger Bug, by Joseph Norris
Help for V9.80 machines

25 Compucolors For Sale

4, 15, 23 Tech Tips

Advertisers: A good way to get in touch with potential customers is through
the pages of COLORCUE. You will find our advertising policies attractive.
Write for details.

Authors: This is a wuser-oriented and user-supported publication. Your
articles, tips, hints, programs, etc. are required to make it go. Write
or scribble your ideas down; we'll edit them and provide all artwork. Send
your articles or write for information.

COLORCUE is published bi-monthly. Subscriptions are USSl2/year in the
U.S., Canada and Mexico, and US$24 (includes air mail postage) elsewhere.
Some back issues are available. All editorial and subscription correspon-—
dence should be addressed to COLORCUE, 161 Brookside Dr., Rochester, NY
14618, USA. All articles in COLORCUE are checked for accuracy to the best
of our ability, but they are NOT guaranteed to be error free.

Editors’
Notes

Considering the ping pong history of
Colorcue, I'm sure you're glad to see
this issue arrive. We appologize for its
lateness; what originally was a wait to
determine whether or not renewals would
justify continued publication turned into
a walt to see just how many renewals we'd
have to determine our press run, and then
some experiments at reformatting failed,
and it's just added up to more time than
we thought. We'll try to get back on
track. -

Many thanks to all of you who resub-
scribed. Qur spirits were flagging in
midsummer, but renewals picked up, passed
the number we felt we needed to continue,
and, in fact, are still trickling in.

Late Breaking News!
(And Questions.)

Susan Sheridan, a past Colorcue editor
many of you may remember, has given birth
to a bouncing seven pound boy, her first
child. Congratulations, Susan!

David B. Suits, a current Colorcue editor
has recently returned from a stint in
California, programming a game for Walt
Disney Production's Epcot center in
Orlando, Florida. Epcot will use ISC com-
puters to control rides, as well as run
games of the type David wrote, which
visitors will be able to play as they
stand in line. Look for it! It's a taxi-
driving game, and the player "drives" a
taxi across town by moving his finger
over a touch sensitive screen.

The Source, a popular telecomputing com-
pany which until now has concentrated on
the home market, is being forced by
recent iosses to shift its focus to busi-
ness user, reports Data Communications
magazine In its Sept. issue. It gives an
interesting comparison of prices for the
Source (23,000 subscribers) and Compu-
serve (28,000).

Vance Pinter is looking for information
on how to connect and handshake with a
Diablo 630 printer. Anyone with informa-
tion, please drop Vance a note: P O Box
230, Columbus, GA 31902.

Andy Mau is interested in forming a user
group in the NYC area. If you're interes-
ted in participating, write Andy at 5
Eldridge Street, Ground Floor, New York,
NY 10002.

CUWEST, an active group in Australia, has
told us of an excellent screen editor
produced by Doug Pankhurst in another
Australian user group. Called COLORTEXT,
it's filled with features, like merging
files, search and replace, search and
delete, and more. For information, write
to Doug Grant, CUWEST Librarian, 2 Brook-
side Ave., South Perth, Western Australia
6151.

ISC News: New products include CATS 80, a
computer augmented training package,

which allows a trainer to '"...present
material to a student in any combina-
tions of text, color graphic displays
(both static and animated) or with

interactive audio and interactive video."
Spectra-Text, the word proceesing package
running on ISC's CP/M machines,is now
available in a Spanish language version.
ISC is making a big push with its Execu-
tive Presentation System, a package which
can create graphic presentations for 35mm
slides, overhead projector transparen-
cies, or paper prints.

Vendor News

Jim Helms, 1121 Warbler, Kerrville, TX,
78028 (NOTE: This is his NEW address) has
a host of programs available, and more
coming. They're all written in assembly
language, so they're quite fast. The list

includes a Personal Database, Cross
Reference Generator, General Ledger,
Screen Editor, Assembler, Disk Editor,

some games, and assorted other utilities.
For several months now [have been using
his screen editor/assembler combination
which loads into my Devlin RAM board at
4000H. His programs have certainly made
my assembly language programming more ef-
ficient! The assembler has some clever
features (such as a printer driver and an
excellent screen display during program

3

listing). The screen editor is top notch:
it has all the functions of the ISC
screen editor, plus some notable extras.
You can merge files, copy blocks of text
from one part of the document to another,
and delete blocks. You can search and
replace text. A status line at the bottom
of the screen tells you how much memory
you have left in RAM and on the disk, and
tells you how large your file is. You can
change colors and enter special charac-
ters. There are still more useful fea-
tures to this editor, but I'll let you
purchase your own so you can be pleasan-
tly surprised. Write to Jim for his cata-
log, or contact an authorized distributor
(Quality Software Associates, ICS, or
Howard Rosen).

Advertising!!!

[f you like to read advertisements, sear-
ching out the small but innovative com-
panies offering products to the micro
world, the Computer Shopper may be just
the thing. It's a big tabloid style of
publication chock full of ads for
hardware, software, newsletters - every-
thing. They also have articles and a user
group bulletin board. More advertising
than Byte!!

Mini Book Review

Several readers have written to say that
while they enjoy the occasional hardware
articles we publish, they wish we would
run a hardware tutorial series to intro-
duce them to electronics and digital
logic.

As much as we'd like to do that, we have
found a book that does a much better job
than we could hope to do, and presents
the material in an easy to understand,
hands-on way that will serve the purpose
very well.

The book is Digital Electronics - a Hands
on Learning Approach by George Young, a
professional electronics teacher who ran
a series of articles in the {first issues
of Kilobaud Microcomputing. His approach
is well thought out, his technique capti-
vating, and his method is simple to
follow. It won't make you an expert, but

4

after completing the book and the experi-
ments in it, you'll know enough to under-
stand the articles you read here, and
also those of Steve Ciarcia in BYTE. It's
published in paperback by Havden, copy-
right 1980.

Moving?

[f you're changing your address, please
let both the Post Office and us know of
your new address. (Tell us your old
address and your new one.) We don't want
you to miss a single issue of Colorcue.@®

Tech Tip

by David Zawislak

5739 N. California Ave.

Chicago, IL

60659

Another bell. I've been wusing this bell

on my 6.78 CCII for over a year with no
problems. Put the circuit on a small
piece of perf board and mount it in the
upper right corner of the back of the
computer, where there are already some
holes (for the old TV antenna). Put a 16
pin wire wrap socket in the disk con-
nector socket, and plug the disk connec-
tor into that. The long wire wrap pins
allow a length of 3-conductor ribbon
cable from the perf board to connect
easily. Get +5V from pin 9, GND from pin
l4, and the bell trigger from pin 6. All
parts are available at Radio Shack. @&

.5 l5/uF 25y

[+) -
aaK L
"‘T MI.C. =
8 7 & 5
LM555

2 3 4

|

+5

LEp BLk
+
213-060

Radie
Shack.

'll}—A—— ~

Pin6
onJ7

e » g [18]
Keadger reedpadck

We have received a tremendous number of comments from renewing subscribers,
and many, many requests for articles on a variety of topics. We've grouped
these into major categories - we end up with nine - and present them below
with some of the ideas. As you know, Colorcue is largely a reader-written
publication; we're just the editors. But even our newest reader can write
articles with this list as a guide. Our community has a wide range of in-
terests, so whatever you write and share will help someone. Check this list,
pick a topic, and write. We'll edit, so you can forget spelling, punctuation
even. The list (no order):

1. Applications
Business applications, such as insurance or construction estimating
Scientific applications, esp. those of use in a high school science lab
Engineering, statistical, mathematical programs
Home record and budget keeping
Investment analysis, portfolio management
Hobby applications - HAM radio, horse racing

2. Tutorials - How do you do something, and why.
Assembly language - continue with this.
Novice level BASIC - use of primary BASIC statements, style
Guts - how does the computer work? Nits and grits of the chips, clocks
How to create source, PRG f{files step by step

3. Interfacing to existing devices through existing mechanisms
Printers - various type and idiosyncrasies
Modems - best type to use, whole area of communications
Other devices such as plotters, voice synthesizers

4. Software - utilities and useful routines as distinguished from applications
Languages available, benefits and use, routines of value
Utilities ~ in BASIC or any language, disk directories management, etc.
Subroutines - auto repeat keyboard routine, type-ahead, graphics

5. Hardware - Purchasable and buildable
How to use the 50-pin bus for A/D conversion, music, outside interface
Repair information for Compucolor owners

6. ISC Product related
ROM and RAM maps for software for various models
Availability, compatability and differences between models
List of hardware and software suppliers
List of and/or specific engineering changes

7. User Group corner
List of groups, what they are and do
User Group submitted articles (get your secretary going!)

8. Games (many requests for and against)
Adventure type game information
Puzzles and their solutions
Interesting BASIC games
Zork adaptations

9. Reviews
Books, games, packages, hardware, anything applicable

HOWARTD R OS E Ny I NC.
F.0, EBox 434

Huntinadorn VUalley, Fa.

192006
(215)-464-7145

X X X X BUSINESS SOFTWARE X X X X

LEDGER

Fvery business and home should have this program.

LEDGER allows gou to do a3 Receipt paae,

3

Dispersment page, 3 Dues Collection List, 8 Eudget,
arnd amny other form that youw may have developed that

uses rows & columns for numerical datas storage

with

Titles. This easy and useful to wse program allows

31 columns of data,; and 3 32nd column totals

each

TOW., There are 80 rows for each column and column

totals., Intermediate row sub-total arithmetic

is

user defined. The arithmetic functiorns permitted

are +,=,X,;/,=, Savinag, Loading, and Replacing
to. the File Control System (FCS», Frinting

data

the

Ledger sheet, and easy +trial entries and chanqges

make +this a3 power-house. Requires 32K RAM
117 -key kegboard.

and

LEDGER disk imcludes LEDGER, Imstructions, FRINTER

DRIVER, & PFrinter Driver Instructions.
price

PERSONAL DATA EBASE

75.00

FDE writtenm inm Assembly Larngquage 3llows you to

create 3 data base file comsisting of data base
records. Records are composed of a mix of litersl
and rnumerical fields as required. The records may
thern be used for statistical analysis, mail merae
insertions for the mail merge word processor, data
storaqge, retreival and sorting. Records may be
added, changed, deleted, & searched, 32K holds
1200 records.
Fersonal Database II price 85.00
Options:
Flottimg program - screen/printer price 30.00
Distribution Arialysis — Statistics price 30,00
Ercode/Decode Data/Hold Files price 13,00
Math Option I - (+,-,%,/) price 15,00
Math Option IX - ($,+,-) price 195,00
Form Processing price 39.00
Left/Right Justification price 10,00
Mail Merge Insertion price 20,00
NOTE: FERSONAL DATA EASE and any 4 options priced at 10%
discount.
EXECUTIVE WORD PROCESSOR price 299.00

MAIL MERGE WORD PROCESSOR price

349.00

FORTRAN Programming

by Howard Rosen

P.O. Box 434

Huntingdon Valley, PA 19006
(215) 464-7145

Instead of a series of lectures on the FORTRAN language, the approach will be to
simulate sitting at a Compucolor 11 (CCII) and writing short, but executable,
FORTRAN programs.

The first step will be writing the source code (the program) with the EDITOR (an
ASCII editor such as the SCREEN EDITOR or the TEXT EDITOR, but not FREDI; he's
strictly for BASIC). Since FORTRAN code must start in column 7 or greater, the TAB
key will be pressed prior to writing any line of code except for statement labels
which appear anywhere in columns | through 5 and are numbers. A "C" in column 1
allows that line to be a non-executable comment line and any character in column 6
is for the purpose of making that line a continuation of the previous line. Our
first program will simply write a line to the screen. I'm going to use the SCREEN
EDITOR for writing my program. Remember, you must have the FORTRAN disk to compile,
link, and attach the library. More about that later.

Load the editor and reply to the prompt with:

FORO1.FOR

The file for a source code named FOROI.FOR has now been initiated, but nothing has
been written to the disk, yet. Let us begin. Remember to TAB.

WRITE(3,10000)
DO 1000 I = 1,10
INX = INX + I
WRITE(3,11000)INX,DINX
1000 CONTINUE
WRITE(3,12000)
STOP
10000 FORMAT(' THE INTEGER AND FLOATING POINT VALUES
1APPEAR BELOW'/10X,'INTEGER',8X,'FLOATING POINT'/)
11000 FORMAT(11X,I5,14X,F6.2)
12000 FORMAT('0 YOU HAVE SEEN THE CCII IN FORTRAN')
END

The above progam represents a very simple but direct approach to starting in FOR-
TRAN. If you feel you've made no errors, then save the program by pressing the FNI
key.

Next, the source program (FOROI.FOR which you just created) must be compiled. If you

have one disk drive, remove the source disk and insert the FORTRAN compiler disk. If
you have two disk drives, insert the compiler in driver CD1:

7

ONE DRIVE

FCS>RUN F80

Remove compiler disk
Replace program disk
F80>FORO1
F80>control C

Remove program disk
Insert compiler disk
FCS>RUN L80
L80>FOR0O1

Remove program disk
Insert Library disk
L80O>FORLIB/S

TWO DRIVES

FCS>RUN 1:F80
Leave disks in drives

F80>FORO 1
F80>control C

Leave disks in drives

FCS>RUN 1:L80
L80>FORO1

Remove compiler disk
Insert library disk
L80>1:FORLIB/s

(Relax. This will take several minutes.)

Remove library disk
Insert program disk
L80>FORO1/N

L80>/E

Leave disks in drives

L80>FORO1/N
L80>/E

At this time the program (all linked) is being written to disk. When finished, get
the disk directory and notice that FORO!I.FOR, FOROI.REL and FOROI.PRG are all on
disk. FCS)RUN FORO! will execute your prograrn.

There is another way to link and execute a FORTRAN program. There is a relocatable
element called EQ.REL on the FORTRAN compiler/linker disk. With EQ.REL, the absoute
element will use less space. Follow the steps below to experiment with EQ.REL.

Insert compiler disk
FCS>RUN L8O

Insert compiler disk in DCI1
FCS>RUN 1:L80

L80>/P:AF00 L80>/P:AF00
Insert program disk

L80>FORO1 L80>FORO1
Insert compiler disk

L80>EQ L80>1:EQ
Insert program disk

L80>FORO1/N/E L80O>FORO1/N/E

Insert library disk
FCS>RUN LIB

Insert program disk
FCS>RUN FORO1

Insert library disk in CD1
FCS>RUN 1:LIB

FCS>RUN FORO1

The PLOT command from BASIC is not available,
type LOGICAL or BYTE in your FORTRAN Program.

but it can be simulated by declaring a

BYTE RED,GREEN,YELLOW,BLUE,CR,LF,ERASE
DATA RED,GREEN,YELLOW,BLUE/17,18,19/
DATA CR,LF,ERASE/13,10,12/

Now write to the logical unit 3 (LUN #3), the screen, with a non-FORMATted write
statement, e.g.:

WRITE(3)ERASE,YELLOW

That statemnent will erase the screen and prepare tor the screen display to be in
yellow. @&

8

Plot 3D Figures with FORTRAN 80

by Doug Van Putte
18 Cross Bow Drive

Rochester, NY

FORTRAN 80 is a superior language for
writing 3D graphics programs for the
Compucolor or Intecolor because it han-
dles the math operations very effec-
tively., When Howard Rosen read my article
"3D Graphics" in the Feb/Mar issue of
COLORCUE he called to suggest that
FORTRAN programming was an excellent way
to improve the speed of the many math
operations required to move objects
around the screen. Thanks to Howard, I
accepted the challenge of converting the
primary 3D operation of rotation of an
object to a structured FORTRAN program.

The first hurdle to pass was to under-
stand the method of plotting to the
screen, While BASIC has the convenient
PLOT statement, screen graphics in FOR-
TRAN 80 require the use of LOGICAL vari-
ables. After the chosen variables are
defined by the LOGICAL statement, they
can be assigned the required plot values
identical to the familiar BASIC PLOT
values. Plotting is then achieved by the
unformatted WRITE(LU) Al statement, where

LU stands for the device logical unit,
and Al are the plot variables. For
example, to plot a point, x,y, consider

the little program in Listing 1.

Listing 1

PROGRAM PLOTXY
C DEFINE VARIABLES AS LOGICAL
LOGICAL P2,LX,LY,P255
C ASSIGN VARIABLES PLOT VALUES

P2 = 2
Pe55 = 255
LX = 40

LY = 50

C PLOT THE POINT X,Y ON THE SCREEN
WRITE(3) P2,LX,LY,P255
END

14624

The value of (3) for the Logical Unit is
the device number of the console. So, the
unformatted WRITE is the statement that
the programmer uses to convey values
directly to the memory, just like BASIC's
PLOT statement.

This all seems somewhat awkward, doesn't
it? Keep in mind that you end up with
tast, compiled PRG programs or sub-
programs which can solve complex problems
with double precision. The subprograms
can become entries in a personal library
which can be linked and run with a main
program at any time. In addition, a large
library of math functions are at the
programmer's disposal. Another strong
advantage is that the source code, "as
is", can probably be compiled on just
about any micro which supports FORTRAN
80. This should give the program entre-
preneur a broader market for his programs
and the venerable Compucolor owner some
comfort that his source programs will be
useable on his next machine.

Now consider the concept of a 3D plotting
program which draws a box and rotates it
in 10 degree increments sequentially
about all three axes, changing its color
on each rotation. The functions in flow
chart form are given in Figure 1.

Since 1 wanted to use subprograms to
perform the functions in the boxes, the
next learning experience was under-
standing how to communicate between the
main program and a subprogram. Any vari-
able that is passed to and from a sub-
program must be identified in the CALL
statement and in the SUBROUTINE def-
inition statement. The main program
variable names are used in the CALL
statement, while dummy variable names are

9

used 1n the SUBROUTINE statement,
Recognize, however, that the forms of the
variable lists in both statements must be
identical. The dummy names in the SUB-
ROUTINE statement are changed by FORTRAN
at execution time so things come out
right. This concept allows a subprogram
to be used with any main program with the
proper CALL. Also, in the CALL variable
list the actual dimensions of a main
program array must be present following
the array name in the list.

Several other hard-learned rules are
related to dimensioning and to the
definition of variables. The first rule

is that arrays and dummy arrays must be
dimensioned where they are used in both

the main program and the subprogram. The
fast rule which was troublesceme is that
specially defined variables must be

defined locally where they are used also,
There is no "global™ variable concept in
FORTRAN &0. Further development of these
ideas plus much more can be found in
Microsoft's FORTRAN 80 manual.

The FORTRAN 80 source program which
demonstrates the above features is given
in Listing 2. After the data is locaded by
the program, the four main functions are
performed by the general subprograms. The
equations in the subprograms are written
as explicitly as possible tc eliminate
the necessity for DO loops which slow
down the execution. [f you have FORTRAN
80, type in the program with an editor,

your own 3D figure in array P,
value of "NOPTS", and repeat.

your own

The subprograms can be used in any simi-

lar program with some limitations, as
follows:
1., PLTOBJ -- An object with any

number of connected points can
be drawn, If your object con-
tains some figures which are

not connected, you will need
to CALL the subprogram for
each figure,

2, INIMAT -~ This routine simply
initializes the 3*3 transform
matrix.

3. ROTMAT -- This establishes the
element values for the 3%3
rotation matrix, depending
upon the axis of rotation and

the rotation angle.

4. MLTMAT -~ This multiplies the
3*¥3 rotation matrix with each
object point to compute the

new coordinates of the object.

Frankly, [like the prospects of using
FORTRAN on my Compucolor for the advan-
tages [have stated. But bevond that, I
was schooled and experienced in FORTRAN
long before BASIC and i'd forgotten how
comfortable 1t feels. Are there any FOR-
TRAN 30 people out there besides Howard

and myself? [Yes! There's more to come

then compile, link and run the PRG pro- next issue. -- eds.] As Howard said to
gram and watch the results. Next, put in me, "Try FORTRAN 80. You'll like it!" @&
T i 1
’LOAD| | PLOT INITIALIZE COMPUTE
(% DATA L—-, BOX » ROTATION ROTATION --@
1 . | MATRIX MATRIX

o

4 CHANGE 5
. v | ROT. AXIS ?\\

(E{:L* MULT. ROT. CHANGE INCREMENT| SEEEE— 3~
MAT. # COLOR ANGLE b)

OBJ. PTS. L 6 TIMES? | —

n\J ADD 10 DEG.

ROT. ANGLE
Figure 1

10

Listing 2

30

10

Voo~V =W —

PROGRAM PLOT3D

DIMENSION P(3,18),G(3,18),T(3,3),I1(3),12(3),
DEG(3),TI(3,3)

LOGICAL CLEAR,COLOR,P2,P242,P255

DATA P/0.0,0.0,0.0,30.0,0.0,0.0,30.0,30.0,0.0,
30.0,30.0,30.0,30.0,30.0,0.0,0.0,30.0,0.0,
0.0,0.0,0.0,0.0,0.0,30.0,0.0,30.0,30.0,
30.0,30.0,30.0,0.0,30.0,30.0,0.0,30.0,0.0,
0.0,0.0,0.0,0.0,0.0,30.0,30.0,0.0,30.0,
30.0,30.0,30.0,30.0,0.0,30.0,30.0,0.0,0.0/
11,12/1,1,2,2,3,3/
T1/1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0/
IB,NOPTS,NS,ANGLE,DX,DY/16,18,1,10.0,60.0,60.0/
P2,P242,P255,CLEAR/2,242,255,12/

CALL PLTOBJ (NS,NOPTS,P,3,18,CLEAR,DX,DY,P2,P242,P255)
DO 30 IR=1,3

DO 10 JR=1,6

COLOR=IB+JR

WRITE(3)COLOR

CALL INIMAT (T,3,3,TI,3,3)

CALL ROTMAT (T,3,3,I1,3,I2,3,IR,ANGLE)

CALL MLTMAT (NOPTS,P,3,18,T,3,3)

CALL PLTOBJ (NS,NOPTS,P,3,18,CLEAR,DX,DY,P2,P242,P255)
CONTINUE

GO TO 1

END

SUBROUTINE PLTOBJ(NDS,NODPTS,DP,M1,M2,DCLEAR,DDX,DDY,
PD2,PD242,PD255)

DIMENSION DP(M1,M2)

LOGICAL LX,LY,PD2,PD242,PD255,DCLEAR
WRITE(3)DCLEAR

LX=DP(1,NDS)+DDX

LY=DP(2,NDS)+DDY

WRITE(3)PD2,LX,LY,PD242

NSP=NDS+1

DO 10 I=NSP,NODPTS

LX=DP(1,I)+DDX

LY=DP(2,I)+DDY

WRITE(3)LX,LY

CONTINUE

WRITE(3)PD255

RETURN

END

SUBROUTINE ROTMAT(DT,N3,N4,ID1,N5,ID2,N6,II,DANGLE)
DIMENSION DT(N3,N4),ID1(N5),ID2(N6)
RADIAN=(3.14159*DANGLE)/180.0

K=ID1(II)

J=ID2(II)

DT (K ,K)=COS(RADIAN)

DT(K,J)==SIN(RADIAN)

DT(J,K)=SIN(RADIAN)

DT(J,J)=COS(RADIAN)

11

RETURN
END
SUBROUTINE INIMAT (DT,M1,M2,DTI,M3,Ml)
DIMENSION DT(M1,M2),DTI(M3,M4)
DO 10 I=1,M1
DO 10 J=1,Ml
10 DT(I,J)=DTI(I,J)
RETURN
END
SUBROUTINE MLTMAT (NODPTS,DP,M1,M2,DT,M3,ML)
DIMENSION DP(M1,M2),DT(M3,M4)
DO 10 I=1,NODPTS
PX=DP(1,1)
PY=DP(2,1)
PZ=DP(3,1)
DP(1,I)=PX*DT(1,1)+PY*DT(1,2)+PZ¥DT(1,3)
DP(2,1)=PX*DT(2,1)+PY*DT(2,2)+PZ*DT(2,3)
DP(3,I)=PX*DT(3,1)+PY*DT(3,2)+PZ*DT(3,3)
10 CONTINUE
RETURN
END

8K RAM BOARD

K oF ADDITIONAL RAM ADDRESSED AT 40O0QH-5FFFH, THE SPACE UNUSED
BY YOUR COMPUCOLOR AND AVAILABLE FOR PROM. Now You CAN USE |
ADDITIONAL RAM INSTEAD, ALLOWING YOU TO INCREASE THE MAXxImuUM RAM |

OF YOUR MACHINE TO 40K, INSTALLATION 1S EASY, REQUIRING A SMALL
|
| MODIFICATION TO THE LOGIC BOARD. [T IS COMPATIBLE WITH THE |
I
FrReposT CoMPUTERS, INC., BANK SeLecT ROM Boarb.
US $65.00 pLus $2.50 POSTAGE AND HANDLING

Tom DEVLIN

3809 AIRPORT ROAD

WATERFORD, MI 48095

FOR MORE INFORMATION, SEND SASE or seEe ApriL/MAY COLORCUE,

12

A Music Tutorial
Using the Compucolor 11

and Soundware™

by D. B. Grant

2 Brookside Avenue
South Perth 6151
Western Australia

(Reprinted by permission from the CUWEST

users group newsletter.)

Music is made up of notes of
sounds and varying lengths in
arrangements, and that is about
we need to know.

varying
varying
all that

If you look at the sheet of music you
have chosen for your first "masterpiece",
you will notice that it has two sets of 5
lines. One set, correctly called the
Treble Staff, is the only one in which we
are interested. The other staff is called
the Bass Staff.

0
_ Kk L
Y G
PY) TS—D_—
Figure 1

The large S type figure on the Treble
Staff is a Clef, but more importantly you
will notice that it cuts through one line
four times. This line, for our purposes
only, is called H, and you must fix that
firmly in your mind while you are writing
music for your computer. As soon as you
finish with the computer you must forget
"H", because there is no such note in
music. (There will be other things which
we will use that will apply only to us,
so watch who you air your musical know-
ledge with.)

H is the middle key on the second line of
the keyboard, and, with the addition of a
"ledger line", we can cheat again and
make H the middle of our musical range of
notes.

'S' is on our "ledger line" and is nor-
mally called MIDDLE C in all other music,

If possible, the music you wish to com-
pose should come within the range "A" to
":", These are our "white keys". A piano
keyboard has a line of white keys plus a
lesser number of black keys in groups of

2s and 3s. Our equivalents for the black
keysare ER Y UI P @.

If you are able to play the piano "by
ear", you could now go ahead and compose.
For the rest of you...read on.

With your Soundware unit plugged into the
modem port at the back of the computer,
insert the Soundware disk and hit AUTO to
bring up the MENU, then hit M for Music
Composer. After the Music Composer dis-
play comes up on the screen, it is best
to wait a few moments before starting
work. Read the list of commands to make
life easier later on.

The keys are all named for you, but more
theory is needed at this stage.

Back to the music. We have all the white
keys named on our staff, but not the
black keys. The black keys are used when
you see an odd looking "b" or "#" on the
line or in the space. The "b" means that
the original note is to be "flat", and
the "#" means that the original note is
to be "sharp". For instance, if on the
line which is our "D" line there is also
a "b", we must hit "E" instead of "D". If
we had a "#" on the "D" line, we would
need to hit "R". Try these three keys and
note the difference in sound. If the "b"
or "#" is placed at the beginning of your

13

piece ot music right near the Treble Clef
sign, then every "D'" in the piece of
music would be "flat" or "sharp", as
would any other note on whose line or in
whose space these signs were placed.

However, there are exceptions to this
rule, and you'd best know about them. If
a note has been "flat" or "sharp", and
you then see a " " sign near one of
the notes you are to play, then--and only
then--that note reverts to the original
note until the next BAR LINE, unless told
otherwise.

What's a Bar Line? This is a vertical
line from top to bottom of the staff, and
there are lots of them. If a note has not
been flat or sharp from the beginning of
the music and you suddenly came across a
flat or sharp sign, then that also
remains 1n force only until the next bar
line, wunless told otherwise. This may
sound a little strange, but so will the
music 1f you don't get it right.

Now let's go on to the varying lengths
part of the notes. By a very basic code a
musician knows the duration of any note

he is to play, and we can easily learn
this code.
An outline of an egg (on its side) is

called a whole note:
O

Hang a tail on this egg and it is halved
in duration (a half note):

J

Fill in the hole and we have a quarter

note:
.

Hang a flag on the tail and, yes, a one
eighth note: ﬁ

flag makes it halve again:

i

All these code signs have names, but who
cares? We don't! Look at a piece of music
and see how many types you can find. They
won't all be there, thank Heaven; some
peices of music use only one or two of
them, and, with a bit of luck, you'll
have chosen one such piece,

Another

14

One last point on note duration is that a
dot right near the note means that the
duration of the note is increased by 50%,
and you may as well know the reason for
this too. The Bar Lines, as well as
telling you about changes in sounds (when
necessary) also tell you about the RHYTHM
of the piece. Have a look at the very
beginning of the music again and you will
see two numbers, for example: 4/u 3/4
2/u 6/8, or just a large "C". The
bottom number tells you that the basic
note is a quarter note if it is a &4, or
an eighth note 1f it is 8. The top number
tells you how many such basic notes are
to be between any two Bar Lines, or the
equivalent of this number of basic notes.
There may be 4 quarter notes, | whole
note, 2 quarters plus 4 eighths, or any
other combination, but they must add up
to the same each time, between any two
bar lines. The large "C" at the start 1is
the same as 4/4. Add up the notes in a
few different Bars (the space between two
barlines) and you will usually get the
same answer .. with a few exceptions; so
sorry about this.

The exceptions are that, often In the gap
between the Clef Sign and the first bar
line there are not enough notes to add up
to the required number, but if you look
at the very last bar you will most likely
find the balance... with a few ex-
ceptions! These last exceptions (hooray!)
are the RESTS.

¥ = an eighth rest

g = a quarter rest

= - a half rest

- = a whole rest
Okay, NOW add 'em up and they will
always, always be right, and you must

keep them that way in your composing too.
[f you don't you will not get the results
you would prefer. Don't forget the fact

that a dot after a note increases the
duration of that note by 50%.
[f you are still keen to compose, then we

will begin.

Hit ERASE PAGE then SPACE BAR to clear
all those notes you tried out earlier,

then hit & followed by S. You will hear a
long note. Now try all the other numbers
I to 9, In any order, to hear the dif-
ferent lengths available, for any note.

Hit Right Arrow and you will hear a re-
play of all the notes you have entered.

Hit ERASE PAGE again if you tried out any
additional notes and vyou will be left
with only the S. Hit 8 then D F G HJK L
followed by Right Arrow and you will hear
a scale of long notes.

Hit L then 4 KJH G F DS S (again) 2 D
FGHIKL.

Now try Right Arrow to hear the tune you
have entered.

You will hear the scale in three ver-
sions; first with long notes, then with
notes half as long, and then half again.
You can replay these scales as imany times
as you wish by hitting Right Arrow after
each replay. When you've digested what
you have entered, hit ERASE PAGE to clear
it all, except the very first note ... In
this case S.

The only way you will get rid of that
first note 1is by hitting the Space Bar.
This only applies to the first note of
any tune.

I[f you make an error while entering a
tune, you delete the last note by hitting
the Left Arrow, and you can keep on going
back deleting notes one at a time with
Left Arrow. (And the Right Arrow will NOT
restore them.)

Note that when you set the length of a
note on your scales, all the notes that
followed were also at that length untii
you changed the length.

Before you start on your tune you must
decide just what length you are going to
make your shortest note. Glance through
the piece and find the shortest note. If
in a 3/4 tune (waltz) the shortest note
is a o then make it a 2 and you will
find that you will be using % and 6 for
d and Jd- I[f you come upon an eighth
note then you can wuse | for that
note. [f you had used & for your shortest
note then you would be in for trouble
when you came to de as it would need to

be 12 long, and you can't use a length
over 9 (or under 1).

lLook at your first note and compare its
position to Figure 1. Hit the appropriate

key, followed by the length number you
need. Go on to your next note and do the
same. If this second note is to be the

same length as the {first note then you
don't have to hit a length number at all;
you only have to do that when you get a
change 1n length, and then you hit the
new length number AFTER the note you wish
to change as this will then change the
length of that note and all subsequent
notes until you change it again. If you
hit a wrong length number then you only
need to hit the right length number to
alter it; it will change only the length
of the last note entered.

Hit Right Arrow often to hear how you are
going. Left Arrow deletes the last note
only, including rests. Oh yes. Rests. If
you come to a sign denoting a rest, then
you enter it at its correct length by
hitting Space Bar followed by the length
of the rest.

The tune is the thing that all this is
about, and when you have passed your own

examination then you save the tune by
hitting B. You will be asked for a name
for your tune (less than 7 letters), and
after a pause your music will be saved.
You hit C to have any music loaded from
disk, then Right Arrow to hear it played.

It's a good idea to write down the names
of the tunes you save, as this saves you
the bother of going to the Directory to
find out.

Lots of music to you. @

Tech Tip

By David B. Suits
The space bar on the ISC keyboard is
notoriously stiff. The stiffness comes
not from the bar itself, but from the
strong spring in the switch. Unsoldering
the space bar switch and swapping it with

another (e.g., the CPU reset switch) is
an ideal and inexpensive solution. @&

15

el o : i %

TO YOUR 16K COMPUCOLOR 11 (V6.78, v8.79 & 3621)

for onl 37 fBb].()() (u.s.)

Completely assembled and tested.

No soldering required. Just plug in.
Full installation instructions included.
All RAM chips are in sockets (8).

Spare RAM CHIP included.

90 Day warranty.

Price includes air mail costs. (Aust.=$100 Canada =$130)

P PJ PROGRAM PACKAGE INSTALLERS,
8 Hillcrest Drive,

DARLINGTON,
WESTERN AUSTRALIA 6070

Add lower as

TO YOUR COMPUCOLOR 11 (v6.78, v8.79 & 3621)

for onl Y 55'2353 (u.s.)

Completely assembled and tested.
No soldering required. Just plug in.

Full installation instructions included.

2716 EPROM in socket.

Switchable between Lower case and graphics. (switch incl.)

90 Day warranty.

8 & & = = B »

Price includes air mail costs. (Aust.=$29, Canada=$39)

PROGRAM PACKAGE INSTALLERS,
8 Hillcrest Drive,

DARLINGTON,
WESTERN AUSTRALIA 6070

Assembly Language
Programming

by Ben Barlow

Part VIi:
M80 - the Macro Assembler

The Macro Assembler can save you time

writing and debugging programs, and it
can save space on your disks. It's a
little tougher to use than the regular

Assembler, but the benefits are well
worth the learning if you do any kind of

serious assembly language work. This
small tutorial on M&0, the Macro Assem-
bler, will explain the benefits, tell
you how to use the package itself, and

explain how to
major features

let's examine the

take advantage of the
that M80 offers. First,
benefits.

Modularity
M80 allows you to break your program into

functions (a fancy term for rational
pieces), and separately code and test
each function independently. L&0, the
Linkage Editor supplied with the M&0
assembler will combine those separate
functions for you into a comnplete pro-
gram. The smaller chunks of code are
easier to edit, they take less disk

and best of all, 1f you define
them properly, they are easily reused -
without reassembly. So you save time in
the edit-assemble-test phase, you save
disk space., and you save time writing new
programs when you can reuse existing fun-
ctions.

space,

Some Definitions

What? Wait a minute. What ts a "Linkage
Editor", a function - a "rational piece"?
OK. A iittle definition may be in order.
Starting with the source file, a text
file of assembly language instructions
constructed with an editor of some sort
or another (the screen editor or its
variants are good choices), an assembler
{the Assembler or M80) reads the source

file and translates it into
which it places into a file.
is not quite machine code, but is much
closer than the original source. The
Assembler produces an object file of type
LDA which can subsequently be LOADed and
RUN by FCS; but M80 produces a
RELocatable object module. The REL (for
short) file cannot be LOADed and RUN by
FCS, because FCS does not understand its
format. Being '"relocatable" means that
the object code in the module can be
placed anywhere in memory. M&0 does not
generate absolute addresses, but instead
produces "offsets" to a zero origin. (An
origin can be specified, but the object
module produced is not then relocatable,
and many advantages are lost. Unless
necessary, don't put ORG statements into
your M80 source files.) The REL file must
be processed by L&0, the Linkage Editor
before it can be used. The linkage editor
takes the REL file (and possibly other
previously assembled REL files) and com-
bines them, relocates them (which means
making all their address references
fixed), and creates a file of type PRG,
which can subsequently be RUN by FCS.
Sound complicated? I'd be lying if 1 said
1t wasn't, and you wouldn't believe me
anyway. The User's Manual is good for
reference, but useless for training. It
does say, however, that 1t "...is not
intended to serve as instructional
materlial, and presumes the user has sub-
stantial knowiedge of assembly language
programming.” Some perseverance, a little
experimentation, and careful reading
should get you off the ground, though.

object code
Object code

Reusability
Being able to combine previous work with

17

new work is probably the biggest benefit

of the wholie package. As an exaimnple, you
could design a small routine (function)
to read a joystick input and return a

value. Once written and tested (probably
with a small driver, or test program) the
function can be used over and over simply
by linking it in with the other parts of
the program. You know it works, and you

know how to use it. A set of screen
handling routines, or the Sort routine
published in a past Colorcue are other

examples of reusable functions. Once done
and working, they stay that way, and you
don't need to spend time retyping or
editing or assembling them. Your program-

ming style has probably benefitted by
your trying to decompose the overall
problem into a set of independent

functions. So much for modularity.

Macros
The second big benefit of M80 is the
ability to use macros in your source

code. Like the REL files which perform
specific functions and are reusable,
macros define functions in source lan-
guage and permit their reuse, with the
same benefits as modularity. Once
developed, a macro can be reused, you
know it will generate the right code, and
you save coding and debugging time. A
macro is a named set of source statements
appearing at the front of your source
file (or sucked in from a collection of
them on a disk, called a macro library)
which M80 will substitute for a call upon
that macro - a reference to its name. A
macro is really a sort of shorthand. Its
definition by name at the front of the
source says to M&0, in effect, "Here's a

set of assembly language Iinstructions
named {whatever). As you read along and
come to the op-code {(whatever), substi-
tute these instructions.” That seems easy
enough. Things get a little more compli-

cated because the macro can have
arguments, and can do some limited
testing of those arguments during the

generation steps to modify the code pro-
duced, but we'll get into that later.
(The concept of macros is not unique to
assembly languages. Many high level lan-
guages derive a lot of power from their
use. PL/1 and C come immediately to
mind.) Macros can save a lot of
repetitive coding, and can reduce errors
by simplifying the instruction set.

Conditional assembly

The ability to conditionally assemble
statements can be a big help to writers
of general purpose programs, or to
writers of fancy macros. They allow a
macro to be tailored more closely to the
situation in which it is called, by gen-
erating different code depending on the
presence or absence, or the type of some
of its arguments.

Examples

Let's look now at some examples. We'll
develop them from the assembly language
program on page 16 of the June/July 1982
Colorcue. These programs, which colored
the entire screen, will be shown in
listings below, so if you've wrapped fish
in the June/July issue, don't despair.
First, we'll develop two useful macros,
to save registers at the entry to a
routine, and to pop them back at its
conclusion. Here is their definition:

ENTER MACRO ;begin the definition of ENTER
PUSH H :save h,l (first instr to be genn'ed)
PUSH D ;second instruction
PUSH B sthird
PUSH PSW ;fourth
ENDM send the definition
EXIT MACRO ;begin the definition of EXIT
POP PSW
POP B
POP D
POP H
RET ;these will be generated when EXIT is used
ENDM send the definition

i8

Now, let's use the mmacros and see what
happens. Listing 1 shows the areas of the
program where the macros are defined and
used. MB0 puts a + sign before each
instruction generated by a macro. Note
that while we code only one line (ENTER
or EXIT), MR0 generates four or five
instructions. That's a bproductivity
multiplier, and you won't have to remem-
ber any longer in what order you put
things on the stack. But (there’s always
one of those), we don't have quite what
we want. Although our ENTER and EXIT
macros generate code, it's not quite the
code we want., When called by FCS, as the
first routine in the example is, we must
return a value 1n the B register as an
error indication. If we don't, FCS will
display a red error message of some sort
on the screen afrer RUNning our program.
So, we've got to change the EXIT macro a
bit to accept a return code for the B
register. We'll do this with cond:itional
asserbly:

EXIT MACRO RVAL

test to see if an argument was given on
the «call line at all. That's what the
IENB and matching ENDIF do. IFNB stands
for IF Not Blank, and means, "if an RVAL
argument was specified, generate every-
thing between here and the matching
ENDIF. M80 also provides other tests
(e.g., IFB - IF Blank) and we can put
many arguments in our macro definition,
not just one; but one illustrates the
use,

Look at the generated code in Listing 2.
You will guickly note that the POP of B
in the first routine is somewhat useless,
when we come along and change it two
lines later. Assuming that €, which is
part of the register pair BC, isn't
needed, that's right. We could have
tested the RVAL argument pefore doing the
POP B, and avoided it. [f we were 1o do
that, though, ENTER would also have to be
changed too, so it did not PUSH B. Then
we'd have to match ENTER types and EXIT

;begin the definition (this macro must

;replace our old EXIT macro)

;do the pops as before

stest to see if RVAL used in macro call
;if it was, put RVAL value into B

;if RVAL was not present in call, MVI

iwill not be generated.

POP PSW

POF B

POP D

POP H

IFNB <RVAL>

MVI B,RVAL

ENDTF

ENDM
Ye can use this macro 1n the first
routine now, which is called by FCS.

Simply replace the macro call we had put
in as:

EXIT ;and return to FCS
with:

EXIT 0 sand return to FCS
RVAL, as coded on our macro’s definition

line, is an argument. When the macro is
used, as we did immediately above with
EXIT 0, we can inciude or omit this argu-
ment. If inciuded, the macro will
generate a

MVI B,RVAL
instruction, «inie vepiace RVAL with what-
ever we code on the call line. With EXIT
0, it would generate

MY 8,0
as you imight expect. The macro can also

types, and we're trying to simpliiy, not
complicate. So, at the expense of a
couple of bytes of unneeded code, we've
got generality. (If you're unwilling to
spend the two bytes, and want to write
the tightest possible code, you're
probably not interested in coding and
debugging speed.)

To complete the example, we'll put the
macro definitions into a library,
separate the program into two modules,
and assemble each independently. A little
absurd, given their size, but a reason-
able example. Their listings are shown in
Listing 2. (Even though the first
routine, SETUP.MAC is small, it is
general purpose enough to use with any
programs you want to link into BASIC that
are entered through the CALL vector.)

19

+ + + +

+ + o+ o+

+
¢
¢
+

+ + o+ o+

20

iSYSTEM EQUATES - ADDRESSES OF THINGS WE'LL NEED Hoa0°

CALLVEC Eau
TOPMEM EGU
SCREEN Eau

ENTER MACRG
FUSH
PUSH
PUSH
PUSH
ENDH

EXIT MACREO
POP
POF
Pap
FoF
RET
ERDM

START: ENTER
PUSH
PUSH
PUSH

PUSH

EXIT
popP
pop
FOF
pap
RET

CALL: ENTER
PUSH
PUSH
PUSH

13282
32940
7G00H

o oo T

PSH

M e

PSR

PSW

T oo

START

4o’
+ADDRESS OF VECTOR FOR CAl 00ot?
;ADDRESS OF TOP OF MEMORY 0002°
sAODRESS OF SCREEN MEMORY a4003°

20047
;BEGIN DEFINITION

00067

0009’

000C”
;END DEFINITON

;HEGIN DEFINITION Q00F°

00127

001s
;END DEFINITION 00187

0017’
sHACRO: SAVE ALL REGS no1g
;BEGIN DEFINITION 00197
00187
Ho1c”
001e”

JAND PUT INTG BASIC’S poINT 001D
001E’

{MACRO: POP REGS AND RET. 001k’

LAST BYTE

08297
0023

0024’
{MACRD TO SAVE REGS 025"
;BEGIN DEFINITION
0026’
0027’
0029’
0028’

+MACRO: POP REBS AND EXIT
0028’
002F°
00307
00317
0032°

Listing 1

Macro Definitions and Use in Program

Fi
€1
Dt
El
06
Cy

E6
FE
£a

Fi
£1
I
El
£9

8202
001¢’
8203
FFFF’

g0aC

7001

Fo
70

0423

+ + 4+ +

+ + o+ o+

4+

+ + o+ +

+ + o+ o+

START:

CALL:

LO0P:

ENTER
FUSH
PUSH
PUSH
PUSH

MVl

5Th
Lil
SHLD

LXI

SHLD

EXIT
Fap
PapP
POF
Pop
VI
RET
ENTER
PUSH
PUSH
PUSH
PUSH

LXT

MOV

INY
INX

Mov
aNI
ORI

1
v

EXIT
pae
pop
pae
pap
RET

END

L=< - [o

PoN

A, (IMP)
CALLVEC
H,CALL
CALLYEC+

H,5TART-1

TOPHEM

4
)]
B
Poi
H,SCREEN+1
M,E

H
H

AH
OFOH
070H
LOgP

PSH

START

Editor

the single program into two
pleces we've created a problem for L30 to
solve; namely that of linking the two
sections into a single whole. In SETUP,
M&80 no longer "knows" the address of
CALL, which has been relegated to the
other program, COLSCR. So we tell M0
that CALL is really external to the SETUP
source file, and not to worry. The
mechanism for that is the EXTRN state-
ment, which you can see in the listing.
L80 will then know, when linking the
object modules for SETUP and COLSCR, that
locations in SETUP that refer to CALL
must be replaced with CALL's actual
address. How will L80 know CALL's ad-
dress? We've got to tell it. We do that
with the ENTRY statement you can see In
COLSCR. For correct linkage, every EXTRN
in a module must be paired with an ENTRY
in some other module. (ENTRY's can be
"left over" without harm.)

The Linkage
In splitting

The basics of the M80 and L&80 tools are
now clear. (?) Further use, reading, and
experimentation will make you an expert,
and you'll find your coding time de-
creasing, and the number of projects you
can tackle increasing. In addition,
interesting macros or functions will make
good topics for Colorcue.

Using the Tools

The one problem remaining is actually
using the bloody things. The [SC-supplied
documentation 1s so poor, that once you
get a source file, 1t's difficult to
figure out how to assemble and link it.
Since 1t wouid be grossly unfair to stir
up your interest so far, and then leave
you stranded, let's look at the nitty-
gritty of using M80 and L&O.

Unfortunately, we haven't space to cover
source program creation with the Editors.
The documentation should help you through
that, although as [remember, I never did
master the line Editor that came on the
Assembler disk. It's best to get a copy
of a screen based editor if possible.

Once the source file s built, it's time
to run it into M8G. If vou constructed
the source file with a .MAC file type,
MZ0 wilt be happy 1f you allow it to use
a defauit, Otherwise., vou'll have to
specifv the ftile type {(e.g., .SRC) each

time. M&0 offers several options, and
we'll cover the basic ones of L (list on
printer) and N (don't make REL file). You
can experiment with the others on your
own. Let's go through the process step by
step. (The computer's output is in bold
type.)

FCS>RUN M80
M80>SETUP/N
M80>COLSCR/N
M80>(control C)

Ew o -

Step 1 simply runs M&80 from your default
disk. (if you have two drives, you will
probably want one to have your editor,
M&0 and L80, and the other to have the
source files and REL files.) Step 2 ass-
embles the SETUP program, and Step 3
assembles the COLSCR program. For this
tirst pass, we just want to check for
errors, so we didn't specify list option,
and we did specify the "no REL file"
option. Errors, if there were any, would
be listed on the screen. Step 4 quits
M80. 1f your assemblies went cleanly,
omit Step 4, and go on to Step 2 below.
After editing the source file to remove
the errors, let's go through the steps
again and obtain both a listing and a REL
file. (The printed output is wider than
80 columns, so set your printer up ac-

cordingly, or suffer the overlap if you
can't.)
FCS>RUN M80 1
M8O>SETUP/L 2
M80>COLSCR/L 3

4

M80>(control C)

Now look at your disk directory. You
should see SETUP.REL and COLSCR.REL
there. Your printer should have pages of
printed listings. On to the Linkage
Editor.

L&80 has even more options than M80 did.
Again, we will select only a few to il-
lustrate the process and produce a
working product, and let you extend be-
yond by yourselves. The sequence of com-
mands to produce a .PRG file loaded at
9000H (hex) are shown:

FCS>L380
L80>/P:9000
L80>SETUP,CCLSCR/M
L8O>TEST/)

L80>/E

U Ew -

21

t‘]nt‘]rjf‘lﬁﬂnﬁﬁﬁﬁﬁﬁﬁnﬁﬁﬁnnnﬁnnn
+ 4

R

INCLUDE MACS ;PULL IN MACRO DEFS AN

INCLUDE NACS ;PULL IN NACRO DEFS AND EQUATH(
sMACRD LIBRARY AND SOME HANDY EQUATES. C ;MACRO LIBRARY AND SOME HANDY EQUATES.
C
+SYSTEN EQUATES - ADDRESSES OF THINGS WE’LL NEED C iSYSTEM EQUATES - ADDRESSES OF THINGS WE’LL NEED
c
CALLVEC EQU 33282 ;ADDRESS OF VECTOR FOR CALLy ¢ CALLVEC EQU 33282 ;ADDRESS OF VECTOR FOR CALL
TOPNEN EQU 32940 ;ADDRESS OF TOP OF MEMORY PR C TOPMEN EQU 32940 ;ADDRESS OF TOP OF MEMORY P
SCREEN EQU 7000H ;ADDRESS OF SCREEN MEMORY L SCREEN EQU 7000H ;ADDRESS OF SCREEN MEMORY
C
ENTER MACRO C ENTER MACRO
PUSH H sBEGIN DEFINITION C PUSH H :BEGIN DEFINITION
PUSH D C PUSH D
PUSH B C PUSH B
PUSH PSH C PUSH PSH
ENDN +END DEFINITON C ENDN ;END DEFINITON
C
C

EXIT MACRO RVAL ;BEGIN DEFINITION EXIT MACRD RVAL ;BEGIN DEFINITION

PP PSH POP PSH
PP B PIP B
PP D PP D
PP H PIP M
IFNE <RVAL IFNB {RVAL)
NVI B,RVAL WI B,RVAL
ENDIF ENDIF
RET RET
ENDN sEND DEFINITION ENDN +END DEFINITION

EXTRN CALL ;CALL IS DEFINED OUTSIDE THIS ENTRY CALL ;HAKE NAME KNOWN QUTSIDE

START: ENTER ;MACRO: SAVE ALL REBS CALL: ENTER :MACRD TO SAVE REGS

PUSH H ;BEGIN DEFINITION + PUSH H ;HEGIN DEFINITION

PUSH D + PUSH D

PUSH B + PUSH B

PUSH PSHW + PUSH PSN

LU A, LINP} +GET JUNP DP CODE { LXI H,SCREEN+1 ;PDINT TO FIRST CCI IN
i FOR REGULAR ASSEMBLER)

S5TA CALLVEC +PUT IT INTO CALL VE LOOPs MOV B,E ;PUT NEW CCI CODE DOMWN

LXI H,CALL ;GET ADDRESS OF CALLABLE SUBR
SHLD CALLVEC+l ;AND PUT IT INTO VECTOR, 6
: P CALL

INX H
INX H +STEP TD NEXT CODE; IT’S TWO

LXI H,START-1 ;GET ADDRESS OF LAST BYTE O
s NENORY,
SHLD TOPNEN ;AND PUT INTO BASIC’S POINTE

NOv AH ;CHECK TO SEE IF WE'VE GONE P
ANI OFOH ;7AP CUT LOW ORDER 4 BITS

Pl 070 ;IF IT GETS TO 8¢, IT°S TOD
i1 LOOP ;STILL IN RANGE,

-e

EXIT 0 ;MACRD: POP REGS AND RET.
pap] EXIT sMACRO: POP REGS AND EXIT
poP B Fop PSH
PP D POP B
poP H POP i

Wl B,0 POP H
RET RET
END START END

SETUP Program QLSRR Program

Listing 2

Lines 2 through 5 could have been written
on one line as:

L80>/P:9000,SETUP,COLSCR/M,TEST/N/E

Line 1, of course, loads and runs L&O.
Line 2 sets the beginning of the PRG
program to 9000H. We have no ORG state-
ment, remember, so we need to tell L8&0
where the program should reside when run.
(L80 will supply a default value of 8200H
for CCII and 3621, Al20H for 8000 series,
and maybe even other values. On the
Compucolor, L8&0 loads the program before
returning to FCS, and will load the pro-
gram right over the return stack, causing
strange crashes at the very end of L&O0.
To avoid them, place programs at 9000H
instead of allowing L&80 to use the de-
fault, or allow the crash and just hit
CPU RESET. The PRG file will be OK.) Line
3 links our two routines; the /M option
provides a map of all the external ad-
dresses and the beginning and ending
addresses of the program. Step 4 assigns

Tech Tip

by Gene Bailey
28 Dogwood Glen
Rochester, NY
14625

Some Compucolor owners who are bothered
by colored squares of light on their
screens will be interested in this:

Sometimes this problem can be caused by
corroded connectors which corrode the
power to the video RAM, which is esp-
ecially sensitive. To cure the problem,
with the power off and the plug out,
remove the back cover, and remove and
replace each of the three open-wire con-
nectors on the right rear corner of the
logic (bottom horizontal) board. Slide
them up and down slightly to clean the
contacts. Do the same with the connector
on the power supply board (on the remov-
able back cover). Put it all carefully
back together.

(ed. - This simple trick does
seem to work.) @&

a name (TEST) to the PRG file, and Step 5
saves the PRG file, loads it, and exits
L&80. Listing the directory shows that
TEST.PRG has been placed on disk, and is
ready to be RUN.

For all its length, this article is just
a brief overview of the Macro Assembler
and related utilities. A {full treatment
would require a book. I hope that enough
material is present that you can begin to
use the program, and feel comfortable
enough to experiment beyond the scope of
this article. To wrap it up, there are
some sections of the manual that should
be ignored. They apply to other machines
(those with CP/M or ISIS-I1). There are
other sections that should be deferred
until you are at ease with the basics.

Ignore 2.1, 2.2, 2.2.1, 2.2.2, 2.11
Defer 2.6.1-3, 2.6.7, 2.6.14, 2.6.23,
2.6.28-29, 2.3 &

YOU'VE JUST FOUND

THE MISSING LINK!

Computer Shopper 1s your link to individuals who buy, seli and trade com-
puter equipment and softwaie among themselves nationwide. No other
magazine hifs this void in the marketplace chain.

Thousands of cost-conscious computer enthusiasts save by shopping in
Computer Shopper every month through hundreds of classified ads. And new
equipment advertisers offer some of the lowest prices in the nation

Computer Shopper's unbrased articles make for some unique reading
among magazines and there's a ""Help'" column to answer difticult problems
you may have with interfacing, etc.

Subscribe to Computer Shopper for 12 months for only $10. MasterCard &
VISA accepted.

. 2 0 BN B N B B B B 3 R B B § |

Help yourself and your club (a portion of the subscription money will be
rebated to your club) by clipping out this coupon and sending it with your pay-

ment to:
Cg CamMAUTER SHOPPER
P.O Box F ® Titusviile, FL 32780 ' 305-269-3211
ADDRESS:

NAME:

CITY:

STATE: _ZIP:

cLusnave: CocHESTER. AREA USERS GReuFP
0 BER I BNE BNS DR R SRR ENN BN N S N S I .

23

4

FROGRAM FACKAGE INSTALLERS

New Compucolor Froduct: 8 May 1982

PROGRAM SELECTABLE CHARACTER SETS: FSC1

This small hardware unit plugs into the 50-pin bus
to allow character sets held in EFROM to be selected either
from the keyhoard or within a EASIC program. Up to four sets
of 128 characters can he selected using the CQUT command.
This considerably increases the flexihility of your
Compucolor. All text can be in upper and lower caose, while
hbeing able to rapidly switch to images using the full
graphics set. An additional 256 characters can be selectedy
such as mathematical, electronic and music symbols. (Model
FSC14) '

The PSC1 can be connected to the existing dual
character sets (graphics and lower case) to replace the
panel switch. Three wires require reconnection.

In addition to its primary function, the FSC1 can

nlso be used to switch on and off up to 8 remote devices.
All data output 1lines are buffered and 2vailable with na
positive or negative strobe pulse. The bhoard also has spare

gates and an.IC socket for experimenters.

I+ supplied with EFROM character sets, no
soldering is required for installation. A manual-overide

switch is available as an option. (PSCMS)

PRICES (U.S. and Aust.%. Canada x1.25)

L L e

COMPUCOLOR 11

FSC1 (For existing dual character sets) 1645
PSC12 (Including dual graphics/lower case) £575
FSC14 (Including four character sets) 15975
FSCMS Three-position manual overide switch 1510
FSCDC Define your own characters. Per 32: 520

MSC12 Dual character set with 2-pos switch 21534
MSC14 Quad character set with 4-pos switch 1656

FSC1-36 (For ewxisting dual character sets
on Intecolor 3651? 1845

(All prices include airmail postage.)
P.P.1.
8 Hillcrest Drive,
Darlington,

Western Australia 6070

24

Another Debugger Bug

by Joseph Norris
David Hatier Co.
5910 Cresent Blvd.

Pleasantvilie, NJ

Some versions of ISC's Machine Language
Debug Package (MLDP) will fail to run on
Series 3600 computers, V9.80. The dif-
ficuity is caused by a CALL to an im-
proper ROM address. The symptom can be a
keyboard '"lockout" or a continuous scrol-
iing of the prompt at run time,

To correct the problem, the first four-
teen bytes of the program must be set to
zero (NOP). The following simple pro-
cedure from BASIC will accomplish this.
(Be sure to observe the single spaces in
the lines typed in after the FCS
prampts.)

A. For MLDP.PRG;01 (i.e., 16K versions):
1) FCS>LOAD MLDP.PRG;01

2) Go to BASIC with ESC E.

3) In immediate mode enter:

FOR N=57344 TO 57357:POKE N,O:NEXT N

COMPUCOLORS

CCIH, 32K,

Mel Bomze,

Ve6.78,

CCII, 16K,
editor, FREDI.
Charles Lovejoy,

CCII, 16K, V6.78,

CCII, 16K,

some household programs.

Darrin Miller, 238 Alderson,
406-252-2299 days.

std keyboard, manuals,
516-724-2054 evenings.

std keyboard, basic set of games, Assembler, Compuwriter,

49 South St., Natick, MA 01760 800-225-2465x1365 days

71 key keyboard, manuals,
Asking $1000 (list $2200.) Darryl Nadvornick,
213-868-0431x414 Weekdays 8-4 (PST)

117 key keyboard, prog. and maint manuals, soundware, games and

Includes Paper Tiger 460 printer w/ 2K buffer,
graphics, cable, plus free box of paper and 5 binders. Like new, $2200.
Billings,

08109

4) Re-enter FCS with ESC D.

5) FCS>SAVE MLDP.PRG; s Li00C 1F80

6) MLDP.PRG;01 may now be deleted and the
new MLDP.PRG;03 RENamed MLDP.PRG;01

B. For MLDP.PRG;02 (i.e., 32K versions):

1) FCS>LOAD MLDP.PRG;02
2) Go to BASIC with ESC E.
3) In immediate mode enter:

FOR N=33280 TO 33293:POKE N,O:NEXT N

4) Re-enter FCS with ESC D.

5) FCS>SAVE MLDP.PRG;04 8200 1F80

6) MLDP.PRG;02 may now be deleted and the
new MLDP.PRG;04 RENamed MLDP.PRG;02

An additional bug in the 16K version is
discussed in the OCT/NOV 198} issue of
COLORCUE, page 3. @&

FOR

SALE

disks. Factory reconditioned. $1300.

disks, Assembler, games.

213-864-0440 eves (PST)

MT 59101, 406-259-1924 eves.

25

26

COMPUCOLOR TIT (32K)

BUSINESS & EDUCATION SOFTWARE

IAXHMAIIHM INCOME TAX UTILITY program written for tax pro-
fessionals (1981 tax season). It handles all
validation to meet the IRS. Has internal computation for
earned income credit, excess FICA etc., Program is using the
24-hour banking arrow-type instructions.
Also comes with FED form 1040, 10407, Sch A,B,G;
New York IT200, IT201, IT214.

PRICE <200.00

CASH REGISTER SOFTWARE (FOR RESTAURANT)

Designed for general business as well as for
restaurant., Display 30/60 items per screen,
inventory control, cash/credit management, order entry/
billing, It is excellent for Telephone Orders, Normal In=-
House and Fast Food Orders. Will convert to other computers.
PRICE «500.00

A complete simulation of ancient Chinese Majong
on CompuColor II, written in BASIC. It is a one
player game., Program will display the actual Chinese + Graphics.,

PRICE %200.00

QSORT Utility program to sort fixed length record,
variable key location, and length of key.
PRICE s 20.00

ERACTIVE 0S
Interactive Operating System written to integrate
your MENU program to make most control of your
computer (like TSO). It has 30 commands which include calcu-
lator, set date and time, create data file, list CCII key
memory location, printer control(l4 commands) etc. Excellent
for education demcn., or hardware demon. Ten-page of program

listing enclosed. PRICE 5 79.99
+* 3* 3+

MAU CORP (212) 431-1277 SOFTWARE DEVELOPMENT

5 ELDRIDGE STREET, STORE NORTH CUSTOMIZE PROGRAMMING

NEW YORK, NY 10002 SYSTEM DESIGN

Back Issues Sale

Back issues of Colorcue are an excellent source of information about
Compucolor computers, ISC computers, and programming in general. Inter-
views, interesting articles, and programs are all there with a touch of
history.

The list below includes every Colorcue ever published. If it's not on the
list, then there wasn't one.

MULTI-ISSUES at $3.50 each

___ Oct, Nov, Dec 1978 __ Apr, May/June 1979

___ Jan, Feb, Mar 1979 ___ Aug, Sept/Oct 1979

INDIVIDUAL ISSUES at $1.50 each

__ Dec 1979/Jan 1980 ___ Feb 1980 __ Mar 1980

___ Apr 1980 __ May 1980 ___ Jun/Jul 1980

INDIVIDUAL ISSUES at $2.50 each
___ Dec 1980/Jan 1981 ___ Aug/Sep 1981

___ Dec 1981/Jan 1982 ___ Feb/Mar 1982
_ _ June/July 1982

Oct /Nov 1981
April/May 1982

POSTAGE
US and Canada -- First Class postage included.
Europe, S. America -- add $1.00 per item for air, or
$.40 per item for surface.
Asia, Africa, Middle East —- add $1.40 per item for air, or
$.60 per item for surface.
DISCOUNT

For orders of 10 or more items, subtract 257 from
total after postage.

ORDER FROM: Colorcue
Editorial Offices
161 Brookside Dr.
Rochester, NY 14623

Colorcue

A bi-monthly publication by and for
Intecolor and Compucolor Users

Editors:
Ben Barlow
August/September 1982 David B. Suits

Volume 5, Number 2 Compuserve: 70045,1062

3 Editors' Notes

5 A CAD Program, by Doug Van Putte
Computer aided design

9 Disc Data Recovery, by Myron T. Steffy
Bring 'em back alive

10 Cueties

11 Software Handshake for Diablo 638, by Vance Pinter
Easy printer handler

13 Typematic Keyboard, by Doug Pankhurst
Scoftware auto repeat

14 Keyboard, by Bob Smith
Full function keyboard layout

15 Calendar Printer, by David B. Suits
Any month, any year

19 Compucolor Transistor Equivalents

20 Converting Screen Editor Files to
COMP-U-writer .DOC Files, by J. J. Charles
Secret bytes revealed

23 Keyboard Expansion, by Bill Anthony
Make your small keyboard larger

24 Assembly Language Programming, by David B. Suits
Part VIII: Simple math

Authors: This is 2 user—oriented and user—supported publication., Your
articles, tips, hints, programs, etc., are required to make it go. Write

or scribble your ideas down; we'll edit them and provide all artwork. Send
your articles or write for information.

COLORCUE is published bi-monthly. Subscriptions are US$12/year in the
U.S8., Canada and Mexico, and US$24 (includes air mail postage) elsewhere.
Some back issues are available. All editorial and subscription correspon-
dence should be addressed to COLORCUE, 161 Brookside Dr., Rochester, NY
14618, USA. All articles in COLORCUE are checked for accuracy to the best
of our ability, but they are NOT guaranteed to be error free.

Editors’
Notes

Compucolor owners have often been left in
the cold when their machines break down;
dealers have gone out of business or
switched to other lines and factory ser-
vice is not always satisfactory. Colorcue
has located two sources that may be
helpful:

Gary Sipple

Digital Devices

20560 West 8 Mile Road

Southfield, MI 48075

(313) 356-5140

Fred Calev

Canpuwor 1d

125 White Spruce Blvd.

Rochester, NY 14623

(716) 424-6260
Both companies will handle "shipped-in"
machine service, but should be contacted
first, of course.

Australian ISC and Compucolor owners are
active, as you've no doubt noted from
past issues of Colorcue. The maintenace
tips in this issue come from CUVIC, of
Melbourne - editor Barry Holt, 19 Wood-
house Grove, Box Hill North, 3129, Vic-
toria, Australia. Local membership is
$10. per year; non-Australian must be
more, but we don't know exactly how much.
The Western Australian User Group CUWEST
is also active, and their newsletter
typically runs 3 or 4 pages of worthwhile
information.

Several times over the last year, we have
received letters from subscribers saying
that "such and such an issue of Colorcue
didn't arrive.' As you know, we use bulk
mail (first class mailing would wreck our
budget) and the Post Office seems to
treat such mail with very low priority.
If you miss an issue, or think you have
(be careful - we seem to be running late
recently), just let us know, and we'll
send off the missing copy (first class).

User Groups - are you alive?? Drop us a
note so we can publish an up-to-date user
group list.

Notice to hardware and software sup-
pliers: Our readers are frequently un-
aware of the availability of your wares

and would like to be customers. Colorcue
would like to spread the word - your
word- to them. We can do this in two
ways:

1. Through advertising. Our rates are

low, and our readership is eager
for your products.
2. By listing all known suppliers,

which we plan to do in the Jan/Feb

issue.
Our big problem - even we, who have been
around for four years, don't know all the
suppliers and their present status. So,
if you supply hardware or software for
Intecolor or Compucolor computers and
would like to have more business, let us
know. Even if you don't want to adver-
tise, send your name and address for our
suppliers listing.

In the last issue we promised to bring

you more Fortran in this issue. We ap-
pologize to you Fortraners, but it'll be
next issue before we get back into

Fortran with a demonstration program and
a set of subroutines to make use of the
special ISC graphics features.

Bug Report!
Howard Rosen reports that a bug crept
into his Fortran program in the last

‘line:

INX = INX + I
should have been a line like:
DINX = DINX + I
If you got strange results, take note.
Flash! It seems that a second (or is that
a third by now?) BASIC compiler is in the
works, somewhere Down Under. Hold your
breath. We hope to have more details by
next issue.

Intelligent Systems Corp. has announced
that it has reached an agreement to ac-
quire the Quadram Corporation. The acqui-
sition is valued at $35,000,000 and will
be financed through an issuance of ap-

proximately 1,750,000 additional shares
of ISC stock. When the transaction is
completed, ISC will have approximately

4,357,000 shares outstanding.

Peter J. Curnin, ISC president, stated
that Quadram has a leadership position in

3

the design, manufacture and marketing of
accessories for the IBM Personal Compu-
ter. Quadram will continue to operate as
an independent business unit, and Tim
Farris, co-founder and President of Quad-
ram, and Leland Strange, Vice President
and co-founder, will be added to ISC's
Board of Directors.

ISC has announced the Executive Presenta-
tion System {EPS), which provides all the

transparancies, 35mm slides,
prints and plots. The EPS includes a
graphics language that utilizes English
statement commands such as PIE, BAR and
LINE. EPS is a complete system featuring
the Intecolor 8001R and ISC's newest
microcomputer, the Intecolor 7000. Since
EPS is device independent, the user can

and paper

include output devices such as 8-pen
color plotter, color camera system, and
an 8-color ink-jet printer. And the reso-

hardware and software users need to pre- lution 1is determined by the output
pare presentation-quality color graphic device.
visuals, including overhead projector
Moving?
If you're changing your address, please
let both the Post Office and us know of
yvour new address. (Tell us your old
address and your new one.} We don’* want
veu 1o miss a single issue of Colorcue.d
Dear Ben and David:
I have occasionally lost some data by accidentally hitting the
CPU reset key when reaching ftor the erase line key. I have hit
upon an idea to make 1t more difficult to press this key. Pick
up a piece of surgical rubber tubing a couple inches long. You
can get this at a chemical supply house, or possibly a well
stocked drug store. The tubing should be one fourth inch 1inside

diameter,

and have 1/1&6 inch thick walls.

Use a sharp knife to cut a piece of tubing exactly 5/8ths of an

inch long with good squareg ends.

switch, and slide the tubing
underside of the key cap.
thi=s setup to see that

the length of the tubing

second chance at youwr data.

piece
The key can be
vou can still
it requires a firm push to make contact.
will
pressure required to depress the reset key.
typing touch will not reset the computer,

its
the

Pry the CFy reset key from
over the socket in
then replaced. Test
depress the key, but that
Just a slight change 1in

make quite a change 1in the
This way a normal
and you may get a

ya A AP P
\7/fg¢/(//;hy&wi$

Gary A. Dinsmore

da

A CAD Program

by Doug Van Putte
18 Cross Bow Drive

Rochester,

A clever and educational Computer-Aided
Design (CAD) program for a microcomputer
appeared in the MACHINE DESIGN magazine

which I have converted to ISC BASIC. The
program, written for the APPLE II,
appeared in a Tech Brief entitled

'Drawing Isometric Views with a Micro-
computer' in Volume 54, Number 25. It
was written by Professor Dad-Ning Ying,
University of Wisconsin. The article
gives a brief overview of the program but
ieaves the reader lacking the wisuali-
zation of the conversion from a 3D object
to LD screen views. intend, through
use of a {figure, io explain the conver-
sion process for those interested in
learning more about CAD.

The program in Listing 1 converts a three
dimensional object, stored in coordinate
form, to the conventional drafting views:
Front, Top, and Profile. In addition, an
Isometric view of the 3D object is drawn.
At this point, the reader should run the
program to obtain an understanding of the
types of views created of the stored
object. The lower left hand view on the
screen is the Front, the lower right hand
view is the Profile, and the upper left
hand view is the Top. Now consider Figure
1, a representation of the aformentioned
conversion process. The figure depicted
here is a 'bookend' style object on its
side. Note that the figure is represen-
ted by the dimensions of u, v, w on a
cartesian coordinate system with the axes
labels of X, Y, and Z. The X and Y co-
ordinates are the typical screen coord-
inates, while the Z axis can be thought
of as an axis which is perpendicular to
the screen. The equations for computing
the screen coordinates from the object
coordinates are shown on Figure 1.
Without further explanation, they simply
resolve the u, v, and w coordinates of
the object to the screen ccordinates, X

"about the X axis by 90 degrees.

N.Y. 14624

and Y, depending on the values of the
rotation angles specified. See Professor
Ying's article for further explanations

of the equations. The rotation angles,

o and ¢ are what I will discuss
in more detail in the paragraphs that
follow.

To visualize the creation of each view by
rotation, the object in Figure 1 should
be rotated by the angles indicated in the
table at the bottom of the page. TFor the
Front view, no rotation is required. The
screen X values become the u values and
the screen Y values become the w values
when the angles are substituted in the
equations. For the Profile view, the
object is rotated about the Y axis by 90
degrees. The X values become the v
values and the Y values become w values.
For the Top view, the object is rotated
The X
values become u values and the Y values
become v values. By now the pattern
should be clear, the object is rotated
and its dimensions are projected by
trigonometry to the plane of the screen
to obtain the various views.

The isometric view is created by rotating
the object thru two angles. To be
strictly correct, the object should be
rotated 45 degrees or its supplement(135)
about the Y axis and 35.26 degrees about
the X axis. To eliminate hidden lines
from this view, the program cheats a bit
by not plotting the last four data
points. Other simulated 3D figures or
axonometric views can be made by speci-
fying different angles on line number 230
in Listing 1. To obtain the typical
engineering drafting views, rotations are
not required about the 2Z axis. These
manipulations can be made after modifica-
tions are made to the equations. (See the

5

3D Graphics article in the Feb/Mar Issue
of Colorcue).

The program can be changed to draw other
figures. I suggest that the new figures
be layed out on a coordinate system sim-
ilar to Figure 1 to assign the u, v, and
w values, including the proper signs.
Enter the number of data points in line
310 and the object data in groups of u,
v, w values in the subsequent lines. As
Ying suggests, the object data could be

stored in files. With the program al-
tered to read a specified file, unlimited
types of figures could be plotted. This
sounds like an excellent project for a
high school drafting class to learn more
about computer-aided design, doesn't it?

Pay attention, students of design of all
ages, this is the design method of the
future that is making a significant im-
pact today... @&

0 REM LISTING 1: AN ISC BASIC INTREPRETATION OF
20 REM 'A PROGRAM FOR ISOMETRIC AND THREE VIEWS'
22 REM -
24 REM
30 REM WRITTEN BY DAO-NING YING, U. OF WISCONSIN.
40 REM CONVERSION OF PROGRAM WHICH APPEARED IN
50 REM 'MACHINE DESIGN', V.54, #25, 1982 BY D.A. VAN PUTTE.
60 REM ARTICLE WAS ENTITLED 'DRAWING ISOMETRIC VIEWS |
70 REM WITH A MICROCOMPUTER' ;
{
80 DIM U(100),V(100),W(100),X(100),Y(100) }
90 PLOT 12,15 1
:SC = 6.1 :REM INPUT SCALE OF IMAGE §
100 READ N :REM READ NO. OF DATA POINTS |
110 FOR J= 1TO N :REM READ 3-D DATA POINTS
120 READ U(J),V(J),W(J) i
130 NEXT J i
140 FOR K= 1TO 4 ;
:PLOT 16+ K :REM COMPUTE & PLOT VIEWS ;
150 FOR I =1 TON :REM COMPUTE & PLOT SCREEN COORDS
160 REM TOP VIEW PARAMETERS
170 IF K= 1THEN TH= 0% ,0174533
:FI= 0% .0174533 |
:X0= 15
:YO= 50
:GOTO 250
180 REM PROFILE VIEW PARAMETERS
190 IF K= 2THEN TH= 90%* .0174533
:FI= 0% .0174533
:X0= 30
:Y0= 50
:GOTO 250
200 REM TOP PARAMETERS
210 IF K= 3THEN TH= 0% 0174533
:FI= 90% 0174533
:X0= 15
:Y0= 110
:GOTO 250

HOWARD R OS E N, INTEC,
F.0, Fox 434
Huntimngdorn Valley, Fa.
19006
(215)-464~7145

X X X X BUSINESS SOFTWARE X X X X

LEDGER
Every busimess amd home should have this program.
LEDGER allows Yo to do &8 Receipt paqe, 3

Dispersmenrnt page, a3 Dues Collectiorm List, a Eudget,
arnd any other form that you may have developed that
ses rows & columns for numerical data storage with
Titles. This easy and useful to use program allows
31 columns of data, amd 3 32nmnd column totals each
TOW. There are 80 rows for each column and column
totals., Intermediate row sub—-total arithmetic is
wser defined, The arithmetic functiorns permitted
are +,—,%X,/,=, Saving, Loading, armnd Replacirng data
to. the File Control System (FCS), Frinting the
Ledqger sheet, and easy triazl entries and charnges
make this a3 power—-house. Requires 32K RAM and
117-key keyboard,.

LEDGER disk irmcludes LEDGER, Inmstructions, FRINTER
DRIVER, & Frinter Driver Inmnstructions,
price 75,00

PERSONAL DATA BASE
FPDE writternm i Assembly Language a3llows 4You to
creste 3 data bhase file conmsisting of data base

records. Records are composed of a8 mix of literal
and numerical fields 2s required. The records may
then be used for statistical analysis, mail merge
insertions for the mail merge word processaor, data
storage, retreival arnd sorting. Records may be
added, changed, deleted, & searched. 32K holds
1200 records.
Fersomal Database II price 8%5.00
Options:
Flotting program - screer/printer price 30.00
Distribution Analysis - Statistics price 30.00
Encode/Decode Data/Hold Files price 135.00
Math Option I - (+,—,%,/) price 15.00
Math Optionmn II - ($,+,-) price 15.00
Form Frocessing price 35,00
Left/Right Justification price 10,00
Mail Merqge Imnsertion price 20,00

NOTE: FERSONAL DATA BASE armd anmy 4 optiors priced a3t 10%
discount.

" EXECUTIVE WORD PROCESSOR price 2Z99.00
MAIL MERGE WORD PROCESSOR price 349.00

Disc Data Recovery

by Myron T. Steffy
10833 Brookside Drive

Sun City,

Have you ever accidentally dumped a disc
containing a source file which meant
hours and hours of work down the drain?
Well, I have and if you work in assembly
language it will happen to you some day.
It has always been my practice to main-
tain duplicate files of work in progress
but this time, even that wasn't enough.
Somehow, the program which was quite
long, developed an unexpected bug after a
test assembly. I might mention that I
have two of Tom Devlin's RAM cards at
4000H and park the screen editor in one
and the assembler in the other which
allows me to use them alternately without
reloading.

When I tried to bring up the source file
in question some unexpected things hap-
pened, probably due to the remnants of
the defective program still in memory.
The disc drive started but instead of the
source file, I got some little red let-
ters on the screen, saying 'ENVE'. This
usually means that the directory is wiped
out and the disc must be re-initialized.
Oh well, the back-up disc will take care
of the problem, said I confidently.
Well, I should have run a program that I
keep on hand that clears all of the mem-
ory but I didn't. Would you believe that
I blew the second disc the same way?

When I stopped shaking, I tried to figure
out a way to salvage at least part of the
file. Due to its length, there were
probably only two versions of it on any
single disc. Here is the way I went
about it: contrary to what you may have
thought, when you re-initialize a disc,
only the directory is affected. The file
names are still present but the essential
information of where they begin and their
size has been erased. A new file is
simply written over the old.

Arizona 85351

There is a command in the FCS system
called 'READ' that you may have never
used. This is not to be confused with
the Basic command of the same name which
performs a different function. What we
need to do is get the information on the
disc into memory where we can look at and
possibly salvage it. We will assume that
you have 32K of RAM and also have a

'Debugging' program similar to the
Comtronics 'DBUG' or the later version,
'NBUG'. If you have it available at

4000H, so much the better.
that it is ready to run.

Load it so

Here is what we do with 'Read' function
mentioned earlier. The command is 'READ
CDO0:00 8200-FFFF' which reads 7DFFH bytes
off the disc into RAM starting at block
00. The first three or more blocks will
have the directory names still present
.but no information about location and
size of the file. Now bring up the NBUG
program and start looking. If you remem-
ber a key word in the heading of the
file, there is a 'Find' command in 'NBUG'
that will locate it in a hurry.

Start at 8200H and make a note of the
actual RAM location where the file be-
gins. Now locate the end of the file the
same way only this time the search word
could be 'END'. Then place a fresh disc
in the default drive and enter the com-
mand 'SAVE PROGRM.SRC 8580-89DC' where
the two hex limits are the start and end
of the file you have just determined. If
you do everything right, you have a rep-
lica of the original source file that can
be brought up with the screen editor in
the usual manner. Don't worry about the
load address appearing as '8580' on the
disc directory. The editor will supply
the correct address when it loads the
file.

If you can make an educated guess of how
far down the disc your file is located,
you won't have to look through the entire
51K. Otherwise there will be 0FBH blocks
left on the disc, a little less than half
(190H-0FBH), because you took off OFFFFH
8200H = OFBH. The next time start at
block number OFAH for a little overlap
and read off the rest of the disc. If
you don't have the debugger at 4000H, you
probably have it at 0AOO0OH or OECOOH.
Use the latter and only read off 8200H-
ODFFFH. This will be 5DFFH divided by
80H or 0BBH blocks at a chunk. The
second starting block would then be OBAH.

Your search will be from 8200H to O0DFFFH
and will take a few more steps but will
accomplish the same result.

If the arithmetic is confusing, remember
that a disc contains 190H blocks of 80H,
which total 0C800H or 51.2 K in decimal.
Most formatters set you up with the first
three blocks as directory. This is
really not enough so mine allows five
automatically. If you happen to remember
approximately what the file's starting
block number was, you won't have to look
far. The NBUG 'Find' command is a real
asset and the job is much less formidable
than it sounds here. Don't panic and
jump off the bridge until you try this
first. Better yet, make a practice run
before you are forced to use the method.

Cueties

How Did Sam Die?
By David B. Suits

(A Computer Puzzle)

Here's a little puzzle for the mystery lovers among us. The program tells the

tale.

How did Sam die? Your computer knows.

Can you figure it out without its

help? (If not, type in the program exactly as it appears below and RUN it for

the answer.)

10 TRUE = NOT(FALSE)
20 SAM IS DEAD = TRUE
30 SUICIDE =

40 HOMICIDE =
50 PRINT "SAM'S DEATH WAS: ";

SAM IS DEAD AND NOT(ACCIDENT) AND NOT (HOMICIDE)
SAM IS DEAD AND NOT(SUICIDE OR ACCIDENT)

60 IF ACCIDENT THEN PRINT "ACCIDENTAL"
70 IF HOMICIDE THEN PRINT "HOMICIDE"
80 IF SUICIDE THEN PRINT "SUICIDE"

Was Einstein Correct? (A Computer Puzzle)

By David B. Suits

Decades after Einstein's momentous
debate the question,
before asking its counsel?

Theory of Relativity,
"Was Einstein correct?"
(To check your answer,

scientists atill
Your computer knows. Can you teil
key in the program btelow and

"EINSTEIN WAS CORRECT"

RUN it.)
10 IF E = MC™2 THEN EINSTEIN = CORRECT
20 IF EINSTEIN = CORRECT THEN PRINT
30 Iy ZINSTEIN = NOT{CORRECT) THEN PRINT "EINSTEIN WAS %0

CORnreCT™

10

Software Handshake for Diablo 630

by Vance Pinter
P.O. Box 230

Columbus,

I decided to use

630 does not provide a "busy"

unless so modified.

software handshaking
with my Diablo 630 so that it wouldn't
have to be modified internally. The stock
signal

Georgia 31902

(2) Signal to printer. Diablo pin 3 to
CCII edge connector pin 3 or ISC
DB25 pin 2.

(3) Signal to computer. Diablo pin 2
to CCII edge connector pin 5 or
ISC DB25 pin 3.

The Diablo 630 buffer holds 768 charac-

ters. When the buffer is nearly full the Diablo pin 4 must be connected to Diablo
630 sends DC3 (hex 13, decimal 19) out on pin 6. Use a short wire inside the prin-
pin 2. It continues printing until the ter plug.

buffer is nearly empty and then sends DCI1

{hex 11, decimal 17). The cable requires Here 1is an assembly language routine

three wires:

which sends a bvte to the printer after
check.ng the status of the 630. &

(1) Ground. Diablo pin 7 to CCII edge
connector pin 1 or 7 or ISC DB25

pin 7.
;Character to be printed is in register E. ‘
;S10UT is the CCII serial output routine,
;V6.78 address 33C3H, V8.79 address 17F9H.
S10UT EQU 33C3H 1 V6.78 address, V8.79 is 17F9H.
0UT232: CALL STATUS ;Wait until clear to send.
QUTOO01: CALL S10UT ;CCII serial output routine.
RET
;Status routine returns only when "Clear To Send"
STATUS: IN O3H ;TMS 5501 status register.
ANT 20H ;Diablo status present?
RNZ ;No, return, clear to send.
IN OOH ;Input Diablo status,
CPI 13H :Diablo buffer full? (DC3)
RNZ ;No, return, clear to send.
;Diablo buffer full.
;STLOOP will loop until DC1 is received from 630.
STLOOP: 1IN O3H ;TMS 5501 status register.
ANT 20H ;Diablo status present?
JNZ STLOOP :No, wait until it is.
IN OOH ;Input Diablo status.
CPI 11H ;Diablo buffer empty? (DC1)
JNZ STLOOP ;No, continue loop.
RET ;Diablo buffer empty,

return, J

11

12

RRRR 000 BBRER 000 TTTTTTT
o
o
RRRR o
o
o

R R 0oa BBRR 000

omoocoo

el

o

2

o
coocoo
ooooo
-

WA R S

oy 19ET RY Steve Reddoch
Wyt sounc)

HcT1F.S UL S. Fuoumnds
For 5 1/4 inch disk drive only

Fast machineg language salmost like the arcade
aame Fohotran(c). There are 2 songs, the sound
never aftfect the speed of the program, and there
are S difterent looking aliens. There are T ekill
levels that contral the speed of ane of the
alien’s shaots. Alsa the high scores are save on disk.

For the Compucalor T % Intecolor computer
Fiume can W9, 80, W, 7R, VRL 79, V9, -

Lhses
carpitir ity of the Compo 1
(Hequires 1ok

the Full color graphios

send oheck or soney order for 19,95 tas

fedeae by
ol @ an
Ca %A1

Ca. FHesidents add &% Sales Taws
Aleo tnclude version nunber of computer

Fleaze da not send cash

AL BEE U BT

Typematic Keyboard

by Doug Pankhurst

Reprinted by permission from CUVIC
(Compucolor/Intecolor Melbourne

User Group newsletter,

November, 1982)

19 Woodhouse Grove
Box Hill North
3129 Victoria

Australia

;Sixty times a secord an interrupt is generated which ini-
jtiates a keyboard scan. Routines in ROM get the code for
sthe key that was pressed and store it in location BIFE
shex (33278 dec) and sets location 81FF hex (33279 dec) to
;88 hex (or 3@ hex if the key pressed was the BREAK key).

;
; SYSTEM EQUATES
;

sThese should be included in the System Eguate table at
;the start of the program.

KBDFL ERU 81DFH ;33247 decimal. Lecation of key-
sboard interrupt vector flapg. By
;inserting IF hex in here program
scontrol will vector to INPCRT.
;33252 dec. Last key code,

133233 dec. Mew key code,

iCourt for initial wait when us-
;ing auto repeat feature. (4004
;approx. egual to eight per sec-
jond),

;33221 decimal. User input vectar
tin which a JMP [user routine] is
jinserted.

;133278 dec. After keyhcard scan,
jeode of key pressed {zero if
sjnone) in here,

;33279 dec. Set to BTH if Rey is
ipressed, or 904 if key was BREPK.

So00sssesvdesRasasasaeTrsaaNerANTFRNRL S riavann

LKC EQU
NKC EGU
LWAIT EQU

BIESH
81ESH
2400H

INPCRT EBU 81C3H

KBCHA EQY 81FEH

KBRDY EQU BiFFH

; INITIALIZATION

;This routxne should be carrled out at the start of the
iprogram to inttialize interrupt vectors, Note that if
jother interrupts use the vector INPCRT the CRRINT needs
sto determine where the interrupt was gererated and what
jaction, if any over and above that taken by the ROM based
sroutines, needs to be taken,

ORG 9000H ;START HERE
START:
KYINIT: LXI H,KBDFL ;Set user vector into keyboard
;flan.
Ml MyIFH

Lx1 H, INPCRT;
W1 M,@C3H :Dpcode for JWP,
Lx1 H,CHRINT;Address of user interrupt

jroutines
SHLD INPCRT+l;into user i/p interrupt vector.
; ... continue with mainlire procram.
e veansseunansarsserasntaracsenss Cesreereanans Cerernsiaes
JHp MAIN

eassssasnarancrnnsarsanssanses ermererarveraa s erarraes
; INTERRUPT SERVICE

Je e e manannnssenonnianatrass isnasasrensrassrrisaarransret

iVector here from INPCRY and carry out any time critical
iroutines, determine whence the interrupt came if multiple
sinterrupts may occur {(i.e. use i/p vector INPCRT) amd
scarry out any user interrupt routires in addition to the
+ROM based system routines. The interrupt service MUST end
sWith an RET instruction. The contents of all registers on
sentry will be preserved. BREAK key detection should be
sincluded here if the ability to break out of a routine is
srequired. R BREAK may be detected by a code of S in the
iHBRDY flag as opposed to BOH for any ather key. If 2
;BREAK detection is used and program conircl is trans-
iferred elsewhere, remember to adjust the Stack Pointer,
jas it has an extra return address on the top (from the
iperiodic keyboard scan interrupt roubine that gol us
there),

ORG greoax
CHRINT: RET 1i/p vector - simply return,
iNote that by taking no acticn here, any key with the
sexception of the CPU REBET key may be passed en to the
suser via GETCHA or GETKEY ard used for any purpose
;{i.e. the action taken is entirely up to the user to de-

13

jfire). A1l codes from QM up to FFH (225 dec) are avail~
jable. Be aware that the BREAK key, as wel! as setting
1KBRDY to 5@H, outs zero into XBOHA.
Tevvenenersoanvicnccnsnnrerins
H BET CHARACTER RDUTINES
Jevevsaorascovanrraonnsasonnsners S erereEaaseNsassasieriyy
;These routines may be included at any place within the
jprogram and may be called by any user. Be aware that both
iwill hang until a key is pressed {or accept the last key-
jpress). Both routines preserve all registers except the £
jregister, in which the value of the key pressed is re-
sturned,

MAIN: Jmp HYWRK s

;Get character with no auto repeat.

AP E BRI C AR NP A F AN N AT ORI P REERE

CALL BHEY! jwithout autc repeat

PUSH P&
XRA A

1in feo.

.
T

§TA HERDY Llear k/hcard ready
57A KECHR 1and character buffer

po2 PoW
RET
1bet character with
ypressed.
BETHEY: EI

;for singie char
roperation.
auto repeat as long as key is

yTypematic key get.

CALL BHEY1 ;Bo get weyoress

PUSH PaW
¥RA A

1
sand clear k/board

5TA KBRDY jready flag.

GETCHA: ET 16et weypress, return character pop P ;
RET H
Keyboard
By Bob Smith
498 Brown Street
Napa, California 94558
FO F1 F2 F3 Fi F5 Fb6 F7 F8 Fg F10
VAL ASC CHR$ | LFT$ | RHT$ | MID$
TAB(TO FN GET REM| WAIT ON
AUTO | FGON BGON BLNK | BL/AT7 AT [\
FLGOF FLGON ON OFFy; ON
CUT LOAD WAIT { THEN | NOT STEP + - * /
OUT LOAD ESC 1 2 3 4 5 6 7
blk blu CALL | FRE INP POS SQR RND LOG
PUT POKE RUN PUT LIST {DIM PLOT | LOAD | CLR POKE
PUT POKE TAB Q W E R T Y U
red mag
PLOT | PRENT CNTL FOR SAVE jINPT |READ |{FILE | GOTO IF
PLOT PRNT A S D F G H J
grn cyn \
SAVE { LIST SHFT DEF CONT |DATA |PRNT |NEXT {REM RW
SAVE | LIST Z X C \' B N "
yel whi
COMMAND CAPS SPACE
LOCK

14

H Subrcutine used by GETCHA ard GETHEY. RET icharacter in A
BKEYi: PUSH 8] BKEYEX: LXI H,LWRIT jelse set up iong wait
LHLD REPCHR 3Bet wait counter. SHLD REPCHR
GKLODP: LDA LKL ;1f last key code is zero, GKEY3: LDA KBRDY :and wait
aRA A 1oo wait for arother ORA fa ifor keypress,
J1 BKEYEX skeyprese, Jz BKEY3
oexX H relse shart decresenting LDA KBCHA :Get character into A
MOV AL $HL until zerc or Pop H ;and return.
ORA H ilast keycode is zera. RET
f JNI GHLDOP H TEMPORARY STORAGE
' GKEYZ: LXI H,GWRIT ;Set up for short REPCHR: DS { Repeat rate counter used
j SHLD REPCHR jwait and get last by auto repeat feature.
LDA KBCHR jkey pressed. feracesnonnnasseasonasasnoasnensrsenraverarnnsrerarnsrsene
gRrA A ils it zero® ; END OF KEYBOARD ROUTINES
JI BREYEX :If nod, po exit, Tesscanssnssnnsnas Pr e eaaNesTaarEtRerarEn s sRnrvannens «<
pop H ielse return with
Top ~ Token when struck with COMMAND (Control and Shift)
Center - Character that appears on keys
Bottom - Token when struck with Control
(Bottom)- Token when struck with Shift
ON GOSUB |RESTR CPU
F11 F12 F13 F14 F15 E/PG |E/LN RESET
(ON)
TAB(TO FN DEF | GOTO | CLR -
] " B HOME D/CHR |I/CHR |D/LN |[I/LN
(DEF }{{GOTO)|{(CLR) L
. AND SPC({ PEEK IF ATTN
8 9 0 - BRK
EXP cos ABS < (IF)
RUN GET ouT END RETURN ! - AND |STR$
I 0 p e 7 8 9
LOG EXP COS |INT
RESTR| GOSUB > OR + - ® *
K L ; : ENTER 4 5 6 X
TAN | SIN POS SQR RND ®
L
TRN{ ATN LEN | STRS$ THEN | NOT !STEP | PEEK
’ . / SHIFT 1 2 3 -
= SGN | INT CALL | FRE INP <
SPC(| LEN = S
REPT 0) - +
ABS SGN = +

15

qary [insaore’s

Crreative Softiruwar e

Presents

BEOOK

BOOK is a programed text that
can turn the Compucolor 1into a
teaching machine. The keyboard
is under complete control, sO
voung fingers find it difficult
to derail the program. Courses
can be designed using an editor
program, or I will adapt vyour
material to ROOK, for use 1n
vyour teaching arena. Comes with
complete doccumentation manual
that shows you how to set up the
lessons and run the programs.
Self testing freature allows you
to judge vyour students” per—
formance by the number of false
starts made. Each caorrect re-
sponse i1s reinforced, and wrong
responses elicit helpful hints
to put the student back on the
right track.

ROOK 1sn’t just for kids
either. 1 currently have written
two courses on Assembly language
programing. An introduction
course that teaches vyou about
the 8080 CPU and the Compucolor
Assembler. What the format of
the instructions is like and a
number of other very basic
concepts to get the complete
novice started. There 1s also an
intermediate course that breaks
down all of the op. codes 1into
logical groups and tells you how
to use them. A third course
still being written goes 1into
applications used by the Compu-
color.

SURVEY

SURVEY is a program that will
allow vyou to be your own
polster. Place vyour Compucolor
out 1n your place of business
and 1invite vyour customers to
take a confidential survey. Ask
them what they think of vyour
service, your product, your
competitors. Ask them 1if they
will vote for Regan again in
1984' You write the questions,
the Compucolor records their
responses as a percentage of
persons responding to the survey

A complete doccumentaion man-—
ual will assist you in putting
together your survey, or I will
take your material and adapt it
to SURVEY. Like BOOK, SURVEY has
keyboard control to be fairly
idiot proof. Text and questions
are created using an editor
program.
o Imnformationmn

Write to:

Gary Dinsmore
Creative Software
Rt 3 Box 3214
Warren Oregon 97053

BEOOK %29.95
SURVEY $29.95
Introduction to Assembly $11.95
Assembly Language Programing . .

e = = s =2 s e« = = = s = « $11.95
WORDY (word processor/editor)
s e e s e s s e s w s s s $29.95

16

Here's a program for a new year.
written for

EURERENIBTHLESEHERBEGS
g P3O0 0URO0EE38E88

9

Calendar Printer

by David B. Suits

It is
the Okidata Microline 82A

printer,

HHHH R P
CALENDAR PRINTER
FOR MICROLINE 82A
D. B. SUITS, 14 AL
ALGORITHM BASED LIPON
DAY OF WEEK" PROGRAM FROM
SOME COMMON BASIC PRDGRAMS
{DSBORNE & ASSOCIATES, 1578)
NOTE: Color changes entered from the key-

board are giver in brackets. Thus,
{17 is red, 1181 is green, eic.

Mo Mt e i ok W e SR s W e SR Wk W e
o ove sk M o W i W ot M W K M o

HEEHERE R R R RN R R R

Set up screen.

1o CLERR 200
1108 GOSUB 060

197
198 REM
193

Get starting year, etc.

288 50SUB Beed

297
298 REM
239

300 PLOT 27,18,4
310 POKE 33289, 255

Set up printer.

Baud rate = 120Q,
Lots of room an terminal cuiput.

+REM
TREM

328 PLOT 27,13 :REM Output to privter,
338 PLOT 24 (REM YCANY = clear prirder buffer.
34¢ PLOT 27,6 :REM & lines/inch.

358 PLOT 27,65 :REW Lorg lire,

360 PLOT 30 :REM 10 cpi.

37% PLOT 27,5 :RE¥ Top of form.

397

398 REM Print the calerdar.

399

42@ GOSUB 1800

497

438 REM Mare?

493

but it would require only minor

changes to work for any other printer. ®

17

81

G0@ POXE 33265,@ :REM Output to CRT,

51@ PRINT :FRINT

328 INPUT "[193W0ULD YOU LIKE ANDTHER? ":A%

330 A$=LEFTS(R%, 1):IF As="Y* OR A$="0" THEN 20@

4@ IF A% "N" THEN S2@

545

95@ END

997

993 REM ssxxxra¥* Subroutire to print the calendar,

1@ IF YEAR(1@Q THEN YEAR=YEAR+!190@

1010 M=GTARTMONTH:Y=YEAR:IF STARTHENTH)2 THEN 1030

1020 W=STARTHENTH+{Z:Y=YEAR-1

1030 A=M+M+INT{, 6% {M+1) I +Y+INTLY/4) +INTLY/400) -INT(Y/100) +2
1040 COLUMN=FN H{7):REM PRINTCOLUMN=R MDD 7

1099

110@ FOR INDEX=GTARTMONTH TO STARTHONTHNUMMONTHS-!

1418 B=(INDEX-1) MONTH=FN M{12}+{

17

1118 REM Top margin,

113

112d FOR J=1 TO E:PRINT :NEXT

127

1128 REM Prirt month's name in deuble width letters.
1129

1138 PRINT TORB(MARGIN)CHRS{31)MD$ {MNTH) CHRS (321 1 PRINT
136

1137 REM Print year AD {ard AL for year) 198).
1138 REM AL = fAnne Lurae. (First moce landing was 1969.)
1139

{140 AD$="AD"+STRE(YEAR) :AL$="AL"+5TRE (YEAR-1968}+" *
£158 PRINT TAR{MARGIND ;:IF YEAR{1969 THEN 1170

1160 PRINT AL%;

1178 PRINT AD$

1179

1188 PRINT :(PRINT (PRINT :PRINT

1138 PRINT TRAB(MARGIN-3):

1157

{198 REM Print rames of days.

11959

1200 FIR J=1 7O 7

1210 PRINT SPC(7)DAYS{Y;

1228 NEXT

1221

1230 PRINT

1237

1238
1239
1240
1243
1230
1257
1258
1239
1268
1267
1268
1269
1278
1288
1289
1292
1297
1238
1293
1300
1319
1319
1308
1330
1340
1347
1348
1345
1350
1368
1372
1388
1381
1352
147
141
1414
1428
5997
3998
393
6008
bR
50id
b@ce

REM Mow a horizontal line.
BOSUE 7ev

DAYB=DRYE (MENTH)

REM 1s it February?

IF MENTH{Y2 THEN 1290 :REM No.
REM Yes. theck for ieap year.

P=YERR
IF {FN M{4)=8) AND ((FN M(180) (}@) OR (FN M{4@)=)) THEN DAYS=29

FOR Jj=1 70 DAyS
REM Vertical lines.

BUSUR 68GR: PRINT :REM R anc LF.
BOSUR c0R@:PLOT 13 :REM CR only.

PRINT TAR{MARGIN+1@*¥COLUMNHLL)RIGHTS(" "+8TR$(I)), 3);
COLUMN=COLUMN
IF (COLUMN{T) AND {JTCDAYS) THEN JU=JJ+1:GOT0 132@
REM End of week {or month).
BRINT :IF COLUMN=T THEN COLUMN=Q
FOR =1 TO 3:505UB 6O@A:PRINT :NEXT :REW Vertical lines.
GOGUR oRd@:PLOT 13:605UF 7008
KEXT
;T 12 1REM Next page.
iF HMENTH=12 THEN YERR=YEAR+!
NEXT
RETHAN
REM ¢kexewsadd Sybroutine to print the vertical divisions,

PRINT TREMARGIN-1)3

FOR It Ti 7
PLOT VEAR:FOR Kik=1 TO 9:PLOT SPACE:NEXT

6X

L T
1 b '7¢~J‘|:

! ROT VBRR

EaSe RETURN

£597

£398 REM eepxrrxied Subroutine to prind 2 horizardal line,

5393

7823 FOR J=! TO MARGIN:PLOT BPACE(NEXT

T@18 FOR J=1 TO 6£9:PLOT UNDERLINE:NEXT

7825 BRINT

7R3N RETURN

7457

TG AEM BEREERREEE

7999

Bdde PRINT

B2:® INPUT "[{9IENTER STARTING YEAR FOR THE CALENDAR: [I171";Y¢

BE-? YEAR=YAL(YS):IF YEOR{D DR YEOR O INTIYEAR) THEW S@l@

Bo3a PRINT

8@4@ INPUT "[{9IENTER START MONTH (1 FOR JAN,
#5% STRRTMONTH=VAL (%)

5@6@ IF STARTMBNTH(L OF STRRTHONTH () INT(STARTHENTH) DR STARTHMENTH) 12 THEN B@4d

BE7@ PRINT

8382 INPUT "[{9IENTER NUMBER OF MONTHS DESIRED: [171"3NUMMENTHS$

BRS NUMMBNTHS=VAL (NUMMENTHSS)

810 IF NUMMONTHS{L DR NUMMONTHS () INT (NUMMONTHS) THEN Beae

B1i@ PLOT 15,18

12 PRINT :PRINT

B138 PRINT “TURN DN PRINTER RND BET 70 TDP OF PRBE."

A14¢ PRINT «INPUT "[191PRESS [23IRETUAN [19IWHEN READY: *;R$

8158 RETURN

8357

8338 REN

5959

3080 DEF FN M{MD)=INT(R)-INT (WD) #INT (INT{A) /INT(MD)) :REM R wmodulo MD.

SBi9 DIM DAYS(12),MO$ (121, DRYS(T)

3819

9%2¢ DATR Jarwary, 31, Febreary, 28, March, 31, April, 30

993 DATA May, 3%, June, 38, July, 31, August, 31, September, 30

2048 TATA Cctober, 31, Novenber, 30, Decenber, 31

3050 DATA Sun, Mon, Tue, Wed, Thu, Fri, Sat

@53

Subroutire to gel starting year, eir.

2 FOR FER, ETC.Y: [172"3M4

Harestit Subroutine to get data.

9@6@ FOR J=1 TO 12:READ WO${2),DAYS{I) sNEXT
5878 FOR J=1 7O 7:READ DAY$(J):NEXT
3073

3980 PLOT 14,6,6,29, 12

329@ PRINT TABEUIGI"C A L
91@@ PLOT 15

ENDAR PRINTER"

911@ PRINT TRB(2@)"FOR MICROLINE PRINTER":PRINT

9119

3128 MARGIN=H

9129

(REM Left marpin,

3138 REM Codes for PLOTEing.

9139

914@ SPACE=32

9138 UNDERLINE=3S

3160 VBAR=124

9185
317@ RETUAN

Campucolor Transistor Equivalents

Reprinted by permission from CUVIC
(Compucolor/Intecolor Melbourne
User Group newsletter, November, 1982)
[We felt that this information was
important enough to reprint, although it
has been published in several other news-
letters. - eds]

Here are some equivalent components for

the high voltage transistors on the
Compucolor analog board:
TRANSISTOR 1.s.C. EQUIVALENT
1 BU500 BDX32
Q2 FT410 BUX81
3 MJE3439 2N5657
™ MIE3439 2N5657
03] A43A BF336
or 2N5551
or MPSA43A
Video drivers 2N2905A BFX30

In order to keep the voltage on most of
these transistors below their limits,
keep the width of the screen display such
that there is about 1.5 cms border on
each side. Because this squeezes up the
characters, the brightness should be
lowered a little. &

Converting Screen Editor Files
to Comp-U-Writer .DOC Files

by Joseph J. Charles
P.O. Box 750

Hilton, NY

We have been using a screen editor as a
poor man's word processor to create files
for school reports, letters, and other
documents. Recently my son started typing
the rough draft of a new book I'm writing
for the Timex/Sinclair computers. While
the original intent was simply to get a
legible rough draft, it became more de-
sireable to do the whole job (through to
camera ready copy) on the Compucolor
computer. Therefore, after having my son
type about seventy double spaced pages
using a screen editor (CTE)}, I bought the
COMP-U-writer word processor.

COMP-U-writer is designed to format disks
and create files that are not compatible
with normal FCS format and file struc-
ture. However, COMP-U-writer comes with
enhancements to allow one to create and
use files in regular FCS format. These
files are customarily named with a .DOC
file name extension. If you then try to
load any file other than a COMP-U-writer
FCS-compatible file, you will find that
the first line of the text is garbage,

and COMP-U-writer will not respond
properly to commands. However, it is easy
to make any file of ASCII characters

compatible with COMP-U-writer.

COMP-U-writer creates a directory entry
of 128 bytes for each file, whereas FCS
directory entries are only 21 bytes. The
additional space in COMP-U-writer direc-
tories allow 29 character file names. The
directory also contains the values for a
number of document parameters such as:
number of characters per line, number of
lines per page, baud rate, etc. When an
FCS compatible file is created, these
document parameters are still saved, but
since there isn't room for them in the
FCS directory, they are saved in the file

20

14468

itself in 64 bytes which are added to the
beginning of the file. Thus when any type
of file other then a .DOC file is used,
the first 64 bytes of the text are taken
as the document parameters. This is
enough to foul things up since the para-
meters are now extremely unlikely to be
correct. The solution is to simply add
the correct values for the parameters as
the first 64 bytes of the file. This
could be done with a BASIC program or
with FCS commands.

I must admit that I haven't taken the
time to determine the meanings of all the
bytes that are added to the file. Several
bytes were zero for every file we
created. However, we did not use every
document option available. Knowledge of
the meanins of the bytes will allow you
to make the conversion easily, and, once
converted, additional options could
easily be set in the COMP-U-writer file.
The bytes whose meanings we discovered
are given in Table 1. (For two byte
entries, the low byte is given first,
then the high byte.)

I use the following procedure in FCS on
my 32K machine to add COMP-U-writer type
file parameters onto the front of a file
created by a screen editor:

1. Use an existing .DOC file to get
the first 64 bytes into memory:

FCS>LOAD filename,DOC 8500

Load the file to be modified into
memory 64 (40 hex) bytes after the
start of the previous file:

FCS>LOAD screeneditorfilename
.3RC 8540

3. Save

the file

ditional 64 bytes
to calculate the new end of file

address):

including the ad-

(you will have

FCS>SAVE screeneditorfilename

.DOC 8500-endaddress

A BASIC program to do the job is given in

Listing 1. @&

Table 1

12+no.

F‘
~+
@®

OO R W

tabs+1
+2
+3
+4

+6
+7

Description

lines/page

characters/line

"

left margin
n

indentation
"

baud rate

"

starting page number
n

lst tab colum

2nd "
3rd

4th "
5th "

255

0

double space
0

cont forms

0

two col/page

+8 0

+9
+10
+11
+12
+13
+14
+15
+16
+17
+18
+19
+20
+21
+22
+23
+24
+25
+26
+27
+28
+29
+30
+31
+32
+33
+34
+35
+36
+37

just rt marg
0

marked text

0

page nums

0

2-side print
0

parallel port
0

B P R e I IEC R}

B N R R A ¥ N

?
page width
0

Typical value

55

o
[N Nl

_
=
VO WhoCOUNMO ®

19
29
39

255

0

(0/255) 255
(0/255)

(0/255)

o~
wn

(0/255)
(0/255)
(0/255) 25
(0/255)

(0/255)

N
n
CUHOOCOOCOOUNOOCOOOOODOOCOOOOONOOONOOOOD

=)

text starts here

4x256+176=1200

end of tabs

O=no; 255=yes

21

22

Listing 1

0N O e Ry

440
479
480
499
300
1000
4997
4998
4999
5000
5001
5002
5003
5004
5005
3006
5007
5008
5009
5010

REM [whtIFROGRAM! L[red]CONVRT.BASL=rnl

REHM [whtICONVERTS ANY ASCII FILE 70 A [well.DIOC FILE FOR USELgrnl

REM [whtIWITH THE [welJCOMP~U-WRITER [whtIWORD FROCESSOR ANIl SAVESCdrnl
REM [whtJTHE [sell.DOC CwellCOFY ON DRISK.C=grnl

REM [welWRITTEN BY J.J.CHARLES & J.J.CHARLES JR.Lgrnl

REH [wellOCT 11y 1982 10:2 PMCdrn]

REM CewnldPOKE DEFAULT VALUES INTO MEMORY AT 9000Lsgrnl
FOR I= 0TO 63!REAL DVIFOKE 36864+ IsOVINEXT I
REM CeownlGET DIRECTORY INFORMATION FROM USERLCsSrnl

PLOT 15,12

INPUT *CLgrnlINPUT DISK DRIVE NUMBER: L[red]” DN

IF DN > OAND DN< > 1THEN 80

FPLOT 6926

PLOT 12,27 54!PRINT “DIR"FON;" " IPLOT 27,27

INPUT "[arnlJENTER THE FILE NANE: L[wht1"iFI$

INPUT "CogrnlENTER THE FILE TYFE! CwhiI"3iFT$

INPUT "CagrnlENTER THE VERSION NUMBER: LCwht1"iUN :

INPUT "CgrnlFILE SIZE FROM DIRECTORY [well(4 DIGITS)Cgrnlt [whtl"iSZs
INPUT "CgrnlFILE LAST BLOCK COUNT Cuell(LBC-2 DRIGITS) dgrnl: Lwht]"iLECS

REM CewnlLOAD .SRC TYPE FILE AT 9040Csdrnl

PLOT 2754!PRINT "LOA "FDNs"I"iFI$;" . "FFT$5"5i"5UNs" 040" PLOT 27,27
REM [CecunJCONVERT NUMBER OF SECTORS TO DECCLdrnl

N$= SZ%:(GOSUB 5000
SZ= N

REM Ceuwn]CONVERT NUMEBER OF BYTES IN LAST SECTOR 70 DECLdgrmnd
N$= "00"+ LBC$IGOSUB 50090

REM tcanCALCULATE FILE SIZE IN DECIMALLSrnl

NN= (SZ- 1)k 128+ N

REM CewnlCALCULATE END OF FILE LOCATIONC=Srnl

NN= NN+ 36927
FRINT (FPRINT “"FILE END (DEC) = "jiNN

REH [CecunlCONVERT TO HEXLs=rnl

GOSUB 6000
FRINT "FILE END (HEX) = " IN%

FREM T[ewnlSAVE FILE AS . 00C TYPELSrnld

FRINT "Coei JINSERT THE 78K OM WHICH YOU 4ISH TO SAVE THE FILEL=en1”
INPUT "CweilIN LuhtiDAiV"® 2 DwelldaND 07 RETURNL8rnl™ AT

FLOT 27.41FPRINT "CAVE " " 93" . 00C 7000-"5NSIFLOT 27+27

INPUT ~0C YOU WISH TO TON.OERT ANOTHFR FILE? "j5ANS

IF AN$= "Y*50TO 70

END

REH Credlkxxkx [whilIHEXADECIMAL TC DECIMAL SUBROUTINE LredIXkxkx%[sgrnl

N= 0
FOR I= 070 3

N1$= MID$ (N$s4- I,1)

N1= ASC (N1$%$)

IF N12> = 48AND N1< = IT70R N1> = 63AND N1< = 70GOTO 5006
RETURN

IF N1> = &5THEN N2= N1- 55

IF Ni< S7THEN N2= N1- 48
N= N+ N2x 16t I

NEXT I

RETURN

5997
5998
5999
6000 N= NN
6010 IF NN> = OAND NN< = 465535G0T0 4030
6020 N= — 1IPLDT &s2:!RETURN '
6030 FOR I= 370 OSTEP - 1
6040 FOR J= 1570 0STEP - 1
6050 T= J¥ 16t I
6040 IF T> NNTHEN NEXT J
6070 BCI)=J
6080 NN= NN- T
6090 NEXT I
6100 N$= »*
4110 FOR I= 370 OSTEP - 1
6120 IF D(ID> = 0AND D(IDE =
6130 IF IKIX> = 10AND DCID< =
6140 NEXT I
6150 RETURN
9998
9999
10000
10010
100220
10030

REM CredJkixxxx

REM

DATA
DATA
DATA

OATA 05057250

CwhtIDECIMAL TO HEXADECIMAL CONVERSION

FTHEN N$= N$+ CHR$ (D(I)+ 48)

1STHEN N$= N$+ CHR$ (D{(I)+

LcunICOMP-U-WRITER’S 64 DEFAULT VALUESL=rn)
S559035650:8:05050+12853751+09255,2555050505050450

0505020+s07050905050705050505050505050,0
05050505s050+0+0s050¢070503070+255y050y0+0Q

CredIxxXXkLsrnl

35)

Keyboard Expansion

by Bill Anthony
655 E. Wells Way
Carpano Island, WA 98292

This article explains how to expand a
small Compucolor keyboard to a large one,
a relatively easy task for anyone with a
desire for a larger keyboard and a
fondness for money. The tools required
include a Phillips screw driver, a
soldering iron, some solder, a
desoldering tool, a drill, and a keyhole
saw. You'll also need some keys with
keytops to add to the board. The number
will depend on the extent of your
expansion. From smallest to largest size,
46 keys are needed.

If you live near a good zurplus store,
you may find the Cherry keys and approp-

riate tops there, ~»r perhap: through a
lccal electronics store. such as
Schweber. One good source Ior keys and
tops is Arkay Zagr-.eres, 2077 MNseswbhridge
RPoal, 3Bellmcre, ss York L1710, phone
515-781-98%9. ®or Kaplasn is a good
contact there.

With everything assembled,and with the

computer OFF, disconnect the keyboard and
turn it over onto a towel to prevent
scratching. Remove the two small screws
holding the cover to the keyboard, and
slip the cover off the circuit board.
Disconnect the cable leading to the key-
board, (mark it first so you can replace
it the same way) and set all the parts
aside except the circuit board.

‘With your soldering iron and desoldering
tool (either wick or suction type),
remove the solder from the holes of the
keys you plan to add. The location of
sach key is marked on the bottom of the
circuit board, so that shouldn't be too
hard. Use caution, and don't overheat.

Next, insert the keys into the metal mask
and very carefully push them all the way
in. Watch that the leads go through the
holes you have so patiently cleared and
don't bend. Then solder the leads to the

Continued on page £6

23

Assembly Language
Programming

by David B. Suits
Part VIII:
Simple Math
Rotating "shift" instruction. Unfortunately, the

The contents of the accumulator may be
"rotated" left or right. A left rotation
will move each bit one position to the
left. The MSB (Most Significant Bit) will
be moved around to become the new LSB
{Least Significant Bit}. For example:

Before left rotation: 1090110195
After iaft rotation: 001121901
Another version <f the rotate instructiocon

involves the carry flag. The bit that is
shoved off the end during the rotate
instruction will replace the carry f{flag,
and the bit that was in the carry flag
will move into the other end of the ac-
cumulator. In effect, then, the carry
flag acts as though it were the ninth bit
of the accumulator. For example:

Before left rotation:

Carry: 0

Accum: 10011010
After left rotation:

Carry: 1

Accum: 00110100
As with some other 8080 mneumonics, the
rotate and rotate-through-carry instruc-
tions appear to be what they are not.
"RLC" does not stand for "rotate left
through carry", and "RAL" does not stand
for "rotate accumulator left". Nope. It's

the other way around. Similarly for the
right rotate instructions RRC and RAR.

If you don't want the bit from one end to
"wrap around" into the other end of the
accumulator, you will want to use a

24

8080 has none. Thus, you'll have to use a
rotate instruction and then mask out the
unwanted bit with an ANI instruction. For
example, the sequence:

RLC

ANI 11111110B j;or ANI 254

will shift all bits to the left, Insuring
that the LSB is zerc. By the way, that
will have the same effect as:

AND A

except that the flag settings might dif-
fer. And this brings us to the subject of
addition.

Addition

The first thing to notice about addition
is that it is done two numbers at a time.
Even if you're adding up a whole column
of numbers, you can do it by adding the
first two numbers, then adding their sum
to the next number, and so on. One
consequence of this is that the largest
carry during such an addition will be 1.
Or, to put it another way, there is
either a carry (i.e., 1) or there isn't
(i.e., a "carry" of 0). This is not
peculiar to binary arithmetic; it's true
in all bases--decimal, hexadecimal, and
so on. So if you add two 8 bit binary
numbers, their sum cannot possibly be
more than 9 Tits.

Using the 8080 instruction set, there is
an easy way to determine whether there
has been a carry: the carry flag will be
set. Of course, it is not always an easy
task to extend the number of bits rep-
resenting a number just because there has

been a carry. So in any given program we
will decide in advance what the allowable
range of numbers will be. If there is a
carry out of that range, then you can
have the program either ignore it or else
signal an overflow error.

Suppose we wished to limit the range of
numbers from 0 to 255.

(That's con-
venient!) How do we carry on byte ad-
dition? Simple. Put one number in the

accumulator and other other number in a
register (including M, the pseudo regis-
ter which is actually the byte of memory
whose address is in HL). Then the
instruction:

ADD <reg>

will add the two numbers and leave the
resuits in the accumulator. The carry
flag will be set if the sum was tooc large
to fit intc one byte. For example:

MVI B.S 3: 000001113
MVL 4,253 A EE T B B O I
ADD B sum: 1 09 0000 11

The result in the accumulator is 3, which
is actually 6+253 = 259 MODULQO 256 = 3,
and the carry flag is set. (The =zero,
sign and parity flags are also affected,
but we're not concerned with them here.)

Multi-byte addition is easy. To add a omne
byte number to a two byte number, it's
probably easiest to use a routine in ROM
called ADHLA (at 3518H for V6.78 and
194EH for V8.79), which adds the number
in the accumulator to the contents of HL.
The result is in HL. (You might want to
fire up your debugger and take a look at
that ROM routine.)

A simple way to add a two-byte number to
another two-byte number is to put one of
them in DE (or else BC) and the other in
Hi.. Then the instruction DAD D (or DAD B)
will add them, with the result in HL.
This "Double ADd" instruction is fre-
quently used for adding offsets to poin-
ters. For example, HL might be keeping
track of something on the screen. To
point up one line, 128 (for a 64 charac-
ter line) must be subtracted from it.
These assembly language instructions
would do it:

LXI D,-128
DAD D

If the results of a DAD are greater than
two bytes, the carry flag will be set.

If you want to add still larger numbers,
you'll have to write a more complex--but

still fairly simple--routine. Consult an
8080 assembly language book for some
exanples.

Since multiplication can be seen as rep-
etitive addition, we shall advance to our
next topic....

Multiplication
The ADD A instruction multiplies the
contents of the accumulator by two. To

multiply by four, simply ADD A twice. ADD
A three times to multiply by eight. And
50 on by powers of two. How about muiti-
plication which won't f{it that scheme?
Suppose vou want to multiply the contents
of the accumulator by six. First, notice
this equalitys
O%) = %A 4 U¥p

Since the factors 2 and 4 are powers of
two, the multiplication by six can be
accomplished by two multiplications and
an addition. But each of those two
simpler multiplications is easy.

ADD A ; #2
MOV B,A ;Save 2%A
ADD A Sl
ADD B ; %6
Similarly, multiplication by, say, 13 can

be expressed as:
13%A = A + U¥A 4 BFp

And a routine to do that would be:

MOV B,A ;Save 1¥4A,
ADD A ; ¥2

ADD A ; ®y

MOV C,A ;Save 4¥A,
ADD A ; %8

ADD C *12

ADD B *13

Because of the possibility of a carry out
of the MSB, your one byte result (in A)
will not be correct if the result would
have been greater than 255. Thus, the

5

routines above should be taken as MODULO
256. If you want to be able to obtain
larger results, you'll have to use a two
byte (three byte, four byte, etc.)
routine. Also, the method I've presented
can be used only when you already know
the value of one of the numbers. But
suppose you don't know either of them.
There is some number in A and some number
in B. How do you multiply them? Perhaps
the easiest way is to use the ROM routine
MULHD (at 3562H for V6.78 and 1998H for
V8.97). This routine allows you to
multiply a one or two byte number by
another one or two byte number. Simply
load DE with one number, HL with the
other, and CALL MULHD. If a number has
only one byte, then load it into the low
byte of the register pair and set the
high byte of the pair to zero. The result
comes back as four bytes (two "words"),
the high word (most significant two
bytes) in DE and the low word in HL. If

both numbers are only one byte, then the

result is necessarily no more than two
bytes. Thus, to multiply the contents of
A by the contents of B, you could:

MOV E,A

MVI D,0

MOV L,B

MVI H,0

CALL MULHD

Since the low word is returned in HL,

that will contain the answer.

Next time: Numerical I/O and random

numnbers. @&

Keyboard Expansion

(Continued from page 23)

circuit board, making sure the solder
joint is well made. Connect the keyboard
to the computer (without
try it out to make sure the keys are
properly installed. (The circuit board
must be on a non-conductive surface.)

its case) and

Stick on the keytops,; and measure the

cover to determine what must be cut. Mark
it on the cover in pencil, take a break,
and measure it again. Once cut, that's
it. Cut the cover with your keyhole saw,
or a jigsaw, if you (or a friend) have
one, smooth the edges with sandpaper, and
reassemble. Figure out where to spend the
money you just saved. @&

CCIT, V6.738, 32K RAM, 2

Manuals.

Printer Model MST. 19@ Diskettes:

M.L.D.B.,
Software worth QVER $2200.00 alone.

Melvin F. Pezok,

FOR SALE CHEAP'!

disk Drives,
Internal Soundware, Joy stick port, Programming, Service & Scurce Listing
FORUM val 1.1 thru Z.4, COLORCUE vol 1.1 thru 5.1.
COMP-1U-WRITER W/MAILMERGE,
CoMP-U-POSER, SUPER FREDI, GENERAL LEDGER, DATA BASE II W/ ALL OPTIONS,
FULL SCREEN EDITOR, DISK EDITOR, FORTRAN W/ MANUALS, CHOIMP, WISE 11,
INVADERS, CHECKBOOK, UTILITIES, INVENTORY, TIMECARD,SUPER MENU,
BASIC & ASSEMBLY LANGUAGE TUTIALS, GAMES, 4090-5FFF PROGRAMS, etc.

best offer >$2700.00, & 1 pay shipping.
1381 Ignacic Blvd., Novato, Ca. 94947, U.S.A.
Fhone # (415) £83-2118 after SPM PST.

117 Keyboard, UFPER/lower case,

BASE 2

Everything gqoes, ALL this far the

26

Back Issues Sale

Back issues of Colorcue are an excellent source of information about
Compucolor computers, ISC computers, and programming in general. Inter-

views, interesting articles, and programs are all there with a touch of
history.

The list below includes every Colorcue ever published. If it's not om the
list, then there wasn't one.

MULTI-ISSUES at $3.50 each

___ Oct, Nov, Dec 1978 ___ Apr, May/June 1979
__ Jan, Feb, Mar 1979 ___ Aug, Sept/Oct, Nov 1979
INDIVIDUAL ISSUES at $1.50 each
___ Dec 1979/Jan 1980 ___ Feb 1980 ___ Mar 1980
___Apr 1980 __ May 1980 ___ Jun/Jul 1980
INDIVIDUAL ISSUES at $2.50 each
__ Dec 1980/Jan 1981 ___Aug/sep 1981 ___ Oct/Nov 1981
___ Dec 1981/Jan 1982 ___ Feb/Mar 1982 ___ April/May 1982
__June/July 1982 _ Aug/Sep 1982
POSTAGE
US and Canada -- First Class postage included.
Europe, S. America -- add $1.00 per item for air, or

$§ .40 per item for surface.
Asia, Africa, Middle East -- add $1.40 per item for air, or

$.60 per item for surface.

DISCQUNT
For orders of 10 or more items, subtract 25% £from
total after postage.

ORDER FROM: Colorcue
Editorial Offices
161 Brookside Dr.
Rochester, NY 14623

Colorcue

A bi-monthly publication by and for
Intecolor and Compucolor Users

Editors:

Ben Barlow
DEC/JAN 1983 David B. Suits
Volume 5, Number 3 Compuserve: 70045,1062

3 Editors' Notes

3 Tech Tip, by Alezander Pinter
Changing disk drives

5 Assembly Language Programming, by David B. Suits
Part I¥: HWumerical I/0 and Random Numbers

10 Pirst Aid for Compucolor Disk Drives, by Thomas J. Herold
Get the speed right

11 Some Thoughts on BASIC Speed and Stvle, by Joseph Horris
Ruminations and suggestions

15 what®s New for the CCII?, by Rick Taubold
Here comes the zoftware

17 Controlling Kevboard Input in BASIC, by Dan Murray
When, what and how

21 & FORTRAW Plot Libraryv, by Joseph J. Charles
Library routines and a demo program

Advertisers: A good way to get in touch with potential customers is through
the pages of COLORCUE. You will find our advertising policies attractive.
Write for details.

Authors: This is & user-oriented and user—-supported publicaticn. Your
articles, tips, hints, programs, etc. are required to make it gc. Write
or scribble vour ideas down; we'll edit them and provide all artwork. Send
your articles or write for information.

COLORCUE is published bi-monthly. Subscriptions are USSi2/vear in the
U.S., Canada and Mexico, and USS$24 {(includes air mail postage) elsewhere.
Some back i1ssues are available. All editorial and subscription ccrrespon-
dence should be addressed to COLORCUE, 161 Rrookside Dr., Rochester, RY
14618, USA. All articles in COLORCUE are checked for accuracy to the best
of our ability, but they are NOT guaranteed to be error free.

£ditors’ Notes:

We goofed last issue with the date on
the Contents page. Instead of "October
/November" we had "August/September". The
Volume and Issue number were correct,
though. And so was the date on the front
cover.

Say, are you going to send us an art-
icle on your latest hardware or software
project, or are you going to let it lan-
guish forever? Articles (long, short,
medium) are always in demand. How about
it?

Have you been having troubles with
ISC's Macro Assembler? Some users--even
users very experienced in such things--
have been miserably unsuccessful with it.
The problem might well be not in the
assembler 1itself but rather in the
linking loader. Perhaps early versions
were bugful? Let us know your experiences
with the Macro Assembler, and we'll pass
them on in these pages.

Speaking of compilers (we were
speaking of BASIC compilers in the last
issue), there's no word yet about the
Australian BASIC compiler. We're holding
our collective breaths. In the meantime,
if you're interested in learning about
compilers but haven't found a book which
is readable by non-mathematicians, there
is a very good book which you should have
a look at. It is Compiler Design Theory
by Lewis, Rosenkrantz and Stearn
(Addison-Wesley, 1978). Don't let the
title fool you; the authors don't inun-
date you with chapters and chapters of
the formal theory of compilers. The book
has a more practical feel to it. In fact,
the object of the book is to develop a
Mini-BASIC compiler. Perhaps with a bit
of work (er...a lot of work) the compiler
could be enhanced so as to be able to
compile something akin to Microsoft
BASIC for your Compucolor/Intecolor.
Well, it's a thought, anyway.

A question from a reader: Does anyone
know of a spelling correction and/or a
proofreading program that wiil run on a
Compucolor? (For ISC CP/M owners, the
Word Plus programs from Oasis systems are
excellent. - ed.)

Another question. A reader having
difficulties getting anything to run on a
cold Compucolor uses a hair drier to warm
the disk drive. After about a minute, all
is fine. Can anyone suggest a solution
that would eliminate the problem?

Readers with an interest in edu-
cational software will be interested in a
set of programs written for ISC machines
by Dr. Marjorie A. Fitting to teach
trigonometry. Using a circular functions
approach, the programs provide experience
with radian measure, the development of
the sine function, graphing the sums of
functions, and drills with identities and
polar graphs. We have not personally seen
the programs, but they received an ex-
cellent review in a recent issue of
Mathematics Teacher which rated accom-
panying documentation as above average.
The individual price is just $29.95;
school and dealer prices are somewhat
higher. Contact METIER, PC Box 51204, San
Jose, CA 95151. @&

Tech Tip

by Alexander Pinter
PO Box 230
Columbus, GA 31902

A few weeks ago I bought a used disk
drive for my 6.78 CCII and figured out
how to change it from CDO: to CDl:.
Here's how:

In the right rear of the disk controller
board, to the left of the DIP socket used
by internal drives, are five holes num-
bered one through five. CDO0: drives have
hole one connected to hole five, and CD1:
drives have a small loop of wire con-
necting hole five to hole two. Just
solder in the loop of wire to holes five
and two, and cut the circuit board trace
between holes five and one. @&

INTELLIGENT
COMPUTER
SYSTEMS c.

UNDERSTANDABLE SOFTWARE ** ¥ ¥ ¥ ¥RELIABLE HARDWARE
GOOD SUPPORT »»»»%x» AND A LWAYS DISCOUNT PRICES

NASHUA DISKETTE

* gingle sided * double density * 40 tracks * soft sector * hub ring *
% * AND free exchange on all defective diskettes within 30 days * *

10 blank diskettes USs 26 10 formatted diskettes Uss 31
20 blank diskettes UsSs 50 20 formatted diskettes UsSs$ 60

SPEC

FORMATTER WITH SPEED CONTROL program
Formats your CCII diskette, and dis-
plays the speed of the diskdrive
graphically on the screen ORDER# SP845

EXTERNAL HOUSING FOR DISKDRIVE
complete with cable and detailed
instructions (only 6 left) ORDER# IM790

COMPUCALC
The Superversion of the Visicalce
for the CCII ORDER# BG115 USS 120

SOFTWARE CATALOG WITH OVER 150 PROGRAMS AVATLABLE ON REOUEST
** SEND USS1 FOR COMPLETE SOFTWARE AND BARDWARE CATALOG **
*** MASTER CHARGE, VISA AND AMERICAN EXPRESS ACCEPTED **%*

INTELLIGENT COMPUTER SYSTEM, 12117 COMANCHE TRAIL
HUNTSVILLE, AL 35803 USA, PHONE 205-881-3800

Assembly Language Programming

by David B. Suits

Part IX: Numerical I/O and

Random Numbers

The computer handles numbers in
binary. The computer user handles numbers
in decimal (usually). How do we make the

conversion? For a single decimal digit
the conversion is simple. The ASCII codes
for the digits '0'--'9" are 30H--39H.

Thus, translating from ASCII to binary is
simply a matter of subtracting 30H. And
to translate from binary to ASCII, just
add 30H. This latter conversion won't
work if the binary number is greater than
00001001. Suppose, for example, the acc-
umulator contains 00010001 (=11H). Adding
30H would yield 41H and sending that
code to the screen would produce the
letter 'A'. So, to deal with numbers
having more than one decimal digit, a
more complex routine is required. That
is, we want a routine which will accept
decimal characters from the keyboard and
convert them to appropriate binary equiv-
alents for internal manipulation.

}f Figure 1.

| ;Lsm:g?
3

S

START

¢

! get next character -
[e
f"chVert character
i ¢ to the number it

L represents

L { e —
{ SWM = 10 * SM +
© converted digit i

—d

— ‘ e
//L\\
more .. Y
< digits to e
.ogo? 7

(=0))

As usual, many assembly language
routines can be invented by trying first
to write a BASIC routine. How would you
convert a string of digits into a number
if you didn't have BASIC's VAL() func-

tion? Figure 1 shows a flowchart for such
a method, and Listing 1 gives a BASIC
subroutine. This is not too difficult to

do in assembly language, as long as we
limit the number to two bytes maximum
(65535 decimal). Let's assume that the
string of digits has been read into a
buffer. The BC register pair points to
the start of the buffer, and the end of
buffer is signalled by a carriage return
(ODH). Listing 2 shows the routine.

Next is the problem of translating a
number from binary to a string of ASCII
digits for printing. More or less the
reverse of the preceding routine will do
the job: keep dividing SUM by 10 and
converting the remainders into ASCII
digits until SUM=0. Listing 3 1is one
version of such a method. It is based on
a routine by Graeme Smith in the March,
1980 (V3, No.3) issue of Colorcue. The
number 1is translated into a string of

Listing 1.

997 REM Subroutine to convert string of
998 REM digits to a number.

3999 REM Input string is DS.

1984 SUM=0

1018 FOR J=1 TO LEN(DS)

, 1928 AS=MIDS (DS,J,1)

1939 A=ASC (AS)-48

1940 SUM=1g*SUM+A

195 NEXT

1964 RETURN

ASCII digits which are moved into a buf-
fer, one at a time, from right to left.
This is a very handy routine because you
can first clear the buffer with space
characters (20H) so that by printing the
contents of the entire buffer, the number

will be right justified and with no
leading zeros. The second method, in
Listing 4, is a slight modification which

stores the string of digits on the stack
and then prints them by POPping them off
the stack one at a time. This is a sim-
ple, all-in-one routine for printing out
a binary number in decimal.

Random Numbers

In BASIC we have that nifty RND()
function. There's no such beast available
in assembly language, and so we'll have
to create our own. Really good pseudo-
random number generators produce a series

also often complex to implement in ass-
embly language. For some time I searched
around for a quick and dirty routine, but
I was never satisfied with what I found,
mainly because the series of numbers
generated by such routines would begin to
repeat much too quickly, and so a pattern
would be apparent. It finally occurred to
me that my computer's ROM consisted of
about 16K bytes of mixed up numbers.
Couldn't we use them as a large table of
pseudo-random numbers and just pick them
out, one by one? Well, almost. The
trouble is that some numbers in the range
0-255 are for some reason not very well
represented in ROM, and other numbers
appear much too often. So my pseudo-
random number generator takes the con-
tents of ROM and applies a very simple
function to them to generate a more even-
ly distributed series of numbers (all in
the range 0-255). This has the virtue of

of numbers evenly distributed over a speed. In addition, I don't think I've
certain range. Unfortunately, they are seen the series of generated numbers
LiSting 2 PRI 2RSS RS SSSSSSEES SRR RS RLE LSRR EEEEEEEEEELE]

’
’

’
i
’
’
‘
’
’
2

AZBIN —— Translate string of ASCII characters
to a two byte (maximum) binary number.

cdkdkkkdkdk ki hkhkkhkddddkdkdkk Rk hhhkkkhhkkkhhdhhkkhdhkhdhhhhdiikk

; ENTRY: <BC> -> start of string.

; String must end with carriage return (9DH).
; EXIT: HL = converted number (two bytes).

; <BC> -> end of string.

; All else lost.

; CALLS: MULHD, ADHLA

CR EQU @DH ;Carriage return character.
MULHD EQU 3562H ;V6.78 ROM routine to multiply HL by DE.
; High word of result ends up in DE,
; low word in HL. BC is unchanged.
;N.B.: For V8.79 and V9.88 use
; MULDH EQU 1998H
ADHLA EQU 3518H ;V6.78 RQM routine to add A to HL.
;N.B.: For v8.79 and V9.88 use
; ADHLA EQU 194EH
AZBIN: LXI H, 2 ;SM=0.
AZBINL: LDAX B ;Get next digit.
CPI CR ;End of string?
RZ ;Yes.
51008 30H ;ASCII to binary.
PUSH PSwW ;Save new digit.
LXT D,18
CALL MULHD ;SUM=10*S(M,
POP PSW ;Retrieve new digit.
CALL ADHLA ;SIM=SWM+newdigit.
INX B ;Bump string pointer.
JMP A2BIN1 ;Back for more.

repeat, even though I've generated
several hundred thousand of them in a
row! Listing 5 is my pseudo-random number
generator. If you wish to generate num-
bers greater than 255, just call RANDM
for each byte desired.

Try generating two byte pseudo-random
numbers and printing the results in dec-
imal using the B2ASB or BZ2ASP routine.
Have fun.

Now that we are able to generate ran-
dom numbers in the range 0-255, how can
we arrange things to get a random number
in any given subrange within 0-255? That
is, how do we get a random number, R,
such that it is equal to or greater than
some lower bound, L, and equal to or less

than some upper bound, U?
(1) Calculate D=U-L.
(2) Generate a random number, R/,
that 0<=R'<=D
(3) Then let R=L+R'.

such

This makes things a bit easier, since the
random number generator will always give
a number =>0. But how do we make sure it
is <=D? A quick and dirty method is to
subtract D from the R' until R' is equal
to or less than D. Figure 2 is a flow
chart of the process, and Listing 6 is a
BASIC routine to further help you vis-
ualize the method. Listing 7 is the final
version. @&

Listing 3.

;

’

.
|
|
|
|

; <HL> = 4.
; All else lost.

CALLS: DIVHD

|
|
i
i
i
{

! DIVHD EQU 3581H ;V6.78 ROM routine to divide DE by HL.
; ; Quotient is returned in HL, remainder
: ; in DE. BC is unchanged.
;N.B.: For VB.79 and V9.80 use
; DIVHD EQU 19B7H
i B2ASB: LXI D,19
| XCHG ;Required by RM routine.
H CALL DIVHD
MoV AE ;Get low byte of remainder.
ADI 30H ;Binary to ASCII.
STAX B ;Put character into buffer.
oCX B ;Move buffer pointer left.
MOV A,L ;Continue
ORA H ; . until quotient
JINZ B2ASB ; 1s zero.
RET

; e 3 e % 3k ko 3 ok ok ok o 3 ke ok ok ok e 3k e ok ok ok o ok Jk ok ok ok ok ok ok 3k Sk ok ok ok b R sk ok ok 3k S ok ok ok ok R ok ok

; B2ASB — Convert two byte binary number and put string of
; ASCII digits in a buffer for later printing.

ENTRY: <BC> -> right-most spot in print buffer.
<HL> = binary number to convert.

EXIT: <BC> -> left of left-most char in print buffer.

sddeddd gk ko odkhdkkk Ak Ak kh kAR AAA ALK Ak Ak Ak kA AR A AA TR A AI ARk KAk K

Listing 4.

7

All else lost.

CALLS:

H CHL> = 4.
; DIVHD, LO

; FhAAAA T A A AT A AL A AAAEE A AT AR A AA T LA A AL A AR A A Ak A dhhhdhhhkk

; B2ASP —- Convert two byte binary number to string of ASCII
; characters and print the resulting string.

ENTRY: <HL> = binary number to convert and print.

EXIT: <BC> unchanged.

PR

o % Jc oo e ok 3 e e 3k 3k o e e ok e e e e o 3 3k ok o o 3k e e o Sk 3k ofe e e Sk ok ok o e o o ok ok Sk ok ok ke ke ok

ECLY 26R1H

..... ;VE.78 B0OM routine to divide DE Sy HL.

; Quotient is returned in HL, remainder
; in DE. BC is unchanged.

;N.B.: For V8.79 and V9.80 use

; DIVHD EQU 19B7H.

LO EQU 3392H ;V6.78 ROM routine to send character in
; A to screen.
;N.B.: For VB.79 amd V9.80 use
; LO EQU 17C8H.

B2ASP: LXI D,d
PUSH D ;Zero on stack to indicate end of string.
B2ASP1l: LXI D,1i0 ;Divide by 18@.
XCHG ;Required by ROM routine.
CALL DIVHD
MoV A,E ;Get low byte of remainder.
ADI 30H ;Binary to ASCII.
PUSH PSW ;Add to string.
MOV A,L ;Continue
ORA H ; until quotient
JINZ B2ASPl ; is zero.

;Now print out the ASCII string thus created.

B2ASP2: POP PSW ;1Get character.
ORA A ;End of string?
JZ XB2ASP ;Yes.
CALL o ;No. Print the character.
JMP B2ASP2 ;Back for more.
XB2ASP: RET

Listing 5.

PR RSS2SR 222 2R Rttt R st L L

; RANIM -— Generate a pseudo-random number (@-255). Given a
; one byte seed, multiply it by 17 (or any prime). Add
; to that the byte at location RCOMPTR, which is a pointer
; to somewhere or other in RM. (It could point into

; program memory just as well, since this routine does

H not alter the contents of the location at R(MPTR.)

; Each time RANIM is called, the pointer is incremented

; (and the one byte pseudo-random number is added to the
; low byte of ROMPTR). If the pointer passes the end of

: RCM, it is reset to the beginning.

ENTRY: No register values expected.

EXIT: <A> = pseudo—random number .
All else preserved.

CALLS: None.

H dhkdRRK Kk kh Rk k Ik *khkhkkkhkkhkrdkkhkhkhkhkhkhkkhkhkkkhkkkkhkkhkhkkrhkhkkhkrkkkkkk

PTRMIN EQU d00eH ;Start of ROM.
PTRMAX EQU 40H ;High byte of end of ROM (40@¢H).
RANIM: PUSH B ;Save working registers.
PUSH H
LCA SEED
MOV B,A
ADD A ;SEED=SEED*17 (ignoring any overflow).
ADD A
ADD A
ADD A
ADD B
LHLD RQOMPTR
ADD M ;Add some byte or other.
STA SEED ;Result is pseudo-random number and
; seed for next time.
MOV B,A ;Temporary .
INX H ;Bump pointer.
ADD L ;Mix it up a bit.
MOV L,A
MOV A, H ;If pointer goes too far
CPI PTRMAX ; then
JC RANIM1 ; reset it
LXI H, PTRMIN ; to beginning.
RANCM1: SHLD RCMPTR
Mov . A,B ;Un—temporary.
POP H ;Restore register.
POP B
RET ;Return with <A> = pseudo-~random number.

Figure 2.

Listing 6

PRINT

INPUT "“Upper bound: ";UP

INPUT "Lower bound: ";LO

DELTA = UP - LO

IF DELTA > 256 THEN PRINT "Range too big!": GOTO 1@
RAN = INT(256 * RND(1))

IF RAN > DELTA THEN RAN = RAN - DELTA: GOTO 79

RAN = LO + RAN

PRINT "RANDOM ="RAN

1¢@ GOTO 10

Listing 7

H Ik khkAXKhhAAhEkhkkhkkAhhkhkhkhkhkhkrdhkhkhrkEhhkkhkhkkkhkhkhkkhkrxkAkkhkkhhkhkkhkkk

’

7

;

BOUND —— This routine creates a pseudo-random number between
two bounds, each of which is #—255.

ENTRY: = upper bound.
<C> = lower bound.

EXIT: Required number in <A>.
B, C, E, H and L unchanged.
D lost.

CALLS: RANM

‘
JHRIFRAIRKIRKKKIKKRKKAKRKRKKRKRIKRKRKIK KRR Ik I Ik hhhhkhhhhhhhhhhkhkk

BOUND: MOV A,B :Get upper bound.
SUB C ;Subtract lower bound.
MOV D,A ;Difference in D.
CALL RANTM j<A> = 0...255.
BOUNDL: INR D
Mp D :Is (difference + 1) > random #?
JC BOUND2 ;Yes. Just what we want.
DCR D
SUB D ;Random = random - difference.
JMpP BOUND1
BOUND2: ADD C ;Add lower bound.
RET ;Return with result in <A>.

First Aid for Compucolor Disk Drives

by Thomas J. Herold

Is your disk drive giving you error
messages, particularly when you are
loading a new disk for the first time?
Does it fail to read or write as you
think it should?

In almost all cases, these problems
are caused by a mis-match between the
current disk drive speed and the original
speed used to record the disk. Both the
internal and external disk drives for the
CCI are notorious for changing speed
without prior notice. For this reason,
the speed of all CCII disk drives should
be checked and adjusted as necessary, at
least once a month. The allowable op-
erating range is only 299 to 300 RPM. If
your disk drive's speed is out of this
range, vyou will have problems loading
programs, exchanging disks with other
CCII owners and possibly even reading
your own disks.

Both the internal and external drives
can be adjusted visually, by turning the
potentiometer on the disk drive's inter-
nal printed circuit board while watching
the stroboscopic indicator lines on the
bottom of the disk drive rotor (under
flourescent light, not sunlight) in much
the same way a stereophonic turntable is
adjusted to rotate at exactly 33-1/3
r.p.m. This method provides reasonable
accuracy if performed carefully.

For the internal disk drive, it is
necessary to remove the back housing from
the computer. The potentiometer can then
be adjusted by using a small screwdriver,
and the indicator lines can be watched by
using a small mechanic's mirror; or the
disk drive can be dismounted from the
computer frame and allowed to sit beside
the computer during the adjustment. Be

10

extremely careful when working with a
screwdriver on a powered-up computer.
Don't touch anything else.

There is a more reliable way of
keeping your disk drive speed properly
adjusted. This is with the FORMATTER
program. which allows you to check the
speed of your drive at any time, graph-
ically, right on the screen, without
removing or dismounting anything. Of
course the drive will still have to be
dismounted and adjusted with a screw-
driver if the speed control program in-
dicates that the drive speed is outside
the allowable operating range. This same
FORMATTER program also allows you to
format and initialize your disks.

There is also a much easier way to
gain access to and adjust your internal
drive. Since an external drive is con-
siderably easier to adjust than an in-
ternally mounted drive, many CCII owners
have purchased an external disk drive
housing, dismounted their internal drive
from the computer, and installed it in
the external housing where it is very
easy to adjust. These factory-provided
metal and plastic housings provide pro-
tection from physical damage, electronic
radiation, spilled liquids and dust, and
come complete with LED and factory ribbon
cable to plug into the computer. You can
order a complete housing from Intelligent
Computer Systems in Huntsville, Alabama.
The housing comes with good documentation
on how to take the drive out of the unit
and install it into the housing. The
price is $79 US, and the FORMATTER with
Speed Control is available for $24 US.
Good luck, and be careful! @&

Some Thoughts on BASIC Speed and Style

by Joseph Norris
Apartment 5B

42 Conshohocken State Road
Bala Cynwyd, PA 19004

One may speak about two distinct ele-
ments of "speed" in the performance of a
program. The first is the finite,
measurable time required to complete an
operation. The second is an "apparent
speed", which coincides with the opera-
tor's subjective response to the timing
of console events, especially time during
which the operator is inactive. Helpful
material is available concerning the
first element and I recommend two refer-
ences in particular which cover generali-
ties in Microsoft BASIC [1].

As for the second element, consider
what it means to format a program for
minimum "apparent" speed. If a screen
display is changing or the operator is
required to make keyboard entries, time
passes rather smoothly. And while it
seems no great trial to wait for an oc-
casional disk read/write, to the operator
processing scores of files a day even a
small wait can be most frustrating. You
will be made aware of your profound reac-
tion to this waiting period if you have
experienced the difference between access
times on a 5" and 8" disk system. The 8"
disk will access twice as fast, but it
can seem many times faster on first ex-
perience.

The "operator wait state” can be min-
imized simply by placing screen and key-
board activity as close as possible to
the disk read/write period. This way the
operator will be idle (visually and
manually} for the least amount of time.
Even "busy work" operations are helpful,

such as screen printouts announcing the
haooinnins anAd Aizl a~~ana

ArmA ~F o
Ciia

Lceginning and Ci & Gisk accessy, Or an
in-process report, if the disk period is
very long. Good sense predicates that
such activities not significantly in-

crease the waiting period; a simple mes-

sage will do.

There are times when lengthy calcula-
tions must be performed. These calcula-
tions probably need not all be done in
one great lump. There can be ample oppor-
tunity to intersperse calculations with
screen messages and keyboard inputs, even
if these are not concerned with the
specific calculations taking place. Such
activity might be concerned with some-
thing to be handled later, whose inputted
data can be temporarily stored until
needed. When my programs involve lengthy
calculations I at least give the operator
some idea of what is happening;
"CALCULATING WEEKLY TOTALS", or "FORMAT-
TING DATA FOR DISK WRITE" are typical
screen messages. These are infinitely
better than holding a stagnant screen
with a blinking cursor (which office
personnel tell me is simply annoying),
because they allow the operator some
measure of time remaining for the pro-
cedure to finish. If the idle period is
longer than five seconds, I display a
blinking "WAIT" or a similar message to
remind the operator that the computer
isn't broken! These things are effective
in reducing mild anxiety when "nothing is
happening"” and are, after all, a courtesy
on the operator's behalf. _

The graphics capabilities at our dis-
posal with ISC hardware make it difficult
not to splurge occasionally with pyro-
techniques that are spectacularly un-
necessary and distracting (to everyone
but the programmer). Such displays use
time and, unless they are truly helpful,
can appear more as seif-induigence than

skill. We can strive for the level of
sophistication that leads us, with wis-
dom, past these temptations and into a

deeper sense of what creative programming

11

means. Examination even of simple pro-
grams, with creative imagination and
awareness of the psychological element,
will show opportunities for program re-

finement at any level of programming
skill.
A time-consuming operation in pro-

tracted programs is the pressing of the
RETURN key. I make it a rule that all
single key responses will not require a
subsequent RETURN. COLORCUE has had
several articles describing ways to avoid
RETURN. Listing 1 shows some lines of
code that function as OPTION LINE direc~
tives demonstrating one such procedure
and I invite you to examine it on your
computer. (The '<' marking in my programs
indicates to the operator a single key
response. Multiple-key responses followed
by RETURN are indicated by '>'.) Line 50
sets the position and color scheme of the
Option line. The routine at 56 moves the
cursor off the screen and gets the
single-key response. Line 504 screens the
response for validity, and line 506 vec-
tors the option selection. Line 58 isn't
necessary really; it converts the ASCII
value returned from KB to the number

printed on the line generated on 502.
The next thing we will consider in
example demonstrates three techniques for
speed; PLOTing and PRINTing, GETting and
PUTting disk file strings, and the
minimum use of variables. Figure 1 shows
two lines from a screen display. The
first is generated by the BASIC program
and consists of field labels. The second
is an intact data string, J$(1), of 64
bytes from a file record, printed exactly
as it exists in the file. (A third line
marker for byte counting is provided for
your convenience.) Notice that each field
length is separated from the next by two
blank spaces, which are 'wasted', re-
served spaces both on the screen and in
the disk file. The GET statement for the
string in File #1 is: GET
1,1,1;3%$(1) [64] . This string, with all
its data, PLOTs and PRINTs in a single
line. To enter, delete or edit data I
need but one variable pair which I will
call S$ and S. To extract the Stock Num-
ber I GET 1,1,8;S$ [5]: S=VAL(S$) and
replace changed data with an equivalent
PUT statement. If I have 'declared' S$
and S early in my program, they will be

Listing 1.

55 POKE KB, @
56 PLOT 6,0,3,65,5: B
58 B = B - 48: RETURN

[Main program reference

508 GOSUB 5@
562 PRINT "1 DIRECTORY
584 GOSUB 55:

188 REM
200 REM
300 REM

'ADD' ROUTINE:
'DELETE"
etc.

999 LOAD "DIRECT": RUN

[Subroutines, located on early program lines]

5@ PLOT 6,35,3,0,5,11,3,

IF B <10RB > 5 THEN 508
566 ON B GOTO 949,108,200, 300, 4089

[GOTQ references contain sub-programs]

ROUTINE: ENDS WITH GOTO 598

A,5: RETURN

PEEK (KB): IF B = § THEN 56

to subroutines]

2 ADD 3 DELETE 4 EDIT 5 PRINT <”

ENDS WITH GOTO 5@0

Figure l. PROD# STOCK BKORD VENDOR

Label: PROD# STOCK BKORD
Length: 5 5 5
Start byte: 1 38 15

12345 10085 25098 APEX CORP 12/14/83 A. MAHNS

Field Specifications, String JS(1)

DATE/DUE CONTACT TELEPHONE

123-456-7890

VENDOR [CATE/DUE CONTACT TELEPHONE
9 8 8 12
22 33 43 53

12

near the start of variable space and will
be found quickly. I will use S$ {(and S if
required) to access any of the variables
in this string.

Compare this procedure with GETting,
PLOTting and PRINTing seven isolated
variables, both in time of execution and
memory space required. The PUT statement
performs a string length adjustment as
well. The VENDOR field is nine bytes
long, but if my entry is only four bytes
(i.e., APEX) I can still PUT 1,1,22;S$ [9]
which will write my four byte string plus
enough space to make up the indicated
byte count. This eliminates the pre-
formatting of the string, and the neces-
sity for clearing out old field data in
the disk file.

When I change data in this way, 1
follow it with a FILE "D",1 statement and
GET, PLOT and PRINT the string again, so
my screen shows the updated content. A
"dummy' variable, N$[2], may be used to
extract all of the variables in J$(1):

GET 1,1,1;3T$[5],N$[2],BKS[5],
NS [2],VES[9],NS[2], etc.

There is a consequence of this simple
demonstration which 1is not at all
trivial. I am really using GET and PUT
for string manipulation in the manner one
might use LEFT$, MID$ and RIGHTS, only
the procedure is wmuch more rapid. In
fact, nearly all my longer industrial
programs open a dummy file,
DUM.RND{1,128,1] which serves no other
purpose than to provide me with free file
buffer space which is used to format
strings, using PUT and GET. This tech-

nique has been especially valuable when
the string being edited has had complex
color coding, with various background and
foreground combinations. These codes need
not be considered while I plug in new
data at the appropriate byte locations,
and the economy in code is significant. A
completed string is retrieved from
DUM.RND and PUT into the proper file
before closing it. In this manner I have
been able, with color, to fill the entire
screen with data, all needed at once to
be meaningful. You might say I have, in
effect, an 80 column display.

Another extension of this technique is
the realization that there is no benefit
from GETting all my 64-byte data strings
which I only want to work with a few at a
time. This allows multiple use o¢f the
necessary variables involved. Sorting
procedures and the like may require
access to all the data, but more often
this is not the case.

We have looked at a few psychological
implications in programming and at the
advantages of using file buffer space for
string manipulation. Though the presented
examples are over-simplified, they may
serve as suggestions for a more compli-
cated implementation. I confess that
BASIC remains my favorite high-level
code, speed limitations notwithstanding,
and if the proposed increase to 15 mega-
hertz and 15 gigahertz speeds are
realized in the next fifteen years, these
limitations may become largely academic.
In the meantime, creative programming
will help realize the full potential of
this splendid computer language. @&

[1] Tesler, Glenn. BYTE, May 1982, pp.

318, 328, 330, and APPLESOFT PROGRAMMING
MANUAL, 1978, pp. 118-120. Most material

covered here is applicable to CCII and
3651 equipment.

o

accese disk {e.g.,

from user Zroups.)

ALS ZPD

bulk orders
Harpenden, Hertis,
the next COLORCUE.

;
ﬁgﬁm@%mmfrﬂ SR ——

for

FLASH ——— STOP THE PRESSES ——- FLASH -—— STOP THE PRESSES

A BASIC compiler has just been released by Peter Hiner in England. It is
A called FASBAS and generates what appears
| which runs faster than interpreted code. We've had trouble getting it to
PLOT 27,4), and there are certain restrictions on the
kinds of BASIL programs it can tramslate,
the price for the disk and documentation is
Contact Peter Hiner,
fngland, We'll try £o say more about FASBAS in

to be a pseudo~compiled BASIC

but it does work. What's more,
$25 outside the U,K. (Discount
11 Penny Croft,

i3

Compucolor Hardware Options 4

X LOWER CASE Character set. (Switchable) MSCI2 $29 U.s.
K MULTI-CHARACTER sets. (Lowercase, Electronic, Music etc.) $39
% REMOTE DEVICE CONTROLLER. Switch ON/OFF 8 devices. PSCl $45
K 16K RAM Upgrade. (Increase from 16K to 32K.) 549

X ROMPACKS. Easy exchange of 8K EPROM MODULES. The interface
board can hold an additional 8 or 16K EPROM,.

Interface board, cable and ROMPACK socket:
Each blank ROMPACK (Including EPROMS):

(Please write for full details of ROMPACK
system and available software.)

FJ FJ ‘ PROGRAM PACKAGE TNSTALLERS,
P 0 Box 37, AlL prices
incl. airmail.

DARLINGTON,
WESTERN AUSTRALIA 6470

St v 2. 8 ° : L : AR .

~Word Processor "

for the COMPUCOLOR IT (V6.78, 8.79), 3621 and INTECOLOR 3651. (32K RAM)

Only $55 {u.s.) Incl. airmail

< Full screen, tast operation with 20K byte buffer. (Assembler written)
Can be used with any level keyboard. (10l key is recommended.)
Automatic word wrap on screen and printer with justification. (30-199 col)}
Block and character Move, Copy., Delete, Save and Print.

String search with optional replace. (Both up and down file.)
Operates with or without lowercase character set. (Selectable).

HELP facility. Full command summary on screen. (Two pages.)

Automatic repeat on all keys.

Imbedded control codes allows operation of any printer function.
Screen preview of printout at any time.

Compact file storage in FCS format. Can process existing .SRC files.

b

P A A . -

P P‘ PROGRAM PACKAGE INSTALLERS,
P O Box 37, Please include
TOYWMInT Wit o

DARLLINGTON,
WESTERN AUSTRALIA 6070 (Ph.092996153)

- -_c

-

What's New

by Rick Taubold
197 Hollybrook Road

Rochester, NY 14623

There's been a lot of 'doom and gloom'
about the CCII lately, about how it has
passed the way of many other obsolete
items. Personally, I can't understand all
the fuss. The CCII still lives on as the
Intecolor line. All of us realize what a
bargain the CCII was at the time. Gran-
ted, the Intecolors are a bit more expen-
sive, but then you get more. I suppose
what I'm saying is that, if the CCII is
really dead, why has there been so much
recent growth in software and hardware
for this 'dead' machine? Or maybe you
haven't noticed.

I know of at least three good sources
of software plus several smaller ones.
The most complete is Intelligent Computer
Systems, 12117 Comanche Trail, Hunts-
ville, Alabama 35803. They carry nearly
every decent piece of software ever writ-
ten for the CCII/Intecolor computers.
Service is good, prices are low, and
there are only occasional goof ups with
orders. A second source is COM-TRONICS
CO., 144 Cloverside CT., Buffalo, New
York 14224. Again the service is good,
the quality is very high. However, and I
am not alone in this feeling, the prices
are also rather high. COM-TRONICS' own
words are that "if you want quality, you
gotta pay for it." Perhaps this is true,
but, despite the quality, I can't really
say that what I've seen of their software
is a bargain. In my opinion there is
other software, just as good, for less
money in many cases. By the way, unlike
the other sources listed here, COM-
TRONICS markets only their own software.
Their products are also available from
the other sources, but the prices are the

PR L SRS & I I T DU A e ST e L Y.
DRiiiT = Y YV iiid l.liuuakil.] AT A&i FE VIV WA WEL S

TRONICS on this one, but I know several
other people who agree with me.

Perhaps the most exciting new source
of CCIl and TIntecolor add-ons is FREPOST

tor the CCII?

Computers, 431 East 20th Street, New
York, NY 10010. It is to this source that
I will devote most of the remainder of
this article. Have you ever wished that
someone would make a particular item and
then later find it available even better
than you had dreamed of? I must confess
that I came up with the idea of doing
something useful with that blank §K ROM
space in the CCII some time ago. Un-
fortunately, I was still a novice and
lacked the resources to carry out my
idea. I thought it would be nice to be
able to put several switchable programs
permanently into my CCII memory in the
4000H-5FFFH ROM space. Programs like the
Screen Editor, Assembler, FREDI (this was
before 'The' BASIC Editor came along),
etc. I envisioned a set of boards mounted
inside or outside the computer with a
switch to select the desired board. I was
told by those more knowledgeable than
myself that this was not feasible, some-
thing about the length of the data lines.
Then, lo and behold, some months later I
saw a demo of the new FREPOST Bank Select
ROM board. I was awed. This was exactly
what I had wanted. Further, it was under
software control, no clumsy switches, and
it plugged neatly inside the CCII. Well,
I didn't buy one on the spot, but I did
not wait long. I am pleased to say that
there is no piece of hardware, in my
opinion, currently available for the CCII
that is more worthwhile having. The price
of $250 assembled is a bargain. The unit
is quality constructed and easy to
install.

There's more. Not only will this
beauty hold seven sets of 8K programs
{(EPROM chips), but the recent Tom Deviin
RAM board will plug into the 8th
position. That's a total of 64K of user-
defined program space that is in addition
to the 32X RAM :iready in your machine.

15

The possibilities are endless. Consider
hoew awkward it would be to have to load
BASIC from tape or disk every time you
wanted to use it. That's what one had to
do with the earlier home microcomputers
(and still a few current ones, I think).
All we have to do is ESC E and there it
is. How would you like your favorite
utilities that handy, always there at
power-up time? The FREPOST system is the
answer. All it takes is a couple of key
strokes and away you go. Already there
are many programs available in EPROM
ready to plug in. FREPOST will even cus-
tom program EPROMs for you at modest
cost.

It is also worth saying that FREPOST
makes a single ROM board should you not
need all that fancy stuff. For some
people a simple BASIC editor is enough. 1
cannot praise the company highly enough
for their friendly manner. After I pur-
chased the Bank Select Board they called
me on more than one occasion to be sure
that (1) I had received it, (2) I had no
trouble installing it, and (3) that it
functioned properly and to my satisfac-
tion. We had a minor problem at first
with the Devlin RAM board due to a minor
error in the FREPOST instructions. This
has since been corrected.

Neither was this my last contact with
them. Bill Freiberger has personally
called me at least twice since to keep me
informed of new products and developments
in which he felt I might be interested.
Now THAT is service. Do yourself a favor.
Write to FREPOST Computers for a catalog
of all their stuff. They carry things
like add~on lower case, add-on 16K RAM
{for those who still have 16K machines),
and lots more. As I said before, their
prices are very reasonable. I'm looking
forward to their next coup-

I suggested earlier that other sources
of software did exist. There are dis-
tributors in Canada and Australia as
well. In the U.S., Jim Helms, 1121
Warbler, ZXerrville, TX, 78028, writes and
sells software. I have several of his
programs, and all of them are excellent.
All of his programs should be available
from FREPOST (in EPROM if desired) or
from Intelligent Computer Systems.

I wish to comment on one ipore source.

This is COLORWARE in Canada /‘not to be
confused with Quality Software
Associates). Some time ago I ordered

three programs from them. One was a Pac-
man program called GOBBLER. I found the
company to be slow (7 weeks instead of

16

the stated 4-6 weeks) in delivery iime
for one thing. Two of the three programs
gave disk errors, which COLORWARE claimed
was a fault of my disk drives. In all
fairness I should state that I was able
to load the programs on another machine
even though my own disk drives rarely act
up on other outside programs. But the
most annoying thing was that GOBBLER
would simply not run on a V8.79 system
even though both versions were on the
disk. This was a ridiculous situation for
it was obvious that COLORWARE had not
tested the V8.79 version before mar-
keting. Indeed, the problem was faulty
conversion of V6.78 to V8.79 addresses.
Even more frustrating was the fact that
after I received the supposed 'corrected’
version from them it still would not run.
I went in wmyself with the MLDP program,
patiently disassembled all system ROM
calls, and compared each with what it
should have been for V8.79. Incredible!
Four of the addresses had not even been
changed! Again, COLORWARE failed to test
the program even after the customer com-
plained! After I made these corrections
to my own copy, all was fine. I sent the
corrections to the company with a to-the-
point letter. They did not do me the
courtesy of responding. The GOBBLER pro-
gram itself was a disappointment. For a
purported Pac-man, it is way below stan-
dards. TIts only mark of distinction 1is
its excellent sound routines. I you crave
Pac-man, buy the CHOMP program (from
Intelligent Computer Systems). In my
opinion it is the best arcade game cur-
rently available for the CCII.

In all fairness I should say that the
other two programs worked well and that
one of them, a utility called AGILIS is a
real boon. AGILIS allows the user to
create a screen display, after which the
program will itself write a BASIC program
to re-create that display. It's a mar-
velous program. It is a shame that the
company selling it has chosen to run
their business in so poor a way. This is
the only supplier of CCII software which
I have encountered that has not met
standards. I feel that cther CCIl users
should know this. I trust that this will
be an isolated case. The CCII
a wmachine to setile for
than the best in supnort.

The CCIT mav be 'dead', but
poriers are alive and
there are more surprises yet in stol
us. #&

mny
7

toc good

s
hing less

<

P T T FRER S

ACTIV 2. LoSUsnE
yhe

Controlling Keyboard Input in BASIC

by Dan Murray
7064 35th NE
Seattle, WA 98115

The Dec/Jan 1982 issue of Colorcue has
an article by Bernie Raffee that presents
a method for controlling user input by
using a machine language subprogram. The
assembler language program makes interes-
ting reading, and I learned some tech-
niques for interfacing machine code with
BASIC. However, it seems like a lot of
work for a simple objective - preventing
the user from making mistakes. To avoid
mistakes, you must control the user's
actions, i.e., when he types, and what he
tvpes. Bernie Raffee has certainly done
this, and very effectively, but if the
same result can be achieved from BASIC it
would be easier and more convenient.
Buried amongst some past issues of
Colorcue are the two tools need to con-
trol the user from BASIC.

When

A prior issue of Colorcue says to use
the command "OUT 8,241" to lockout the
keyboard (except for the CPU reset key).
whenever you want the keyboard re-
activated, just use "OUT 8,255", and the
keyboard will work as wusual wuntil the
next "OUT 8,241" command. This function
is important, because ISC's BASIC im-
mediately echoes any keyboard input at
the current cursor location. This can be
disastrous if you are building a screen
format and the user starts to hit keys at
random. So, by using this function, you
have control over when the computer will

receive input from the keyboard.

What
Another past issue of Colorcue gives a
~— ACT o TYNNTS T

~ PP - s — L2
Diivi L P S S L Uil Ltiiati L NI LY Dd a Liiiy

machine code routine into high memory and
sets up linkage for CALLing the routine
from BASIC. The beauty of this machine
code is that it performs a very simple,

primitive function - interrogate the key-
board and return the ASCII value of any
key pressed, returning a -1 if no key was
pressed. Also, nothing is echoed to the
screen. As an extra frill, you can tell
the routine how many seconds to wait for
input, up to 255. By keeping the routine
simple, you can integrate it into many
different applications, treating it much
like any other BASIC function. When using
this function in a larger BASIC sub-
routine, ycu can perform any number of
input and editing tasks, controlling
input entirely from BASIC.

Listing 1 is a sample program to
demonstrate the use of these functions;,
including numeric verification with
signed fractional values. Since learning
these techniques, I have developed the
habit of keeping the BASIC "POKE" routine
on disk and LOADing it into memory before
starting a new program so that the
routine forms the beginning of every
program I write. If it later turns out
that a particular program won't need this
routine, it's a simple matter to delete
those few lines of code. NOTE: it is
important to remember t "CLEAR xxx" after
executing the BASIC "POKE" routine so
that the BASIC system will reset the
string space pointer, otherwise BASIC
will clobber your machine code with any
strings used later in the program.

Before I leave you with the impression
that this method is perfect, let me
assure you that it's not. The most

obvious problem is BASIC's speed, or lack
of it. The second problem is related to
the keyboard. It seems that ISC designed
their keyboards with what 1is caiied
"three key rollover". This means that you
can hit a second and even a third key
before releasing the first one. As long
as each Key is released before the next

17

one is pressed (even at high speed), the design, code, and understand. Also, if

program will work just fine.

someone can find any "holes

"

I hope these techniques will encourage traps, please let me know. @&

programmers to write thorough programs
that are user-friendly but still easy to

in my error

219 REM ... FILE UPDATING/DISPLAY, ETC. ...

230 REM * * % * % % &% & % % * % % & *

480 GOTO 160

5@ REM * FIELD INPUT ROUTINE *
510 AS= “""
A= 0
:PLOT 3,0,2
:PRINT CHRS (13)
:IF NN= @THEN NN= 1
520 PLOT 3,XX,YY
:PRINT LEFTS (FILLS,NN);
:PLOT 3, XX, YY
53@ OUT 8,255
:AA= CALL (@)
:OUT 8,241
: IF AA> 31AND AAC 97AND A< NNTHEN A= A+ 1
:PRINT CHRS (AA);
:AS= AS+ CHRS (AA)
:GOTC 530
540 IF AA= 26AND A> OTHEN A= A- 1
: PRINT BUS;
:AS= MIDS (AS,1,A)
:GOTO S30
550 IF AA= 13THEN PRINT SPC{ NN- A+ 1);
:RETURN
560 IF AA= 11THEN 509
578 GOTO S30

196 REM * INITIALIZE *
1020 PLOT 15,6,2,12
:tREM SET CCI AND CLEAR SCREEN
1930 PRINT SPC(15);"DATA ENTRY DEMONSTRATION"

1856 OUT 8,255 :REM GET READY TO SHUT OFF KEYBCARD
1g6@ OUT 8,241 :REM KEYBOARD IS NOW OFF
1676 POKE 33289,255 :REM MAXIMUM CHARS/LINE

1198 REM - DEFINE GLOBAL VARIABLES -~
1126 REM 'FILL' CHARACTERS SHOWN THE FIELD'S SIZE

1 REM bbb dddbddd bbbk b bt rkddr
2 REM * SAMPLE DATA ENTRY ROUTINES *
3 REM = BY DAN MURRAY *
4 REM = 11/04/82 *
G REM ARERRRRERAARRERRRRRRARERRAR AR RN
20 GOsSUB 63000 :REM LOAD INPUT ROUTINE INTO HIGH MEMORY
S8 CLEAR 1000
199 REM * CONTROL ROUTINE *
126 GOSUB 1¢0@ :REM -~ INITIALIZE
140 GOSUB 2000 :REM - SET UP SCREEN
160 GOSUB 3000 :REM -~ INPUT SOME DATA
180 REM * * % % * % & % * % x % * * %
200 REM —— FURTHER PROCESSING GOES HERE —

11386 FILLS= "

1154 REM BACKUP VARIABLE USED TO ERASE 1 CHARACTER
1168 BUS= CHRS (26)+ LEFTS (FILLS,l)+ CHRS (26)
1986 RETURN

2000 REM * SET UP SCREEN DISPLAY *
2028 PLOT 3,0,5
:PRINT "NAME:"
2232 PLCT 3,15,8
:PRINT "- ADDRESS -"
2044 PLOT 3,0,10
:PRINT "STREET:"
2050 PLOT 3,8,12
:PRINT "STATE:"

18

2069
2079
20849
2099
2980
3009

3020
3039

3040
3060
3979

3080
3109
3118

3129
3156
3leg

3170
3200
3219

3250
3260

3278
3300
331¢

3329
3988

9000
9020

9630

9049
9950

9060
3500
93529

9530

9549

PLOT 3,4,14

:PRINT "ZIP CODE:"

PLCT 3,8,17

:PRINT "TELEPHONE - WORK:"
PLOT 3,32,17

:PRINT "HQME:"

PLOT 3,9,19

:PRINT “"YEARLY INCCOME: $°
RETURN

REM * DATA INPUT *
REM -~ INPUT NAME -
XX= 6

YY= 5

:NN= 30

:GOSUB 509

IF AS= ""™THEN 3¢3¢
REM - INPUT STREET -
XX= 8

:YY= 19

:NN= 5¢

:GOSUB 500

IF AS= ""THEN 3074
REM - INPUT STATE -
XX= 7

1YY= 12

:NN= 10

:GOSUB 508

IF AS= ""THEN 3119
REM - INPUT ZIP CODE -
XX= 10

1YY= 14

:NN= §

:GOSUB 508

:GOSUB 9500

IF LEN (A$)< STHEN 3164
REM -~ INPUT WORK PHONE -
XX= 18

(YY= 17

:NN= 8

:GOSUB 500

:IF AS = "" THEN 3210
REM - INPUT HOME PHONE -
XX= 38

1YY= 17

:NN= 8

:GOSUB 509

IF AS= ""THEN 3260
REM - INPUT INCQME -
XX= 16

:YY= 19

:NN= 9

:GOSUB 5040

:GOSUB 9029

IF AS= ""THEN 331¢
RETURN

REM * NUMERIC VERIFICATION *
N= @

:IF AS= ""THEN RETURN

FOR X= 1TO LEN (AS)

:¥= ASC (MIDS (AS,X,1))

:IF ¥Y> 47AND Y< SBTHEN NEXT X
: RETURN

IF (Y= 430R Y= 45)AND X= 1THEN NEXT X
IF Y= 46AND N= ¢THEN N= 1
tNEXT X

Asz e

:RETURN

REM * INTEGER VERIFICATION *
N= ¢

JIF A3= "UTHEN RETURN

FOR X= 1TO LEN (AS)

;Y= ASC (MIDS (AS,X,1))

:TIF Y> 47AND Y< S8THEN NEXT X
: RETURN

AS= u

: RETURN

19

63000 REM **%* INKEY ROUTINE *#** 63150 7= ™M+ 7
6361¢ DATA 245,229,197,1,206,48,205,36,6,202,-1,-1,11 :AD= T™M+ 17
63020 DATA 121,176,194,-1,-1,29,194,-1,-1,17,255,255,195 :GOSUB 63180
63038 DATA -1,-1,95,175,87,175,58,255,129,193,225,241, 201 63160 Z= ™+ 4
63948 TM= 256* PEEK (32941)+ PEEK (32940) :AD= ™M+ 21
63g5¢ IF T™M> 655@3THEN 63118 :GOSUB 63180
63060 RESTORE 63010 63170 2= ™™+ 32
6397¢ FOR I= 1TC 39 :AD= T™M+ 27
:READ A :GOSUB 63180
63086 IF A> = QAND A< > PEEK (TM+ I)THEN I= 39 :GOTO 63190
:A= 999 6318¢ 2Z= INT (Z/ 256)
63099 NEXT I :POKE AD,Z- 256% ZZ
63108 IF A< 256THEN 63200 :POKE AD+ 1,27
63119 ™= T™- 39 :RETURN
:RESTORE 63010 63199 2= ™
63120 FOR I= 1TO 39 1AD= 32940
:READ A :GOSUB 63180
{POKE ™+ I,A- (A< 0) 63200 2= ™+ 1
63130 NEXT 1 :AD= 33283
63149 Z= ™M+ 29 :GOSUB 63180
:AD= M+ 11 63210 POKE 33282,195
:GOSUB 63180 63220 RETURN
MORE DISK STORAGE FOR $24.95!
Two programs to pack 50% more
ASCII information disks.
PACK.PRG compresses files to

pressed
original form.

modated, E.G.,

Delay for
Send Postal
same day shipment

personal
Money

VANCE PINTER
P.0. BOX 20
COLUMBUS, GEORGIA 31902

2/3 original size and saves on
disk, UNPACK.PRG expands
files and

com-

saves in

Works on V6.78 and v8.,79.

ALL ASCII codes (0-127) accom=-
ASM SRC,
EDITOR and CTE files.

TEXT

checks,
for
program
disk and user instructions to:

Order

20

A FORTRAN Plot Library

by Joseph J. Charles

PO Box 750

Hilton, NY

Here is a library of FORTRAN plot
subroutines and a time-delay subroutine
which you can add to your FORTRAN pro-
grams. Listing 7 is the FORDEM program
which simply demonstrates the use of the
plot subroutines.

The plot subroutines should be com-
piled into a relocatable file named
PLTLIB.REL. To use them, all you need to
do is CALL them as desired in a FORTRAN
mainline or other subroutine. Then, after

compiling the FORTRAN source files, link
the files wusing L80. However, before
linking in the FORLIB.REL library, link

in the PLTLIB.REL library by specifying
the /S switch:

L8O>PLTLIB/S

This will cause L80 to search PLTLIB.REL
for the plot, timer and scaler calls.
When the next L80> prompt appears, re-
spond with FORLIB/S as usual.

The subroutine calls and arguments are
described below.

SUBROUTINE SCALE (ARRAY1,ARRAY?2 ,N,MIN,MAX)
ARRAY1 is the input array to be scaled
and converted to logical. ARRAYZ2 is
the converted, scaled array. It is
scaled to screen coordinates. N is the
dimension of ARRAY1. I think it's fine
to let M=dl+d2+...dn if ARRAY!1! is
multidimensional. MIN is the minimum
value for the scaled array. You supply
this in the CALL. MAX is the maximum
value for the scaled array. MIN and
MAX should be in screen coordinates
and 1nteger wvariables or liateger
constants.

14468

SUBROUTINE LINE(X,Y,N,FOOLCR,
BOOLCR, IBL, IFL)
X, Y are the arrays of X and Y coord-
inate pairs of dimension N. They must
be logical arrays and scaled to screen
coordinates. This is accomplished by
two CALLS to SCALE prior to the CALL
to LINE. LINE plots a line or curve of

connected points. It is essentially a
routine for doing vector graphics.

FCOLOR and BCOLOR are the foreground
and background colors desired. They
must be logical variables whose value
corresponds to 16-23 for the various
colors. IBL is a blink determiner. If
IBL=1 the plotted line will blink; no
blink otherwise. IFL is a flag deter-
miner. If IFL=1 the flag is turned on
and the plot is exclusive ORed with

each pixel just as for PLOT 30 in
BASIC.

SUBROUTINE PPLOT(....)
A point plot subroutine essentially

identical to LINE.

SUBROUTINE XBAR(X0,Y,XMAX, FOOLCR, BOOLCR,

IBL, IFL)
Each CALL plots one x-bar graph with
X, Y and XMAX as in BASIC. The other
arguments are as for LINE. As before,
X, Y and XMAX must be scaled and
logical.

SUBROUTINE YBAR(Y0,X,YMAX,...)
Same as for XBAR.

SUBROUTINE TIMER (SECS)
Provides a time delay of "SECS"
seconds. SECS must be an integer
variable or integer constant. @

21

‘ Cc B e e e L e
c
i SUBROUTINE SCALE(ARRAY1yARRAYZsNyMHINsHAX)
; c
f C THIS SUBROUTINE WItt SCALE ARRAY!l sA REAL ARRAY, TO
i C THE LOGICAL ARRAYs ARRAY2, ARRAYZ MAY RE SENT TO THE
i C SCREEN VIA THE PLOT ROUTINESs LOGICAL AND PROFERLY SCALED.
c
i C WRITTEN BY: JOSEFH J. CHARLESy 130 SHERWOOD DRIVEy
c HILTONy NY 14468 TELI(714) 392-8152
c
c
C VERSION: JULY 18,1982, 6117 PH
C
DIMENSION ARRAY1(1)
LOGICAL ARRAYZ(1)
c
ALOW=1,E30
' AHIGH=-1.E30
i c
{ D0 1 I=1,N
‘ IFCARRAY1(I) LLT. ALOW) ALOW=ARRAY1(I)
1 IFC ARRAYI(I) GT. AHIGH)> AHIGH=ARRAY1(I)
c
DELA=AHIGH-ALOW
DPEL TA=MAX-HIN
SCALER=DLELTA/LELA
c
DO 2 I=1sN
2 ARRAY2(I)=(ARRAY1(I)—-ALOW)XSCALER+MIN
c
RETURN
ENTi
c Listing 1
C ZESECSCTErSCS RS oSS CoEECS TS CSSSSSTSESSSSSTSSSSS=SS=S=T==
c
SURROUTINE LINE (XyYsNyFCOLORsBCOLOR,IBLSIFL)
c
C THIS SUBROUTINE WILL PLOT CURVES WITH OFTIONS
c FOR COLORsELINKINGy AND "EXCLUSIVE OR"-ING.
C
C WRITTEN BY: JOSEFH J. CHARLESy 130 SHERWOODY DIRIVE,
C HILTON, NY 144468 TELI(716) 392-8132
C
c VERSION: JULY 1851982y 60117 FH
c
DIMENSION X({1)»Y(1)
c
LOGICAL XsYsFCOLORsBCOLORsRLINKsBLA7OF sGPM,yVECTOR
LOGICAL FGOFLOsBGOFLOsPLENDyGREEN,ELACK
c
DATA GPMsVECTORsFLENDsFGOFLOsEGOFLO/252425255+29+30/
DATA BLA7OFyELINK,GREEN, RLACK/15,31,18516/
c
WRITE(3) BGOFLOyBCOLOR,FGOFLOsFCOLOR
C
WRITEC3) BLA7OF
IFCIRL +EQ. 1) WRITEC3) BLINK
C
IFCIFL .EQ.1) WRITE(3) EGOFLO
C
WRITEC(3) GPMsX(1),Y(1),VECTOR
C
0 1 I=2+N
1 WRITE(3) X(IDsYC(I)
c
WRITE(3)PLENDy BGOFLOs BLACKsFGOFLO s GREEN s BRLA7OF
c
RETURN
END
c - .
Listing 2

22

(]

SUBROUTINE PPLOT (XsYsNsFCOLCOR,ECOLORsIEL,IFL)

c
c THIS SUBROUTINE WILL FRODUCE FOINT FLOTS WITH OFTIONS
c FOR COLORsELINKING, AND "EXCLUSIVE OK"-ING.
c
c WRITTEN BY: JOSEPH J. CHARLES, 130 SHERWOOD DRIVE,
c HILTON», NY 14468 TEL:(716) 392-8152
c
c
c VERSION: JULY 18,1982, 6117 FM
¢
DIMENSION X(1)yY(1)
c
LOGICAL XrYsFGOFLOsBGOFLO,BLINK,GFMsFOINT s ELA7OF
LOGICAL FCOLORBCOLOR,PLENIyGREENs BLACK
c
DATA GPM,POINT,PLEND,FGOFLOsEGOFLO/2,253,255,297,30/
DATA BLA7OF rBLINKyGREEN,ELACK/15,31518116/
c
WRITE(3) BGOFLQ,RCOLORyFGAFLOFCOLOR
c
WRITE(3) BLA7OF
IFCIEL LEQ. 1) WRITE(3) ELINK
C
IFCIFL LER. 1) WRITE(3) EGOFLO)
c
WRITEC3) GPMsX(1)sY(1)yPOINT
c
DO 1 I=2,N
1 WRITE(3) XCI)yY(I)
c
MRITE(3) PLEND,KEGOFLO,sBLACKsFGOFLOsGREENsELA7OF
RETURN
END
c - Listing 3
C =============:======::::::::::::::::::===:==:=:$=::==::
c
SUEROUTINE XEAR(X0rYsXMAXsFCOLORyECOLOR, IKLy IFL)
c
c THIS SUBROUTINE FRODUCES X-BAR-GRAFHS WITH OFTIONS
c FOR COLORsELINKINGsAND "EXCLUSIVE OR"-ING.
c
c WRITTEN BY: JOSEFH J. CHARLES, 130 SHERWOOD DRIVE,
c HILTONs NY 14468 TEL:(716) 392-8152
C
c
c VERSION: JULY 18,1982, 4117 FM
c
LOGICAL GPMsXEARG»FCOLORyBCOLOR,ELINKy X0 rY s XHAX s PLEND
LOGICAL GREEN,ELACKsFGOFLO,EGOFLOsELA7OF
c
DATA GPMsXEARGrPLENL BLINK/2,250,255,31/
DATA FGOFLOsGREENBGOFLOsELACK/ELATOF /295185305165 15/
€
WRITE(3) BGOFLO,BCOLOR,FGOFLO,FCOLOR
c
WRITE(3) BLA7OF
IF (IEL .ER. 1) WRITEC3) ELINK
C
IF (IFL .EQ. 1) WRITEC(3) EGOFLO
c
WRITE(3) GPHsXEARGsX0s Y, XMAX,FLEND
c
WRITE(3) BGOFLOyELACK,FGOFLO,GREENs BLAYOF
c :
RETURN
END!
€
Listing 4

23

|
; C B e e N T
i C
X c
% SURROUTINE YHBARCYO s Xy YMAX,FCOLOR,»HCOLORy IERLyIFL)
C
| c THIS SUEBROUTINE PRODUCES Y-BAR-GRAFHS WITH OFTIONS
! C FOR COLORyEBLINKINGsAND "EXCLUSIVE OR"-ING.
C
c WRITTEN BY! JOSEFH J. CHARLESs 130 SHERWOOD LRIVEs
C HILTONs NY 14468 TEL:I(7146) 392-8152
c
c
c VERSION! JULY 18,1982, 6117 FHM
c
LOGICAL GPMsYBARGsFCOLOR,BCOLORBLINKs YO s Xy YHAX s FLEND
LOGICAL GREENsEHLACKsFGOFLO,HBGOFLOsELAZ7GF
C
DATA GPMs YBARGsFLENIs BLINK/2y246+235+31/
DATA FGOFLOYGREENsBRGOFLOsBLACK, BLA70F /29518930 s16515/
C .
WRITE(3) BGOFLOyECOLOR:FGOFLOyFCOLOR
c
WRITEC(3) BLAZOF
IF (IEL JEQ. 1) WRITEC3) ELINK
C
IF (IFL .EQ. 1) WRITEC(3) EGOFLO
o
WRITE(3) GFHsyYHARGy YO s Xy YHAXyFLEND
C
WRITE(3) BGOFLO,ELACKsFGOFLO,GREENsELA7OF
C
RETURN . .
END Listing 5
[B R e e e e S L S E T T ey
c
SURROUTINE TIMER(SECS)
C
c THIS SUBROUTINE FROVIDES A DELAY OF "SECS" SECONDS
C
C WRITTEN BY:! JOSEFH J. CHARLESsy 130 SHERWOOL LRIVEys
C HILTONs NY 14468 TELI(716) 392-8182
C
C
C VERSION: JULY 18,1982y 6117 PH
c
INTEGER DELTAsSECS
C
LOGICAL HRsMINsSEC
C
HR=PEEK(X’ 81KR’)
MIN=PEEK(X’'81HA’)
SEC=FEEK(X’81E9?)
c
C STARTING TIME
STIME=3600.%HR+40 . XMIN+SEC
c
1 HR=PEEK(X' 81KE’)
HIN=PEEK(X’'81RA’)
SEC=PEEK(X’B1E9%’)
c
C PRESENT TIME
PRESTH=3600 . XHR+60 « XMIN+SEC
c
DELTA=FRESTM-STIME
IFCOELTA .LT. SECS) GOTO 1
c

RETURN
END

Listing 6

24

Listing 7

[

106

107

«

113

130

101

— O

r__.. T s e e e e

FROGRAM FORDEM

DIMENSION X(S1)yY(S1)sX2051)9Y¥2(51)5Y3(51)

LOGICAL ELACK, REDyGREENs YELLOWs ELUE sHMAGNTAsCYANSWHITE
LOGICAL FGOFLOsRGOFLUSEBLAYOF yBLINKYERASE s SETRRSESC

LOGICAL A7ONsEBRCs»PAGE»SCROLL sCURSORLXsLYsCOLORyHOME
LOGICAL XZsY2sY3sHRsMIN,SEC

DATA BLACK/REDSGREEN, YELLOWs BLUE yMAGNTA/16517518919+520521/
DATA CYANSWHITEsERASEYERLAZ0F s BLINKsHOME/22523,12515,31,58/
BATA ESCsSETERyA7ONsFAGE s SCROLL s CURSOR /27518y 1492451143/
DATA RGOFLOsFGOFL0/30,29/

WRITEC 3)BGOFLOsBLACKFGOFLO» YELLOWs RLAYOF

WRITEC3,105)

FORMATC(’ INFUT DATA MUST EE IN FORM INDICATELD. FOR EXAMPLE’ /

© %% 33 ¥¥ HMEANS 3 TWO LIGIT NUMEBRERS »RIGHT JUSTIFIED, WITH A7

© SFACE RETWEEM THEM. E.G. 09 17 30°)

WRITE(3,106) ’

FORMAT(’ ENTER THE TIME (HOURS MINUTES GECONLIS) #3% #% 3%/)
READ(3,107) IHR,IMINs ISEC

FORMAT(3(12,1X))

CONVERT TO ONE HYTE EACH
HR=IHK
HIN=IMIN
SEC=I5EC
POKE 70 33211,33210,33209
(X"81BE’ s X" 81RA’ s X' 8B1E?” I HEX)
CALL FOKE{X’81EE’ sHR)
CALL FORE(X BLlEA" yMIN)
CALL FOKE(X'81E?" ySEC)
WRITEC 35,111)
FORMATC(® ENTER BAUL RATE CODE FOR YOUR FRINTER IF’ /s
©YOU WANT TO USE IT. (1-7) ENTER O OTHERWISE. % /)

READ(3,112) IERC
FORMAT(I1)

. IFC IBRC .EQ. 0) GO TO 2

BRC=IERRC
WRITEC 3) ESCs»SETERsHRC

WRITEC35,113)

FORMAT(” ENTER NUMEER OF STOF BITS FOR YOUR FRINTER.’/»
{1 OR 2) % 7

READC 3,112) NSE

IFCNSE JEQ. 1) WRITEC3) AVON

IF(NSE JEQ. 29 WRITEC3) BHLATOF

WRITEC3,130)

FORMAT(’ FOR HOW HANY SECONDS WOULDN YOU LIKE TO OESERVE '/
 EACH DEMONSTRATION FLOTT #3% <)

READ (35107) NSEC

WRITEC 3,101

FORMATC” ENTER X,Y FOR LOWER LEFT CORNER: ¥¥% $¥3%7/,
© ENTER X GREATER THAN 127 TO END PROGRAM.’)

READ (35102)IXMIN, IYMIN

FORMATC I351XyI3)

IFCIXHMIN JGT. 127 GOTQ 8

WR1ITEC3,103)

FORMATC ENTER X»,Y FOR UFFER RIGHT CORNER: #%3% 334%°)
READ (3,102) IXMaXs I[YMAX

DEFINE GAUSSIAN FUNCTION:
NCOy1) ¢ NOT NORMALIZED TO UNIT AREA)
Y{258)=1.
XS =0,
Lo 1 1=1,52%
CIN=0I-260,3,
YOCIOI=EXFC -0, 330X THk%2)
ACL+28)=1/8,
YOIH260SEXFC -0, 0F L0 TH26 JkXD))
WRTTE DaTa T FRINTES TF MRINTER IS THLELE
IFv IBRC EQ. 9 T T4 2

WRITE 20104
FORMAT T [S A 21 S AR N SO R G AR S YCIFRL D)

25

26

100

142

14

143

144

13

WRLITEC 2,100 (IpX0T 0y YTy X0 14005V S41 05 I5294%20)
FORMATC? 7 ISy 20F 10, 4sF 10,8555 0)

WRITECZ, 140

CALL SCALECKyX2y51y IXMIHs IXAMAX)

CALL SCALECY»Y2551,IYMIN, IYMAX)

WRITE SCALED VALUES TO FRINTER
IFC IBRC .EG.O0) GOTO %

WRITE (2,108)
FORMATC //7//7 SCALEL EBYTE VALUES’ /)

WRITEC25,109) (Is X201y Y20T)9 X20T41)9Y2(I+1)y I=1,49,2)
FORMAT (7 "9 I550Xs I3y 7Xs I3512X9 13,7 %Xy 13)

WRITEC2,110)
FORMATC Y/ /)

WRITE(3) ESCsFAGE JERASE

WRITEC 35140)

FORMATC” FPLAIN OLD RELL-SHAFED CURVE FOR STARTERS...)
CALL TIMER(2)

CALL LINE (X25Y2»S1yREDyELACK»0+0)

CALL TIMER(NSEC)

WRITE(3) ERASE

UWRITEC3,141)

FORMAT(" SAHE, EUT IN FOINT FLOT MODE WITH ELINKING.)
CALL TIMERC3D

WRITEC3) ERASE

CaLL FPRLOTOXZ2,Y2,S1,GREENSBELACKY1+0)

CALL TIMER(NSEC)

WRITEC3,142)

FORMAT(" FUT TWO CURVES UP...)

CALL TIMERI2)

WRITEC3) ERAGE

CALL LINE C(aZsYZsSiy TELLOWSBLACK 090
L0 14 I=1,41

YA3CID)=Y20I410)

CALL LINE (X2yv3+41yRLUEsBLACKs 030)
CALL TIMER({NSEC

WRITEC 3 HOHE

WRITEC35143)

FORMAT(’ ERASE ONE EY REFLOTTING WITH XOR-ING’)
CALL TIMER:I 2

CALL LINE (3247251 s vELLOWYBLACK»O» 13

CALL TIMER(NSEC:

WRITEC3) ERASE

WRITE(3,144)

FORMATL " ¥ BAR-GRAFH HMODE. . OHE SUR CALL FOR EACH LINE’)
CALL TIMER(4)

o 13 I=:1,51

CALL YRARCTZOL3s X207 1720 L0 REDVBLACK, 00

CALL TIMER:NSEC:

WRITEC3) ERASE

WRITE(3,143)

FORMAT(® X BARS...")

CALL TIMER(2)

WRITE(3) ERASE

B0 9 I=1,31

CALL XBARCYZC L))o X2C Iy Y20 D)y YELL QW BLACK 040)
CALL TIMER(NSEC)

WRITEC3) HOME

WRITEC3y146)

FORMAT(’ ERASE EY XOR-ING EVERY OTHER OHE...)
CALL TIMERC(4)

00 10 I=2,50,2

CALL XBARCY2C 1)y X2Z0I s Y2C 1) s YELLOWs BELACH s 04 L 3

CALL TIMER(NSEC)

WRITE(3) HOME
WRITE(3s147)

147 FORMAT(’ REFLOT REMAINING ONES RLINMKING YELLOW.?)
CALL TIMERC4)
0g 14 I=1,51,2

11 CALL XBARCY2¢C 1)y X20I) Y2¢ 1)y YELLOWsRBLACKs 150
CALL TIMERC(NSEC)»
WRITE(3) ERASE

DO 12 R=1,5

pg 12 I1=17+23

COLOR=I

WRITEC 3)BGOFLG,COLORYERASE

r

) e

LX
v

[

9
1

&

-

WRITEC ZIRGOFLOBLACK s FGOFLO s REDSERASE s BLINKAZONy CURSOR LA yLY
WRITE(3:131)
133 FORMATCL7Xs TH, o THe . THAT 7S ALLs FOLKRSIED 7))

CALL TIHMERC1S)
HRITEC3) ESCSCROLLSFGOFLO s GREEN s BLATOF

o

[Sh i ew]

ack Issues 8ale

MULTI-ISSUBS at £3.50 each

__ Qct, HNov, Dec 1978 ___ Apr, May/June 1979

. Jan, Feb, Mar 1979 ___Aug, Sept/Oct, Wov 1979

IBDIVIDUAL ISSUES at 51.50 each

__ Dec 197%/Jan 1980 ___ Feb 1980 ___ Mar 1980

__ Apr 1980 __ May 1980 __ Jun/Juil 1980
IMDIVIDUAL ISSUES at $2.50 each

___ Dec 1980/Jan 1981 ___ Aug/Sep 1981 ___ Oct/Nov 1981
___ Dec 1981/Jan 1982 ___ Feb/Mar 1982 __ April/May 1682
_ June/July 1982 ___ Aug/Sep 1982 __Oct/Nov 1982
POSTAGE

U8 and Canada -- First Class postage included.
Zurope, S. america -- add $1.00 per item for air, or
S .40 per item for surface.
Asia, Africa, Middle East -- add $1.40 per item for air, or
$.60 per item for surface.

DISCOUNT
Fer orders of 10 or more items, subtract 25% from
toral after nostage.

Colorcue

A bi-monthly publication by and for
Intecolor and Compucolor Users

Editors:
Ben Barlow

February/March, 1983 David B. Suits

Volume 5, Number 4

Compuserve: 70045,1062

11

12

23

24

26

27
27

Editors' Notes

Robot Wars, reviewed by Bill Barlow
Arcade graphics and sound

A Portfolio Record-Keeping Program, by John R. Thirtle
Keep track of your fortune

Multi-bigit Accuracy, by Neil Brandie
Dealing with large dollar amounts

Dollar Formatting Subroutine, by Keith Ochiltree
Make it clean and neat

Assembly Language Programming, by Joseph Norris
Part X: Disk Operations

Compucolor Disk Drive Improvements, by John Newman
Write protect, motor run-on and dual speed

Cueties

The Okidata Microline 84A Printer, by James L. Helms
Looking for a printer? Look at this one.

FASBAS——a BASIC Compiler, reviewed by David B. Suits
Faster than a speeding BASIC!

(Un)Classified Ads

User Group Notes

COLORCUE is published bi-monthly. Subscriptions are US$12/year in the
U.S., Canada and Mexico, and US$24 (includes air mail postage) elsewhere.
Some back issues are available. All editorial and subscription correspon-
dence should be addressed to COLORCUE, 161 Brookside Dr., Rochester, NY
14618, USA. All articles in COLORCUE are checked for accuracy to the best
of our ability, but they are NOT guaranteed to be error free.

Editors’ Notes

R.I1I.P.

The latest edition of Forum Inter-
national recently arrived. Sadly, its
date indicates that it is the "Final
Edition". Lack of funds has forced its
discontinuation.

This marks an unfortunate turn of
events for Compucolor/Intecolor owners.

FORUM was a publication which helped

keep us going with worthwhile, inform-
ative and timely articles. (This latest
issue is no exception.) The rights to

its name and content pass to CUVIC. If
we're lucky, CUVIC will manage to resur-
rect Forum in some shape. We all owe Doug
Peel, Forum's indefatigable editor, a
large "Thank you" and a "Well done" for
his creation of Forum in the first place,
and for his time and energy (and, we
suspect, money) in keeping the pub-
lication alive for so long.

What About COLORCUE?
Which brings up a related topic. Will
Colorcue be able to keep going? The

answer at this point is a qualified
"Maybe." Frankly, we're not in the best
of shape, although we're by no means done
for. We've had letters recently sug-
gesting that, if necessary, we ought to
increase the subscription price rather

than discontinue publication. We haven't
liked the idea of increasing subscription
prices, of course. But we are even less
happy about the prospect of quitting.
Currently, all US subscriptions are
mailed 3rd class. QOur experience with
this =manner of trying to get Colorcue:

out is that 3rd class US mail is
unreliable.(You can say that again.)
Moreover, it is slow. Moreover, it is

extra work for us. (The Post Office char-
ges us less because we do some of the
work for them.) We would like very much
to send out zll Colorcues 1st class, even
though this will be a bit more expensive.
The savings in terms of time and energy
would be a boon to us. The increased
subscription rates would not be a boon to
you. Well, subscription rates have to go
up a bit anyway, since we've been

carrying increased printing costs (and,
incidentally, increased 3rd class rates)
for over a year. So here is our proposal.
Starting with the August/September issue
(which, by the way, will mark the start
of our third year of editorship! You're
invited to the birthday party), sub-
scription rates will be US$18 in North

America, and US$30 elsewhere. Each issue
will be sent 1st class (air mail where

appropriate), and we might even be able
to get back on schedule. (Promises,
promises....) If this places a horrific

burden on you and/or your wallet, please
let us know. We hope, though, that you'll
be able to stay with us and to continue
to support Colorcue with your dollars and
your articles. You've kept Compucolor's
publication going so far; especially now
in the absence of Forum, we need Colorcue
more than ever.

Many Compucolor owners have been hit
with the "blown transistor on the analog
board" problem when they don't hit the
CPU reset key quickly enough after power
on (or sometimes when they do). The
analog board relies on an oscillator on
the digital board to provide a pulse
train for the switching power supply. If
that oscillator doesn't begin oscillating
when the power comes on, the power supply

puts out full power and after a few
seconds, poof! $. Infrequently, even CPU
reset doesn't kick off the oscillator,
and still poof! Tom Devlin, Compucolor

maven of the midwest (would you believe
he's got two?) has devised a new board
with a phase locked loop chip on it that
plugs easily onto the digital board and
always generates the pulse train. Instal-

lation is super simple, and worries of
blown out power transistors (whether
caused by experience or hearsay) are
hanished. $35 US money, from Tom Devlin,

3809 Airport Road, Waterford, MI 48095.

We have recently received a copy of
the manual for Bill Greene's machine
language debugger (or, as he calls it,
the IDA--Interpreter, Disassembler, Ass-
embler). We have not seen the actual
program in operation, but from its des-
cription, it's a powerful tool. In add-
ition to the wusual debug features, his
IDA allows you to set the baud rate,

3

print to the printer, compare memory con-
tents, search memory, search and replace,
and execute FCS commands. Bill also has
what appears to be a fairly powerful
FORTH interpreter. Contact Bill Greene at
3601 Noble Creek Drive, N.W., Atlanta, GA
30327.

Speaking of FORTH, the Rochester
users group (CHIP) has a FORTH interpre-
ter in their library (costs you $10 to
join the group), implemented by Jim
Minor. Jim has also recently added to the
CHIP library (are you ready for this?) a
PASCAL compiler written in FORTH! Can't
be bad. If you really must work with
Pascal (anyone who knows me knows how
much I— DBS —dislike Pascal), then you
might as well look into this unexpected
way of implementing it.

M. F. Pezok asks, "Are there any
Technical Wizards out there that can/WILL
design a cheap serial line buffer with
handshaking? 8K of buffer would be great;
16K of buffer would be OUTSTANDING!" A
buffering device is a good and wuseful
idea. As if having read your mind, M.F.,
it just so happens that Lou Milich and
Dave Suits have been working on just such

a project. Why, though, stop with 16K?
We're building a Z80A controller with 48K
of RAM. The prototype is almost built,
and we hope to be able to publish the

design sometime soon. The cost, if you
build it yourself, won't be exactly
cheap, but it will beat the price of

comparable units on the market.

ISC has introduced its 8001R/M and
9001R/M terminals configured for use with
Sperry Univac's MAPPER system in order to
emulate and be plug compatible with
Univac U-200. Both terminals offer 80
characters by 24 or 48 lines, 8 colors
and dot addressable graphics--480H by
384V. Prices start at $3995.

ISC's 3rd Quarter Report (December
31, 1982) says that Peter J. Curnin re-
signed as president of the company.
Charles A. Muench is now president (and
Chairman of the Board). One wonders what
permanent changes this will generate. ISC
has been prowling about for small com-
panies (such as Quadram) to buy. Whether
they will make some concerted effort to
push the Intecolor line in new directions
is not clear. @

Review — Robot Wars

a game by Steve Reddoch
review by Bill Barlow

Whew! That was a close calll Watch
out for that Squirmer! Oh, no here comes
a Blaster, you have be careful not to get
in line with his diagonal shots! I'd
better get out of here! They're closing
in on me. There, made it. Oh, I forgot
that I can get points by running over the
yellow guy (Wanderer). I've got to shoot
everything in sight to advance another
level. Aiiii! I got shot! ~--GAME OVER--

This is ROBOT WARS, an exciting new
game by Steve Reddoch. Shoot down alien
robots, run over the Wanderer to gain
points, but don't get in any aliens’ way
or they will blast you away. ROBOT WARS
has excellent graphics, color, and sound.

This game can use the keyboard or an .

4

ATARI Joystick, but your man can’'t move
diagonally. I prefer the keyboard myself.
You receive an extra man at 30,000
points. Sometimes there can be up to 12-
16 robots on the screen shooting,
beeping, and moving. The robots can pass
over each other. You can start the game
off with High, Medium, or Low lev~ls. The
computer stores the high scores on the
disk if you wish. On a scale from 1 to 10
I would rate this game an 8.5. Thank you,
Steve, for all this excitement and fun to
people with Compucolors. You can get this
game for $24.00 from Intelligent Computer
Systems, 12117 Comanche Trail, Hunts-
ville, AL 35803. @&

A Portfolio Record—Keeping Program

by John R. Thirtle
105 Conifer Lane
Rochester, NY 14622

It took me about a year and a half to
acquire sufficient programming ability to
accomplish what was one of my purposes in
buying my Compucolor II: to write a pro-

gram that would produce a record of a-

common stock portfolio. It was a
frustrating time! I looked at many books
and magazines for a suitable program to
adapt to my needs. Finding none, I began
to teach myself via the manual and any
other documentation that I could find. I
had had no experience with computers
until I got my CCII. Most programs that
had some elements of what I needed were a
foreign language to me. They were not
internally documented and had no hard
copy documentation to describe them to
the neophyte. One example which will
illustrate some of my frustration is a
technique for getting a hard copy listing
of a program so that I could edit it.
Neither the manual for my CCII nor that
for my printer gave the simple one line
command to do so:

PLOT °7,18,4,27,13:LIST:POKE 33265,0 (RET)

How simple it would have been to place
that one line in the manual or any othker

document, with a little explanation of
its .eaning, and to suggest possible
.ariants to suit different printers.
Well, so much for griping. It wasn't

until the summer of 1980 that I was able
to handle simple one-dimensional arrays,
tabular printouts, listings, etc. Yet the
first progrars that partly met my needs
suf.~red the same deficiency that I men-
tioned above: lack of documentation.
However, the first version of PORTXX,
w'ich was placed in the CHIP User Group
Library (Disk #39) was so unrefined that

no great harm was done. Since then, I
have come to recognize its defects and am
describing here a revision of PORTXX that
includes DIMensioning of the wvariables,
more REMark statements, INTegers,
TABbing, subroutines for setting up the
printer, adding trailing zeros in the
cents column, right justifying columnar
data, etc. Some of this will be elemen-
tary to many readers, but I am sure there
are enough learners who will profit from
it. I want to give credit to Joseph
Charles for his book, BASIC Training for
Compucolor Computers, and to "THE BASIC
Editor"™ program from Quality Software
Associates. Both were very helpful to me.

Program Notes

LINES 1000-1260. These lines are pri-
marily bibliographic and self-
<xplanatory. Line 1080 clears about
300 bytes more than the program needs
for the demo provided.

LINES 1290-1380. Variables are defined
to closely match their meanings. One
of my frustrations in looking at pub-

lished programs has been to relate
variables to their meanings.
LINES 1400-1480. The variable, TN, is

defined here where it can be easily
seen. The number will have to be ad-
justed to the size of the individual's
portfolio. The variables are all
dimensioned to the value of TN. The
string variables are required for
subroutines mentioned above.

LINES 1590-1720. In a personal portfolio
this section can be left as is for

5

demonstration and a table of personal
data assembled. The program can be
modified slightly to preserve confi-
dentiality of the personal portfolio.
DATA statements give the fixed data on
the stocks in the demo portfolio.
Company names are not limited to six
characters. But the table produced by
the program will have to be retabbed
if longer names are used. If a stock
is split, it is a simple matter to
correct the number of shares in the
appropriate statement. Base costs in-
clude the commissions. Also, these
data are completely fictitious; they
bear no relationship to my personal
holding.

LINE 1550. This is the only data input
required to run the demo program.
Let's say you need some action.

LINES 1740-1790. More action. If you
choose the demo you will use data on
prices in lines 2070-2090. If you
choose 2 you can input any prices you
care to for the 'dummy' companies in
1600-1720, or for your own portfolio.

LINES 1810-2010. This is where you input
prices. The queries about corrections
are there because I have made errors
and wanted to fix them immediately. I
often use Q% in such instances. It
fits my aim to relate variable symbols
to the words.

LINES 2040-2060. These tell you what you
have done and to be patient.

LINES 2150-2170. Likewise. The time
required to calculate and integrate
the products is about 18 seconds.

LINES 2190-2250. These lines integrate
fixed and input values, make the
necessary calculations, and integrate
the results.

LINES 2280-2760. Adding the trailing
zeros to dollar and cents input is a
nice touch. It makes the output much
easier. It even makes the input
easier; prices in whole dollar amounts
can just be entered that way. I used
to fake such input; for example, in-
putting $22 as 22.01 or 21.50 as
21.51. Sloppy! The subroutine is from
the book by William Barden, Jr., Pro-

gramming Techniques for Level II
BASIC, Radio Shack, 1981. The sub-
routine for right-adjusting the colum-
nar output is that described by Rick
Taubold at a users group meeting. Note
that the string length specified by L
is one unit longer than the longest
string expected in a given column
because numerical string length inc-
ludes a real or implied sign (+ or -).

LINE 2780. This line finally sends you
to a decision on where you want to
have your output (line 3090). It skips
you over lines 2800-3050 (next).

LINES 2800-3050. After the table is
output, errors are sometimes obvious
or you might want to see what change
in a price would do to the value of
your portfolio. By inserting correc-
tions here, only the new data are
manipulated--in a fraction of a
second. The REM statements describe
what goes on here.

LINE 3090. If you selected the demo
option, it took about 18 seconds to
get here. In this case I used O$ (for
Output) as the query ID. If you choose
to use the printer, you fall through
to line 3120, which takes you to the
subroutine (lines 3510-3540) which
does what the REMs say. I generally
don't select the printer until I have
seen the output on the screen and made
sure everything is OK.

LINES 3140-3270. Formatting a table with
so many variables is tedious unless
one uses an editor program which can
easily set and clear tabs. Note that
the output is in strings, resulting
from the operations described above
(trailing zeros, right justified).

LINES 3290-3420. Even though strings
have resulted from these operations,
the 'unstrung' data remain in memory.
It is these on which the cal- ilations
are done to produce the totals. Note
that the variables BT, VT, and GT have
to be initialized; PCT does not
because it 1is calculated from
initialized wvalues.

LINE 3440. This line sends the operation
to line 3560, whether you have been to
the printer or not, and puts the query

about price

that we discussed above

(line 3460)
(lines 2800-

corrections

3050). En route, you get a message
about the string space remaining.
Ultimately, vyou come back to that
query in line 3090 and you hit "E",
exiting the program, and reading
"READY". @&
1000 REM ¥k PORTXX ¥x FOR PORTFOLIO STATUS *x
1020 REM %X WKITTEN 1981 BY J. R, THIRTLE
1030 REM AX 105 CONIFER_LANE, ROCHESTER, NY, 14622
1040 REM %X TEL, 714-467-9676
1050 REM X% FIKST VERSION_ON ‘CHIP’ LIBRARY DISK #39.
1060 REM Xk REVISED 3,5,83
1080 CLEAR 1000:PLOT 14:REM XX LG CHAR %X
1090 PRINT 55" FORTXX"
8 el
1120 PRINT s"PORTXX (’XX’ IS FOR_PERSONAL ID) PRODUCES
1130 PRINT »"A TABLE ON THE SCREEN DR FRINTER SHOWING
1140 PRINT s"THE STATUS OF A STOCK PORTFOLIO AT ANY TIME,
1150 PRINT »"NO_DATA FILES_ARE REQUIRED. SAMPLE ‘READ DATA’
1160 PRINT »"ARE SUPPLIED TO ILLUSTRATE OUTPUT.
1180 PRINT »"FOR AN_INDIVILNUAL PORTFOLIO THE USER WILL
1170 PRINT ,"CONVERT THE “DUMMY’ DATA TABLE TO REAL DATA,
1200 PRINT +"CHANGE /TN’ TO THE REAL NUMBER OF COMPANIES,
1210 PRINT ,"AND WILL INPUT THE REAL PRICES.
173) PRINT
1340 PRINT »"REVISED BY .JOHN R. THIRTLE» MARCH 5, 1983"
1250 PRINT
%2@8 INPUT "TO CONTINUE HIT RETURN "3RET
1250 REM xx DEFINITION OF VARIABLES X
1300 REM %X C3=COMPANY NAME (=<6 CHAR) XX
{310 REM %k N=NUMBER OF SHARES XX
1320 REM &K R=HASE COST OF THE SHARES (ROUNDED OFF) XX
(330 REM XX C5=COST PER SHARE XX
1340 REM &k P=CURRENT PRICE PER SHARE X
1350 REM ok U=CURRENT VALUE OF THE HOLDING X
1350 REM X% G=GAIN X
1370 REM %k PC=PERCENT GAIN XX
1350 REM XX t,D;Y=DATE OF PURCHASE XX
1300 REM xx DIMENSIONING UARIABLES x%
{410 REM #X TN=TOTAL NUMBER OF COMPANIES IN PORTFOLIO XX
g s
1450 DIM CSCTN)»NCTND»BCTNDSCSCTN)Y s PCTN D »UC TN 9 GCTND
1440 DIM PCOTN)sHCTN) s DCTN)5 YO TN)
1470 DIM ISCTN)rNSCTN)yRSCTN)yCSSCTN)sPSCTN) s USC TN s GSCTN)
1480 DIM PCSCTNDSHSCTN), DSCTN) YSCTND
1490 ¢
1500 REM_ %% INPUT XX
1510 PLOT 12:REM X ERASE SCREEN i
}é%g A$= "PORTFOLIO RECORD! PORTXX"
BN +
L1550 INFUT "DATE: MONTH, DAY, YEAR: ";MsDsY
1580 PRINT
37 .
530 REM %% READ DATA %X COs, SHRSsy BASE COST, PURCH DATE XX
1590 FOR T= 1T0 THIREAD CSCI)yNCIDrBCID MCID TN I) YCIDINEXT I
L300 DATA "AAAAA",150,4612r5,8,81
1610 DATA “BRREE",100,2008,5,8,81
1620 DATA "CCCLCL"150,3828,4¢11,80
1630 DATA "DIOLOOD",200,5025,11,29,82
L1340 DATA "EEEEE",150,4558,10,3580
1550 DATA “FEFFFF",100,3272,5,8,81
1460 DATA "BGGGG",400,3344,7,3,80
1670 DATA "HHHHHM" . 1007234451,24,83
1680 DATA "IITI1”,100,1774,12,31,81
1690 DATA "JJJJJJ*,125,1545512,31,81
1700 DATA "KKKKK",10071478y3,19,81
1710 DATA "1 LL",50,1011,1053,580
{%2% DATA A" 550513495 3,26582
730 3
1740 PRINT »++"1~DEMO_USING DATA PRICES PROVIDER
1750 PRINT »»"2~INPUT YOUR OWN PRICES
1760 PRINT
1770 INFUT "ENTER YOUR CHOICE: “;Q
1780 PRINT
1790 ON QGOTO 2040,1310
1810 PLOT_12¢PRINT ,,"YOU ELECTED TO INPUT PRICES®
1820 PRINT
1830 PRINT »"PROGRAM WILL ROUND 3 DECIMALS TD 2 (EGs .125=,13)"
1840 PRINT ,"FOLLOWING ZEROS WILL BE PROUIDED WHERE NEEDED®
J

CRENCALACNLACA B bt b b B b b P (A GId L L G G G B I E I P3P IRIR IR IF I A et ety bt bl b b i O O OO DO O O O OO -0 0 ~0 0 0 0 D0~ Lo ¢ T
0~Ln%L:JFJHO‘Om\10‘L’1é(,r“\)HO\OCD\JO\U\&NFJHO\OCD\JU*L'\%LAFJHO\OCD\H}LH&L,U-JHo~0\:0\10~L_n.).ur._)»—aoﬂa)\)ouléwr:;)t‘oﬂmwm
COOOOOOOOTCOOOOCOTOOILOCOCOTCOOOCOITOVOOOTOIVOOOOCOOOOCOOOOOOOIODOCCOTOTIOOOOO0

EAEIEIEIFIEIRIF I PO PIEIRFIR IS F I IS FAII IS T IS E S FIPIF I SEIFILIEI NI IeIPI IS IRIEI0 I I FIEIEIESEIEIL S D03 Ihbb i b i b ot bk ot

RINTY

EIRIFIEIESEITINIFILIILIEIFIL I ITIEILIEITIL

I IPRAPILITSTITI

FRINT "ID$"iTAB(4)"COMP.";TAR(11)"PRICE"

R I= 1T0 TNIPRINT I;TARC 4)C$(1); ;
UT "95PCIDINEXT T DIFTABC 1105

"ANY PRICE CORRECTIONS (Y/N)? *3
= "NYTHEN 2140 1os

"ENTER CO _ID% " 1:PRIN
I;TA?%“4>C(I)TAMi 12

T
])
e

H

i pa i pas far pr]

6CE CORRECTIONS? ";G%
RINT

CK PRICES XX

0

A

ZECZCZCZQCZ

U HAVE SELECTED PRESET PRICES®

I ZZA

2 M B
[SE.Z X 7
Civ
oz

- LD

#s"YQU HAVE INPUT PRICES"

o ZZZZ

NG ZERQS XX
TO 2440

~

NG ZEROS IN CENTS COLUMN *x

$)
"L "THEN 2360

#XX THE DE X O T DA A A O I A0 = 0T 0 0

URN
2ZTHEN RETURN
- &THEN 2390

R
J+ 2)IRETURN

]
%
M Xk CONVERT VARIABLES TO STRINGS AND RIGHT JUSTIFY xx
M kX L=EXPECTED NUMKER OF % CHARACTERS + 1

I= 170 TN

Ok I0E X%
JiZ%= STR$ (I)IGOSUR 3420:13%¢(1)= 7%

M %X # OF SHRS xx
Z%= STR$ (NCI))IGOSUB 3620:INS(I)= 7%

E COST 0OF SHARES *xx
R$ (B(I))IGOSUR 3820:R$(I)= 7%

S

T

SE COST/SHR *x

TR$ (CS(I)):GOSUB 3620:CS$(I1)= 7%

REM XX PRICE %X
L= 7:Z%= P$(I)IGOSUE 3620:P$(1)= Zs

REM %X VALUE XX
L= 6:7%= STR$ (Y(1))!GOSUR 3620:Us()= Z%

REM %X G £x
L= 61Z3= $ (GC1))!GOSUB 3620:G%(I)= 7%

IN (PC) *x
$ (PCCI))IGOSUB 3620:PCs(I)= Z$

MM NNTITMNMTONM @M MOS "~ W0Q00DDr MMM PODACM DNMZDZDIONZD 22O

nm o
X =

Wwm o arm
X

AT Do [T Tee [T T[T e s Mee AT ea bl Pl b N ZA NP W ee M+ 2 VO CTO MUV OV VUV DVOD DS M D DTV ow Ttk Tt TObA Tt bd Towbnd Tlae
I
X

wnD

I
T
G
T
REM _ XX DAT
M
D
Y

ZeebdNMNT

gT0 3080
EM %X HERE CORRECT PRICES AFTER VIEWING OUTPUT xx

"ENTER CO., ID#% "5I

VO T~ YT GesTraGIor
w
~
RN
~
(]
3

o~
O
o
-
-~
>
=]
-
ft o

-~ N T T TR B R b |

SOQOOLOOONN0-00

1P G O 0 DN O L P (IR = O -0 0D N~
TOOQCOOOOOOOOTOOOOO0O0

NG G N GG BRI 30 3091

i
4

b bt kb b b 3 €D
D0 U+ Gl R = S0 0 N O~

AP RO 0 DN LTS HFI= OO
OOOOVVOOOVOC CLLTOVLOVOOVLOOOOOOOOOOO0

N Gl G G G O D D A D L A D A N G O GO OO D DI G G LA T GIN T G I G A G
OO O ICALACACALALALICAC 3 o o B e o B B B Cod Gond od (o Cod Gl LA G Gl G PRI PSR FIEI P IR I B I J it it bt

P$CI)= ZZ$IREM ¥x TRAILING ZEROS ADDED XX
REM_ #x RIGHT JUSTIFYING CORRECTIONS AND CALCULATIONS XX

L=

Z3= PSC1)IGOSUB 36203Ps(1)= 7%

78= STR$ (V(I1)):GOSUR 3620:VUs$(I)= Z$

73= STRs (GC1))ICOSUR 3620iGsC1)= 73

Zs= STR$ (PC(1))iGOSUB 3620:PC$(1)= Z$

PRINT

INFUT "ANY OTHER PRICE CORRECTIONS (Y/N)? *5Q%

IF Qs$= "Y"THEN 2820:G0TO 3080

gg?nr** DIRECT OUTPUT %X

INFUT "OQUTPUT TO PRINTERs SCREEN» END (P/S/E)? *;0%

IF 0%= "S"THEN 3150

IF %= "E"THEN 3640

GOSUB 3510:GOTO 3140

REM %% FORMAT OUTPUT %x

PLOT 12,15:REM XX ERASE, SMALL CHAR

ERINT A3 TARC 33)5"DATED *iH3D;Y

PRINT “TD#" 5TAR(4)“COMP.";TAR(11)"SHRS™;TAR(16)"COST™;
PRINT TAB(22)%C/SHR™;TAR(29)*PRICE" ; TAR(36)"UVALUE®;
PRINT TAR(33)"CAIN"jTARC 50)°76"5TABC 53)*PURCHIATE®
FOR I= 170 TN

PRINT I3(1)5TARC 4)CSCT)3TARC 10)INSCI);TARC 15)B$(1)}
PRINT TABC 21)05%(13 TAB(28)P$(I1);TARC 35)Vs(1)}
PRINT TAK(31)G3(I);TABC 48)PCH(1) TAB(SI)IM$CI)j
PRINT D$(1)5Y$(1)

NEXT 1

REM XX CALCULATE TOTALS XX

REM % ET=TOTAL COST» UT=TOTAL VALUE, GT=TOTAL GAIN XX

EEH xx PCT=TOTAL PERCENT GAIN Xx

= 0
SQE 5= 17O TNIBT= BT+ BROIDIINEXT I
E?B £= 1T0 TNIVT= UT+ UCI)INEXT I
FOR I= 170 TN:IGT= GT+ G(I)INEXT I

T
PCT= INT (100% GT/ BT+ .S5)
PRINT

PRINT "TOTALS"5TABC 14)BT3;TAR(35)VUT;TARC 41)GTH
PRINT TARC 48)PCT

PRINT
COSUB 3560:REM %X BACK TO CRT XX
INPUT "ANY PRICE CORRECTIONS IN TABLE (Y/N)? ";Q$u
70 IF Q%= "N*THEN 3080
80 PRINT :1G0TO 2830
00 REM %% SET UP PRINTER %X
10 THP= PEEK (33245)!REM %X SAVE BASIC QUTPUT FLAG XX
20 PLOT 15,27,1874:REM_ XX 2 STOP BITGs 1200 RAUD XX
30 PLOT 27,13!REM %% DIRECT OUTPUT TD RS-232C PORT %x
30 RETURN
50 POKE 33265, THP:REM %% RESET OUTPUT TO CRT %X
70 PRINT "FREE STRING SPACE= "jFRE (B$)
80 PRINT
70 RETURN
10 REM #% RIGHT JUSTIFYING COLUMNS XX
28 Y¢= © “tREM %X 7 SPACES XX
630 X= L- LEN (Z$)
3440 IF X< = OTHEN X$= "":7$= X$+ Z$IRETURN
3450 X$= LEFT$ (Y$,X)1Z8= X$+ Z$:RETURN
3440 END
Moving?

I[f you're changing your address, please
let both the Post Oftice and us know of
your new address. (Tell us your old
address and your new one.) We don't want
you to miss a single issue of Colorcue.@®

ADUERT TSEMEMNT from HOM&RD FOSEM, Inc
F.O, Baow 4354
e in —~ded -7 145 Huntin ‘;I‘j':'ﬁ =1 B =5 1500

TONTS e z2nd interest:

[RR| p oo o ks ERTVET
o

1 able o CCTI
mottware 1nc des Ledoer =

X £ B E Qe ; .
processor . Hardware snhancements cower many arezxs. ke have come
across an =k bDutter for the Epson printer which seems to get rid
some of thos Dugs that may e plaguing vou. Here’s a quote oo

N |

=
etter.:

THE THaRKE vod 1% FOk THE MBS-2R RZZEZ SERIAL INTERFSOE
BOskD WHICH fﬂH SOLD ME. mS vOU oAk TELL BY THIS LETTER
THE THMTERFSCE SIFFICULTIEZ BETWEEN MY COMPUCOLOR 11 &RND
THE EFZOM ME—SH. BHICH HAUVE PLAGUED ME FOR MESRLY THE
LasT vEsRE, & E RO SOLVED, 1T Cak RECGHMEND THE MBZ-2E
PO FOLRS HeWING COMPUCOLOR 11 AMD EFSON M-85 INTEREFSCE
CIFFICULTIES.

ot

'I'ﬂ

For mors intormation and orice on that gem of an intertace board
pleasze teel free to contact us.,

wr
i

hawe +ound ancther probklem 1n the CCID wersion Wa8.78 that
= to atfect some printer interfaces. The problem occurs when
g the COI1 disk driwe and the printer, The printer ocutput
omes undependable. The correction regquires cutting Tands and
I not print the required correction, The
lon 1S avaliable upon request by CCID owners who are able
repalr .,
a1l cthers.

[(]
[(]
=

[B o
T3 T oo
-+ 1T
|3 I
2 1
(I U

-t

For a tee we will make the necessary

-+ N
[}
-
[T T

.
=
2
M
-

Me hawe added to cur li1zt of computers the MEC FCO-828

= L= Computer
swztem. This 1

rures that

X

.

:-+-+
it
o
o

. s a wery tine machine. It offer=s many
orought woy te the CCOID 1nm the +i1rst place, but 1t
features that yﬁu wiish wour OO could hawve. The
zelectabie

the compiet
zedquentilal

commands. Th
auydio amplil
di1sk drives
dr e, Thp
the ZF DOET

proscsides oz

- I‘[l Eace]

o
=
I

Sy 48, P2, or 28 columne., The BASIC .
cro-sott zed inciuding the UZING C oM aEn g,
precision, and TIME and DATE
ranges from green without
gte with avdio amplifiers. The
Ty double densitw wiitn capacity of T&+k per
R reziding 1o lower 22K is switched out when
swetem disk 1= bococted, and 22K HAM then
&4F memory. The edspansicon slots canm 1ncresse

memory tTo 1&dk, Rddrp:"nblﬁ. &11 intertaces are built St
the computer: -C, parallel For printer, cassette, and disk
through the I~ Hnlt. The SCreen display, and printer
capabilities 1|r1ude upper, lower case letters, Gr koalphabet,
gr:phln symbols, The WEDC FPO-2BZ24 printer completely complements
thiz= computer to provide a wery professional machine at FO

1]

prices. Pleasze write for complete FO-88B0 guide and prices,

bl
in
—
B
—
1>t
=
i 0
Lokl) ()
i e

3

(]

, single, dogb i
ection of monl tor
e] o Z OfT p

-+
L) (1]

[(R (I T
-

Lo — ift e IL
~+
Al

[T I

YU A (]
T -
—~+ I
-0 m
11

w
— e

s
-+,
=
N o— O —
= o
ot

A
wy w
(Xl
l‘_u

and word

Multi—Digit Accuracy

by Neil Brandie
(Reprinted by permission
from CUVIC, Dec. 1982)

Recently whilst writing a program that
involved the addition of large dollar
values, the answer of course resulted in
scientific notation. This was very un-
satisfactory, but I was pulled out of my
predicament by an article from a very
early COLORCUE by D. Woods. [eds note:

See also COLORCUE, Vol. II, No. 7, p. 18;
Vol. II, No. 8, p. 6; and Vol. III, No.
4, p. 8.] I found that it cleared my

problem, and I include it here for others
in the hope that it may help them. The
routine was designed to give accuracy to
9 digits. The algorithm adds digits from
right to left and handles positive
numbers only.

Include a line in your program (after a
CLEAR statement and before any calls to
the subroutine) to define the zeros. Set
the number of zeros equal to the number
of digits accuracy you want. For example,
2% = "000000000" gives 9 digit accuracy.
Send numbers to the subroutine held in
the variables N13 and N2$ as shown in
listing 1. The answer is returned in ANS.

How The Subroutine Works

Lines 1000 to 1040 remove the decimal
point in the input dollar amounts and
represent the number as if it had been
multiplied by 100. The number 123.45, for
example, would be converted to 12345. The
numbers are then padded out to the left
with zeros until the whole number oc-
cupies 9 digits. This is done so that the
algorithm can handle numbers of different
lengths. If you will be inputting numbers
with more than two or fewer than two
digits after the decimal point, you will
have to write a routine to loop through

the input number in order to remove its
decimal point and associated "+" sign
(which will be assumed if the number is
input as a numeric and later converted to
a string).

Line 1050 sets the carry and the total of
the two numbers equal to zero to start
with. (The carry is the spillover from

the addition of two digits. It is either
a "0" or "1".) The index J in line
1060 moves through the digits of the

numbers being added from right to left.
D1 and DZ are the digits to be added at
the current J position. These are both
numeric variables.

Line 1090 adds these two digits plus the
carry from the previous addition, while C
in line 1120 is set equal to the left
hand digit. C then becomes the carry for
the next addition of digits. Because the
value for the variable in A is numeric,
it is converted into a string in line
1110. T$ is a temporary holder of this
number and has as its first character the
sign of the addition. In the second half
of line 1110 this sign is removed and the
digit alone 1is stored as the left-most
character of the string AN$. When the
loop is completed, AN$ will contain the
answer to the addition but not including
the decimal point. The decimal point is
reinserted into the string 1in line
1140, and the final answer is printed in
line 50.@

5 CLEAR 1000
10 Z$ = "000000000"

20 INPUT "FIRST NUMBER";N1$
30 INPUT "SECOND NUMBER";N2$
40 GOSUB 1000
50 PRINT ANS$

11

60 GCTO 20
1000 L1 = LEN{(N1$): L2 = LEN(L2%)

1010 L1$ = LEFT$(N1$,L1-3): R1$ = RIGHT$(N1$,2)
1020 N1$ = L1$+R1$: L1 = LEN(N1$)

1025 N1$ = LEFT$(Z$,9-L1) + N1$

1030 L2% = LEFT$(N2$,L2-3): R2$ = RIGHT$(N2$,2)
1040 N2% = L2$+R2%: L2 = LEN(NZ$)

1045 N2% = LEFT$(Z$,9-L2)+N2$

7050 C = 0: AN$ = "

1060 FCR J = 9 TO 1 STEP -1

1070 D1 = VAL(MID$(N1$,J,1))

1080 D2 = VAL(MID$(N2$,J,1))

1090 A = (D1+D2+C)

1100 B = A-10*INT(A/10)

1110 T$ = STR$(B): AN$ = RIGHTS$(T$, 1)+ANS
1120 C = INT((D1+D2+C)/10)

1130 NEXT J

1140 AN$ = LEFTH{ANS$,7)+"."+RIGHT$(ANS$,2)
1150 RETURN

Dollar Formatting Subroutine

by Keith Ochiltree
(Reprinted by permission
from CUVIC, Sept., 1982)

This is a handy subroutine to emulate the
PRINT USING function of the TRS80 when
dealing with money. The routine keeps the

cash amount right justified and places 7000 REM *% CONVERT VARIABLE TO MONEY #%

7010 REM TT GIVES STRING DOLLARS (TT$)

the dollar sign in front. The routine is 7020 REM RIGHT JUSTIFIED,

naturally limited to the six digit ac- 7030 REM FLOATING '$' SIGN
7040 TL = INT(TT/100000)

CL.lracy. of the Compucolor computejr and 7050 Th = INT(TTTL®100000)

will give you rounding off errors if you 7060 TR$ = STR$(TR)

use it to calculate values above $9999.00 7070 TL$ = STR$(TL)
7080 IF TL<>0 GOTO 7120

or $999999. 7090 RX = LEN(TR$)

7100 TT$ = RIGHT$(TR$,RX-1)
7110 GOTO 7170

The program splits the input value TT 7120 BX = LEN(TL$)

into TLL and TR and makes them into 7130 TL$ = RIGHT$(TL$,RX-1)
strings. It then checks if the TL is 7140 RX = LEN(TMZ (
. - . 7150 TR$ = RIGHT$("0000"+RIGHT$(TR$,RX-1),5)
greater th.an 0 (or a six dlgxt_ number?, 7160 TT$ = TL$+TR$
if so, it jumps to line 7120; if not, it 7170 TT$ = " $"+TT$
continues on to read the length of the 7180 TT$+RIGHT$(TT$,10)

string and establish the value RX, which 7190 RETURN

is used to print the output right-
justified. @

12

Assembly Language Programming

by Joseph Norris
19 West Second Street
Moorestown, NJ 08057

Part X: Disk Operations

This introduction to disk operations
in assembly language makes extensive use
of specific routines in ROM and specific
locations in RAM (below user space) which
are part of the computer operating sys-
tem, "FCS".[1] The source code names
referring to these routines will be those
used in the Compucolor System Listing,
and the addresses will be given for both
V6.78 and V8.79/V9.80 versions.[2] You
should keep in mind that these routines
are written in 8080 code, just as the
programs which utilize them are, and that
the CALLs to these routines are no more
than shorthand ways of implementing the

various functions required; they could
each be written out "longhand" if we
desired.
FLAGS

RAM addresses that will command our
special attention are those that hold
"flags" which direct the way certain

routines perform. A flag is analogous to
the lights in Old North Church ("one if

by land and two if by sea...") using
numbers instead of lights. A flag, then,
is a hexadecimal number in a ROM-
specified location in RAM (that is, a

location reserved for this flag only)

each of these flags is determined by the
operating system at power-up. While flag
values are often determined for us in
BASIC or FCS>, we must assign them for
ourselves in assembly language program-
ming. The magic of these RAM locations is
that the routines in ROM and the user
both may write to them, giving the user
some measure of control over the op-
eration of the computer.

Consider one such flag at address
81F9H called LOFL (LO-FLAG). This flag
tells the operating system where to
direct the printable portion of the re-
sponse to an FCS> command (such as DIR,
DEV, etc.), and directs the output rou-
tine, LO, accordingly. Table 1 shows how
the flag determines the print destina-
tion. If we put the value 00H in location
81F9H before issuing a directive to the
file control system, for example "DIR",
then the computer will print the direc-
tory on the CRT.

FCS Command Interpreter

The actual routine that makes this
happen is called FCS 3], the File Con-
trol System Interpreter, located at 25ECH
for V6.78 and 0A95H for V8.79/V9.80. The
specific instruction to be executed is

that instructs a routine to behave in a placed in a "command string", composed by
certain way. A set of default values for the programmer, whose address is passed
Table | Print Destination; LOFL [81F9H)
co;ﬁiND OPTION | FLAG VALUE
RESPONSE NO PRINT OCH
SCREEN PRINT OOH
SERIAL PORT OEH
° —

13

to the routine.

Try the program in Listing 1 on your
computer. It is operated, after assembly,
by typing RUN XFCS from FCS> and will
list the directory of the disk in the
drive at the moment. Since assumption and
ambiguity are the most vicious enemies of
learning, we will painfully annotate this
first listing and save the abbreviations
and jargon for later on. I have borrowed
a short program to return you to BASIC
after the directory printout--just to
keep things interesting. Macroassembler
users will have tc modify for ORG and END
statements as usual. From now on in this
series of articles the V8.79/V9.80 ad-
dresses will follow the V6.78 in paren-
theses. You will use one or the other,
but not both.

If the program has worked, you can
hope that the miracle of assembly-
controlled disk operation is at hand. If
you put an expendable .BAS program on the
disk containing XFCX.PRG, you can resort
to useless fun by changing the command
string to:

CMSTR: DB 'DEL 0:XXXXXX.BAS;01',00H
{Note that not all 6 characters in the
name are required.)

Since we can perform any FCS> command
with FCS and EMESS, we can load and ex-
ecute a .PRG file (for example, the MLDP)
with the command string:

CMSTR: DB 'RUN MLDP',00H
It should be apparent that we are con-
triving an experiment in program chaining
(one program calling another) and that
the procedure suggests a method for
writing "MENU" programs in assembly lan-
guage. (Homework?!)

The File Parameter Block

To make use of data files, which are
in the form of "sequential files"[4], we
must first understand the structure of a
byte string called the File Parameter
Block (FBP), a data string of 38 con-
tiguous (connected) bytes which contain
the parameters necessary for system rou-
tine file operations. The data in the FPB
are contributed in part by both the pro-
grammer and ROM routines. Table II lists
the code name, size and location of FPB
data within the string. The values of
some of these data are usually supplied
by the programmer, as follows.

FPB: Value = 0 if program exists on
disk, Value = 1 if creating new
file. Note that this is the first
byte and therefore describes the
function FPB (old or new file) as
well as the starting address of
the entire string--a dual refer-
ence and therefore a source of
confusion. The remaining para-
meters in the string are usually
retrieved by measuring from this
first byte.

FDRV: Drive number containing or to
contain the file.

FNAM: Maximum of 6 ASCII characters
which are the file name.

FTYP: 3 ASCII characters designating
file type (.PRG, .SRC, etc.).

FVER: The file version number; one
byte (two hex digits).

FBUF: The starting address of the
programmer- assigned disk block
buffer for data files, i.e., the
place in memory whore the data
will be loaded and acted upor.

FXBC: The size of the above block
buffer.

Table Il The File Parameter Block

BYTE NUMBER 1 2 3 |9 12 13 15 17 18 20 22
NAME FPB | FATR | FNAM| FTYP| FVER| FSBK | FSIZ| FLBC| FLAD| FSAD| +
LENGTH 1 1 6 3 1 2 2 1 2 2 1
BYTE NUMBER| 23 24 25 27 29 30 31 33 35 37

NAME FDBK]FDEN | FAUX | FHAN! FFCN| FDRY [FBLK | FBUF | FXBC | FPTR
LENGTH 1 1 2 2 1 1 2 2 2 2

+ SPARE

14

A

The above parameters are wusually
installed by "parsing"[%] a "command
string" with a special routine which
extracts the data and inserts it in the
correct location; they may also be in-
stalled by "poking" each value individ-
ually through routines you write your-

self. After these parameters are instal-
led, the file may be "opened" by another
routine, which will fill in many of the
remaining parameters, such as:
FDBK: The disk directory block in
which the file is located.
FDEN: The entry number in that block
for this file.
FATR: The file attribute type (1=Free

Space, 2=Permanent File, 3=User
File).
FSBK: The starting block on disk of

the file.

FSIZ: The size of the file in bytes.

FLBC: The number of bytes used in the
last file block on disk.

FLAD: The loading address for an image
file.

FSAD: The starting
image file.

address for an

The address of one or more FPBs (one
for each file to be opened; equivalent to
FILE "R",1,2, etc. in BASIC) is desig-
nated by the programmer in the form of a
code name. The FPB will be used to open,
edit and close the file, and if the file
is new, the routines will update the disk
directory automatically. With the FILE
Parameter Block data properly installed,
only elementary programming is required
for normal file functions.

In order to experiment with disk
files, we must be able to create a file,
enter data in it, write it to disk, open
it, read it from disk, display the data
(and perhaps print the data)--all steps
being required to "close the loop". We
must also understand what we are doing as
we go. We will begin by examining the
containing only printable ASCII1 charac-
ters, including positioning characters
such as LF (linefeed), CR (carriage re-
turn), etc. The program SOURCE.PRG will
use the input routine published in COLOR-
CUE, June/July, 1982 to input data. Once
stored on disk, your screen editor should
permit you to recall the file and view
and edit it. When the program is com-
pleted you will have constructed an op-
tion line which will permit you to (1)

create (2) call (3) edit (4) close (5)
print (6) end a .SRC file with a length
of 124 bytes.[7] (This program may

readily be modified for longer files.)

In the meantime you may examine the
input routine and think how it might be
modified for entry of text, file para-
meters for opening and creating (will you
put file parameters in a different place
than text? How will you do that? Do you
want error detection for improper f{ile
parameters?) and a means of storing the
various parameter inputs into the File
Parameter Block. Given a FPB address, how
will you access the various sections?
Where will you place your file buffer?
How will you display the contents of the
file buffer on the screen? Will you want
to save code other than the actual ASCII
contents of the file data to assist in
display functions? It will be helpful
self-instruction to consider these things
and experiment with them before the next
issue of COLORCUE. [8] Since the input
routine TEST.PRG will form the kernel of
our program, you can also prepare an
edited copy, renamed SOURCE.PRG on which
you can build as we proceed.

Notes

[1] Other operating systems carry such
names as CP/M, UNIX, OASIS, etc.,
trademarks of Digit Research, Bell

Telephone and Phase One Software,
respectively. The operating system is
software, differentiated because of
its function of controlling overall
computer operations, as opposed to
specific utility programs. "FCS" is
in ROM because its length permitted
storage on currently available ROM
chips at the time it was written, and
because ROM is always there at power-
up. CP/M is much longer and therefore
had to be delivered on disk. Since
ROM chips now have larger capacities,
even CP/M might soon become available
in ROM. [On the other hand, having
the operating system in ROM means
that you can't change it here and
there to suit your own needs. --Eds.]
[2] By "source code name" we mean desig-
nations like "KBDFL" and "KBRDY",
which do not appear in ROM, of
course, but are used by the program-
mer for legibility when composing
source files. The assembler tran-
slates these names into addresses.

15

(3]

[4]

Since a number of things are labelled
with the letters "FCS", these
articles will refer to the operating
system as "FCS", the FCS computer
mode as "FCS>" and the routine in ROM

as FCS.

The file type .RND is a reserved
extension of BASIC, and we will not
be using it here. In assembly lan-

guage we can duplicate it, of course,
and make it even more flexible if we
desire. We have the power, in our
program, of reserving another exten-
sion, say .RSV, to be handled in a
prescribed way by our program.

"Parsing" is the procedure by which a
routine separates the parts of a file

specification by looking at the
spacing and punctuation in the
string. That is the only way the

routine can tell where a drive number

(6]

(7]

ends and a file name begins, and why
FCS> is so unmerciful if you enter it

incorrectly! You routinely "parse"
data in everyday life, such as this
name and address string: John B.

Adams, 223 Westover St., North Hills,
NJ 08058. :

3651 owners will find a file called
BASLST.SRC on their Sampler Disk
which contains a clear example of
file routines in assembly. It is a
long file and will not fit all at
once on a screen editor. The best way
to examine this file is to assemble
it with a simultaneous printout.
(With the MacroAssembler, type
BASLST.SRC-L and watch with glee!)

If you are eager to proceed now, a
copy of the completed listing for
SOURCE.SRC may be obtained by sending
me your name, address and a check for

16

LISTING I; XFCS - Calling the DIRECTORY

sWe put the addrecs of the flag in the HL register
;and place 88H in that Ram slot.

iWe give HL the address of the command string in

your program, because the FCS routine is coded to

;takes our command,

sFirst list tocations of flags and subroutines
EMESS EQU 262DH{BADAEH> ;a subroutine. Have faith.
FCS EQu 23ECH(8A93hY janother subroutine
LOFL EQU 81F%H ;a flag location

ORG XXX ;adjust to taste
XFCS LX1 H,LOFL

MU M,08H

LX1 H,CMSTR

slook for it in HL.
CALL FCS

ilWle actuate the FCS Command Interpreter which

‘DIR’ 4rom the command string

;at program addrecs CMSTR and initializes the
iproper code steps to retrieve directory
;information from the disk, placing it where the

;nhumber

in LOFL says to put

it - in this case,

;on the screen. FCS, then, requires two inputs:

;a flag in LOFL and a command string pointe-
tHL. When FCS has completed its work,
spresent us with some parameters,

in
it will
1f a disk error

;has occured, the B register will hold an error
icode reference number ¢ @=no error). The data in
ithe A, DE, and HL registers will be gone and the

;8088 flags will be: Z-set
;if an error has occured, C-set

if no errors, Z-reset
if a comma was

;found in the command string.

L

81

$3.00 to cover printing and mailing
costs. The listing will be printed in
COLORCUE as we examine it in the
coming installments.

Recommended texts: For descriptions
of disk and utility routines: Dewey,
Dale, Advanced Programmer's Manual.
D2 Engineering, 7284 High View Tralil,
Victor, NY 14564. $15, looseleaf.
This is not a tutorial, but an ele-
gant outline of routines in ROM with
a guide to their use. For the inter-
mediate and experienced programmer.

For 8080 wutility routines: Findley,
Robert and Edwards, Raymond, Scelbi
"8080" Software Gourmet Guide and
Cook Book, 2nd ed., 1978. Scelbi
Computer Consulting, Inc., Milford,
Connecticut 06460. $10.95. May be out
cf print, but worth a try! Review of
instruction set and special routines
involving stack pointer, sorting,
conversion of data, tables, I/0

processing and floating point
operations.
For instruction set and assembler

operations: INTEL 8080A Assembly Lan-
guage Programming manual. Literature

Dept., Intel Corporation, 3065 Bowers
Avenue, Santa Clara, CA 95051. About
$5.00. A very transparent and ordered
presentation.

For computer organization, utility
routines, I/O hardware and software
procedures: Rony, Peter R., 8080A

Microcomputer Interfacing and Pro-
gramming, 2nd ed., 1982. Howard W.

Sams and Co., Inc., 4300 West 62nd
Street, Indianapolis, Indiana 46268.
$17.95. A revision of the "8080A

Bugbook"; this volume has one of the
best software annotations I've seen.
In spite of their use of octal code,
the beginning programmer will have
many critical questions answered in
these pages. @&

CALL EMESS

;fou might as well Know now about this error
imessage generator,

the priest who always speaks

iNow exit the program graciou

BASJMP: LXI H,B8299H
XRA A
MoV M,A
INX H
SHLD 88D4H
MOV M,Aa
TNX H WOL 1, 5-&, p?4
Moy M,A
INX H
SHLD 88D&H
LX1 H,81DFH
JMP BBASHILF2CH)
CMSTR: DB ‘DIR 88K
yend
;erace the page.
EMD

;in red! This routine takes the number FCS left in
jthe B register and generates and prints an error
jmessage if B<>8, If there was no error the
sroutine just RETurns. EMESS will print according
;to LOFL.

sly with a jump to BASIC

;Thie short and very useful routine
1is taken from an article by

sM.A.E. Linden of Toronto, Ontario
;and published in FORUM INTERNATIONAL

;0ur command line may contain any valid FCS?
;command ¢ just one per line') but the line must
in @8H as shown or an error will occur,
iUntike OSTR vou may not place PLOT codes in the
;jcommand string, such as those to change color or

17

FREPOST COMPUTERS, INC. 431 East 20th Street 10-D
New York, New York 10010 PHONE 212-673-6476
Source TCI2S1 Micronet 70210,374
PRICES FOR COMPUCOLOR AND ISC COMPATIBLE EQUIPMENT & SOFTWARE
MARCH, 1983
ADD ON 16K RAM BOARD (INCREASE A 16K CCII OR 3621 TO 32K RAM)

ASSEMBLED AND TESTED WITH RAM CHIPS 108.00

UPGRADE 8K OR 24K TO 32K CALL OR WRITE
8K PROM BOARD (INTEL 2716 TYPE EPROMS FOR USE IN 4000H-FFFFH)

ASSEMBLED AND TESTED-NO PROMS INCL. 49.00

&4K BANK SELECTABLE ROM BOARD

SELECTS VIA SOFTWARE CONTROL UP TO S6K (D) OF EPROM IN 8K SEGMENTS.
PLUGS INTO THE ADD-ON ROM SOCKETS INSIDE THE COMPUTER OR WITH THE
EXTERNALIZER BOARD 1IT WILL OPERATE OUTSIDE THE COMPUTER. IT UTILIZES
TI 2532 TYPE EPROMS. BUILT IN IS A SOCKET FOR ADDITION OF AN 8K ROARD
E.G.,8K SINGLE BANK BOARD OR DEVLIN R A M BOARD. THIS COMBINATION
GIVES YOU THE FULL 64 K OF PROM. S50 PIN BUS CONNECTOR ALLOWS FOR
INSTALLATION WITH NO SOLDERING TO LOGIC BOARD.

ASSEMBLED AND TESTED---WITHOUT PROMS 249.00
ABOVE IN KIT FORM 1939.00
50 PIN BUS CONNECTOR 10.00

BUFFERED EXTERNALIZER BOARD FOR CCII, 3621 OR 36SO

THIS BOARD AND CABLE COMBINATION ALLOWS USE OF YOUR PLUG IN BOARD ON

THE EXTERIOR OF THE MACHINE. IT IS MANDATORY FOR THE 3650 AND 3621.
ASSEMBLED AND TESTED ONLY 59.95

“THE’ BASIC EDITOR (SEE FORUM VOL 2 NO 1 PP 11-12 FOR REVIEW)

PROM VERSION IN 2532 OR 2716 PROMS 89.00
PURCHASED WITH 8K PROM BOARD (A&T) 109.00
PURCHASED WITH 64K BANK BOARD (A&T) 269.00

LOWER CASE PROM WITH STANDARD CCII OR ISC GRAPHICS
(CAN USE CAPS LOCK SWITCH OR ADD ON TOGGLE SWITCH>
EPROM WITH LOWER CASE - 33.00

ENHANCED OPERATING SYSTEM ROM FOR 6.78

ADDS 4 NEW JUMPS TO ACCESS EPROM AREA WITHOUT POKES TO USER
VECTOR. PERSONALIZED WITH THREE INITIALS AT NO EXTRA CHARGE

EPROM WITH NEW OPERATING SYSTEM 29.00

THE FOLLOWING PROGRAMS CONSIST OF ONE BANK OF 2532 OR 2716 EPRONS
COM-TRONICS (tm) SOFTWARE IN NEW EPROM VERSIONS

1)>)TERM II COMMUNICATIONS PACKAGE 83.95
2)CTE, FORMATTER, SPEED 144.95
3)NEWBUG, CTA 109.95
4)CRC,DFM 79.95
S)YPRINTZ2, CLIST,LLIST,LDAFIL 109.95
6)TERMII, SRC/BAS, BAS/SRC, FILMRG 154.95
7)CTA : 69.95
8)NEWBUG, SORT, RENUM 109.95

BILL GREENE SOFTWARE IN EPROM
1)SUPER MONITOR PLUS 739.95

JIM HELMS SOFTWARE IN EPROM VERSIONS

1>EDITOR/ASSEMBLER 390.00
2)WISEII 8080 EMULATOR 75.00
3)DISK EDITOR 60.00
4)GENERAL LEDGER SPREADSHEET 110.00

5)30URCE DIZA3ZEMBLER 130,00

FREPOST COMPUTERS INC PRICE SHEET DECEMBER 1982 PAGE 2

FREPOST COMPUTERS, INC (tm) EPROM VERSIONS
1>AT LAST! DIRECTORY PROGRAM BY BILL POWER 59.95
2)DISK BASED VERSION 39.95

RICK TAUBOLD & BILL GOSS’ NEW REAL TIME STAR TREK
FEATURING GAME SAVE AND ALL NEW GRAPHICS 25.00

A FIRST FOR THE COMPUCOLOR/INTECOLOR! DOUBLE PRECISION MATH!
CAN BE USED TGO GIVE UP TO 16 DIGIT PRECISION MATH OPERATIONS ON ADD,
SUBTRACT, MULTIPLY AND DIVIDE. TRANSCENDENTAL FUNCTIONS TO COME.
AVAILABLE IN ROM FOR YOUR BANK SELECT OR 8K PROM BOARD. CAN BE ADDED
TO HOST PROM PACKAGES. THIS FAST HACHINE LANGUAGE MODULE IS CALLABLE
FROM BASIC, DO AWAY WITH THE PENNY ERRORS FOREVER!

STANDALONE IN ROM PACK 59.95

INCLUDED IN ROM PACK WITH OTHER PGHMS 39.95

THE QUADRAH LINE OF PRINTER SPOCLERS FREE YOUR COMPUTER FROM NEEDLESS
WaSTE OF TIME WHILE EVEN FAST PRINTERS PRINT. DUMP YOUR DATA AT 35600
BaUD AND LET THE MICROFAZER HANDLE THE PRINTING CHORES WHILE YOU
CONTINUE CRUNCHING. STANDALONE UNITS POWERED FROM YOUR PRINTER’S
PARALLEL INPUT, ALLOW RESET AND RECOPY FROM FRONT PANEL.

64K SERIAL IN/PARALLEL OUT 269.95

8K SERIAL IN/PARALLEL OUT 189,95
ALL CONFIGURATIONS OF INPUT AND OUTPUT MODE ARE AVAILABLE. CALL!

THE ANGEL I3 ANOTHER PRINT SPOOLER, AND IS LIKE THE MICROFAZER, BUT
HAS UNIVERSAL INPUT/OUTPUT, MORE FRONT PANEL CONTROLS ALLOWING PRINT
INTERRUPT, REPRINT FROM PAGE X, AND MUCH MUCH MORE

64K SERIAL OR PARALLE IN AND OUT 289.95

MULTI COMPUTER USERS NOTE :

ALL QUADRAM, STB, AST, PRINCETON GRAPHICS, AMDEK, TECMAR, AND RELATED
MANUFACTURERS PRODUCTS ARE AVAILABLE AT GREAT SAVINGS FROM FREPOST
FOR OTHER TYPE SYSTEMS.

WE SAVED THE BEST FOR LAST.c..vasavsee

NEW FOR 1983ttt THE OKIDATA MICROLINE 92 9X9 LETTER QUALITY PRINTER

COMES WITH THESE STANDARD FEATURES ---->
2000 BYTE BUFFER, PARALLEL INTERFACE, 7 CHARACTER FONTS PLUS
CORRESPCONDENCE FONT (NOT JUST A DOUBLE STRIKE DP FONT). ALSO,
A SMART VERTICAL FORMAT UNIT, REAR OR BOTTOM PAPER FEED,
FRICTION OR 9 1/2" PIN FEED, & CHARACTER WIDTHS, ENHANCED
PRINT MODES AND

#»exx DOT ADDRESSABLE GRAPHICS INCLUDED AT NO EXTRA CHARGE! =a==

YOU CAN ALSO CREATE YOUR GWN FONT AND DOWNLOAD IT TO THE
M/L 92t 160CPS PRINT SPEED IN DP MODE, SHORT LINE SEEKING
BIDIRECTIONAL PRINTING.

MICROLINE 92 80 COL 9X9 MATRIX PARALLEL 540.00
MICROLINF 92 AS ABOVE, SERIAL INTERFACE 620.00
MICROLINE 93 132 COLUMN 9X3 MATRIX PAR’LL 900.00
MICROLINE 93 AS ABOVE, SERIAL INTERFACE 980.00
MICROLINE 80 80 COL 7X39 MATRIX B80CPS 350.00
FREPOST SCREEN DUMP PROGRAM

(CCII GRAPHICS CHAR SET) 39.95

FOR INFORMATION ON THESE AND OTHER PRODUCTS, PLEASE CALL OR WRITE
TODAY. DELIVERY ON MOST ITEMS IS FROM STOCK.

INSTALLATION ASSISTANCE AND SERVICE IS AVAILABLE AT MODEST COST FOR
YOUR COMPUCOLOR OR ISC COMPUTER.

Compucolor Disk Drive Improvements

by John Newman
PO Box 37
Darlington,
Western Australia 6070

While it is not practical to make
major improvements (such as capacity) to
the Compucolor disk drives, there are a
number of useful, low cost modifications.
Three of these are: (1) write protect
switch, (2) motor run-on, and (3) dual
speed switch. (Note: all of these re-
quire complete removal of the disk con-
troller board, cutting of circuit tracks
and soldering of new components.)

Write Protect Switch

This addition provides hardware pro-
tection against accidental writing of any
data to the currently loaded diskette.
Deletion of files is also inhibited. With
the switch in the Write Protect OFF posi-
tion, all normal reading and writing can
occur. With the switch in the Write
Protect ON position, only reading can
occur. If you, too, have hoards of chil-
dren playing Space Invaders, this switch
should help prevent those mysterious disk
erasures. Attempts to write to the disk
with Write Protect ON will produce FCS
errors: EVFY, EFWR or EDEL.

Parts required:
1. Miniature SPDT toggle switch.
2. 4700 ohm, .25 watt resistor.
3. Length of hookup wire.

The logic and component location
diagrams are given in Figures 1 and 2.
The switch should be fitted to a 1/4"
hole on the front panel of the disk
drive.

Motor Run-On (V8.79 only)
This modification is the most diffi-
cult to install but probably has the most

20

value. When the disk is selected for a
read or write, the drive motor starts up.
A delay of up to a second occurs before
the motor reaches correct speed and data
is transferred. As soon as the data tran-
sfer is complete, the drive motor stops.
Subsequent reads or writes require the
same motor startup delay. An easily
demonstrated example of this is listing
of a long directory. There is a distinct
pause between reading of each directory
block.

With the motor run-on circuit added,
the drive motor will continue for three

seconds. If any read or write occurs
within this time there is no startup
delay. Listing of long directories and

loading of .LDA programs with the run-on
fitted take about half the normal time.
The reason that this modification curr-
ently applies only to V8.79 is because
V6.78 FCS has a built in delay of one
second. This is being looked into right
now. Hopefully a simple update to V6.78
FCS PROM will remove this problem.

Parts required:
1. 1000uF 6.3V electrolytic cap.
2. Signal diode 1N4148 or similar.
3. 4700 ohm .25 watt resistor.

Installation involves cuttirg the
track between pins 2 and 3 of UA3, drill-
ing three small holes and soldering the
components as shown in Figures 3 and 4.

Dual Speed Switch

Those Compucolor owners who regularly
buy or trade software are aware of com-
patibility problems between drives. They
also know that reading a disk at a

slightly slower speed than the original
writing speed overcomes many of the
reading problems. This is usually
achieved by drilling a hole in the disk
cabinet, giving screwdriver access to the
speed control potentiometer. The trouble
with this 1s the difficulty of resetting
to correct speed.

This modification is simply a switch
to set the disk speed at one of two fixed
speeds. By conneciing a 2200 ohm resistor
across half of the speed pot, the RPM
drops by five. Use the SPEEDQO program or
the strobe indicator to set the normal
speed (300). Reading speed for "foreign"

disks can then be set to 295 RPM at the
flick of a switch. By reducing the wvalue
of the resistor, the difference between
the two speeds increases. A 1000 ohm
resistor gives a difference of & RPM. The
switch should be fitted to a 1/4" hole on
the front panel of the disk drive.

Parts required:

1. Miniature SPDT switch.
2. 2200 ohm .25 watt resistor.
3. Length of hookup wire.

Install the parts as shown in Figures
5 and 6. &

i
!
'

Figure 1
ON
+ .
WRITE PROTECT S o v
OF
SPDT Switch.
4.7K
13
g8 17
)BT 3 SR G W WL /- et
WRITE A /T/
Cut track
Figure 2
S U S —
+5V. 4.7Kn DISK CONTROLLER / WRITE
\ O UNDERSIDE PROTECT
\ - = PARTS
To pin 18 = ¥ Cut track. LAYOUT
of UAZ2 fosmn

Rear edge
WRITE
PROTECT

Lo Socket for (
Interface \
1 cable. \

21

Figure 3

Figure 4

+5v. @
MOTOR
RUN-ON 5@ 7K
LOGIC
IN4148 -
SELECT ’ 2 15
> & lﬁ
RedLED
MOTOR : :
RUN-ON UA3
PARTS o DISK
LAYOUT.. . s CONTROLLER
track Diode
N :
2\\1 . TOP SIDE
\
= 1o:]\ ;x\
\
f—'C\\é : 4.7k (Underside)
n |
]
</
- 1000 __@ +5V.
uF
Graoynd
- Q_____E:;%—J
FRONT EDGE

22

Figure 5
UNDERSIDE

Speed Potentiometer
R10
il g
A 7 R

Fi Y S R T SN S WO |

Disk Controller Rear Edge

2.2K

SPDT
Switch

SPEED: 299 295

Figure 6

1T
1

DISK
DRIVE
SWITCH
LOCATION

(:) WRITE PROT. SPEED
E

. OFF(:)ON 300(:)295

Cueties 192 PLOT 1&
EQ@ FOR I=0 TO 12@

210 FOR T=-5 TOD S5+I
. 215 C=INT(7%#RND(1))+]
by Steve Smith 217 PLOT 6,C
498 Browr “ireet 220 X=INT(1@+T*RND(1))+1
Napa, CA 94558 230 Y=INT(1@+T*RND(1))+1
240 PLOT 2,X,Y, 255
252 NEXT T:NEXT I

23

The Okidata Microline 84 A Printer

by James L. Helms
1121 Warbler
Kerrville, TX 78028

I love the new Okidata Microline 84A.
The maximum baud rate is 4800 with a
serial interface, but when it is going at
200 characters per second you would never
know it. It has true logic seeking char-
acter positioning, where the print head
does not have to return to its home pos-
ition prior to printing the next line.
This really increases throughput.

The ribbons are typewriter styled and
travel in both directions like a type-
writer ribbon does. You could even use an
ordinary ribbon except that it would void
the 90 day warranty. The ribbons which
Okidata supplies are impregnated with a
head lubricant, so I wouldn't advise
using plain ribbons.

The printer is capable of dot gra-
phics, underlining, proportional spacing
and user defined character sets. Unfor-

tunately, the instruction manual leaves a
lot to be desired. They do not, for exam-
ple, explain how to download your own
character set. Nor do they fully explain
the printer's graphics capabilities. 1
was only after much playing around that I
got the graphics to work. I still haven't
figured out how to use my own character
set. The manual also assumes that the
user understands a lot of esoteric terms,
especially those involved in the command
sequences. It takes a while to figure out
what's supposed to be going on. There is
a section on setting what they call
"channels", As far as I can make out,
channels are a kind of vertical tab, the
positions of which can be set by a com-
mand sequence giving line numbers.
Vertical tabbing is then done by comman-
ding vertical movements according to the
channel numbers instead of the line num-
bers. Weird.

IIN.L.Q."
users might not be familiar

is another term which some
with., It

24

o«

stands for "Near Letter Quality". When in
this mode, each print line 1is printed
twice, once in the usual way, and the
second time shifted by one half dot. It
gives less of a dot matrix look to the
letters, but it slows throughput to about
100 characters per second. (Still pretty
fast.)

One of the big mysteries in their
manual is the reference to "Single CSF
Exhaust". If you can figure that one out,
let me know.

There are a few things I don't like
about the physical design of the printer.
The power switch is located in the rear.
I would have preferred the front console.
And I don't like having to unscrew the
top cover in order to change the dip
switch settings. Usually, though, this
can be overcome by downloading your own
command sequence.

All in all, T am very pleased with the
printer; I think it's worth every penny I

paid for it. (Anyone want to buy a used
Base 2 printer, cheap?) @&

Dip Switch Settings

Switch Setting Use
a1 — odd/even parity
92 ON no parity
23 CFF 8 bit word
724 OFF 4800 cps
25 ON "
26 ON "
a7 OFF line feed on LF
28 ON (always)
29 ON simplex
12 ON "
11 ON "
12 OFF (always)
13 OFF "mark" when busy
14 CFF (always)
15 OFF RS232
16 ON two wWire

]

Cable Connections for CCII and Microline 84A

CCII
pin

3
14
15

Microline Signal
pPin
3 RD (XMITD DATA)
7 5G (SIGNAL GROUND)
11 SSD (BUSY)
4 RTS (REQUEST TO SEND)
5 CTS (CLEAR TO SEND)
6 DSR (DATA SET READY)
28 OTR (DATA TERMINAL READY)

JUMPER 1
JUMPER 1
JUMPER 2
JWMPER 2

€ LPI TEST

LINE NUMBER 1 line rnumber 1

LINE NUMRBRER & line rnumber &

LINE NUMBER 2 lirfne rnumber 3

LINE NUMBER 4 line number 4

LINE NUMBER & line riumber o

8 LRI TEST

LINE NUMBER 1 line rumber 1

LINE NUMBER & lirne viumber O

LINE NUMBER 3 1lirne riumber 2

LINE NUMBER 4 livne rniamber 4

LINE NUMBER 5 lirne riumber D

& LFI UNDERLINE TEST

THIS IS UNDERLINING ... this is urderlining
THIS IS UNDERLINING ... this 1s widerlining
THIS IS UMDERLINING ... this is underlining
THIS IS UNDERLINING ... this 1S unoerliring
THIS I8 UNDERLINING ... this is underlirning

EMPHASIZED TEXT

TESTING u..
TESTING «.»
TESBTING ...
TESTING ...

SUPERSCRIPT

SUFERSCRIPT
SUFERSCRIFT
SUFERSCRIPT
SUPERSCRIPT
SURERSCRIFT

5, 10. 5, 12, 8,

i}

testing
teating
testing
testing

/ SURSCRIPT

SURERSCRIFT
SURPERSGCRIRT
SUFERSCRIRT
SUFRERSCRIPT
SURPERSCRIFT

17 CRI TESTS

1= =S e 7 B3

1234567830

123456783

1234567892
12345676890
1234567890

SUESCRIFPT SURSCRIDT
SUBSCRIFT gURSCRIET
SUEBSCRIPT gURSCRIPT
SUBSCRIFPT gURSORIFET
SUBSCRIFT gyURSCRIFT

25

FASBAS - A Basic Compiler

4 mini-review

by D. B. Suits

Anyone with contacts in any other user
groups, through newsletters or {friend-
ships, or who subscribes to COLORCUE,
knows that there is a BASIC compiler
loose. (A compiler is a program which
takes another program (in BASIC, in this
instance) and converts it into one that
runs, or runs faster than an interpreted
version. An interpreter is a this
is going nowhere .) Called FASBAS and
written by Peter Hiner of Great Britain,
it produces code that runs from 2 to 5
times faster than the original BASIC
versions. The price is $20 (apparently
cheaper when user groups buy in bulk).

One evening we popped into ye olde
computer roome to take a look at FASBAS
and what it could do. The FASBAS disk
comes with a demo BASIC program on it
which you can run and then compile using
FASBAS in order to appreciate the dif-
ference in speed. We thought, though,
that we'd give it a "real life" test.
Suits's BOUNCE program seemed a good
choice. We read the FASBAS documentation
and made note of the various restric-
tions. There are some things that FASBAS
doesn't like to see in BASIC programs
which it compiles (improperly exited FOR-
NEXT loops, for example). Fortunately,
BOUNCE did not violate any of the re-
strictions, so we loaded the FASBAS disk,
ran FASBAS (it takes a few seconds to get
itself organized), and told it to please
compile BOUNCE. The first pass which
FASBAS makes produces a quasi-assembly
language source f{ile and stores it on
disk. The source file is very long
indeed--so large that for a 10K or 16K
BASIC program, the generated source code
will take up most of the disk space.
While the source code is being generated,
FASBAS tells you whether it has encoun-
tered any illegitimate instructions in
your BASIC program. These might be synax
errors or else instructions (such as

26

random file handling instructions)
FASBAS can't accommodate.

In the case of BOUNCE, all went well.
Next we invoked the FASBAS assembler, a
non-standard assembler (because the
source code which FASBAS generates is
non-standard) which makes two passes over
the source code in a manner similar to
the Compucolor assembler. Part way
through this assembly, an error was re-
ported in red. The error message, how-

which

ever, was a bit cryptic, so we had to
look it up in the documentation manual.
Oops! No list of error messages! Oh,
well, it looked like a standard assembler
error message indicating an ambiguous
label reference. (If you don't know
Compucolor assembler errors, you'll be
out of luck here.) So. An ambiguous

label? How can that be? WE didn't write
the source code, FASBAS did. Why was
FASBAS generating ambiguous labels? Back
to the original BOUNCE program to see
what we could see. It took us a while,
but we finally discovered that FASBAS was
indeed generating some ambigucus labels.
Specifically, BOUNCE has an array called
SC(). FASBAS labels that witn a prefix
"A" (for "array", I suppose). Uunfor-
tunately, the BASIC keyword "ASC" looks
just like the label for array SC, and
this was the source of the assembler's
confusion. We got out THE BASIC editor,
changed all references in BOUNCE from
SC() to CS{(}), submitted the new version
to FASBAS, ran the FASBAS assembler
again, and.... Oops! Still an error. This
one concerned the BASIC line "LOAD
MENU:RUN". The manual says that's OK, and
FASBAS didn't flag an error there, but
the assembler did. Strange. So we took
that line out of BOUNCE, re-compiled and
reassembled, and.... Lo! It worked!

The assembler generated a .LDA file on
disk which we loaded (.LDA files take a
while) and then saved back out as a .PRG

(i.e., a true machine language) file.
Then we ran BOUNCE.PRG. Yep! There was
the program, up and running, and it was
considerably faster than the interpreted
BASIC version--so much faster, in fact,
the the little ball which bounces around
was now bouncing a bit too fast; it would
have been appropriate to go back to the
original program and put a few small
delay loops in and recompile. So FASBAS
has a few restrictions and a few bugs.
Big deal. It's a working BASIC compiler
for only $20! That's nothing to sneeze
about. If you're interested in obtaining
a copy, write to Peter Hiner, 11 Penny
Croft, Harpenden, Herts AL5 2PD, England.

Classified Advertisements

For Sale Compucolor II, V 6.78, 32K, 117
key keyboard. Soundware, disks in-
clude games, BASIC Editor, Assem-
bler, Personal Data Base. Manuals
included. Excellent condition.
Asking $1300 or best offer.

Harry Trueheart

8 Old Farm Circle
Pittsford, NY 14534
(716) 586-7906

For Sale Compucolor II, V8.79, 32K, pur-
chased 11/81. Includes programming
and maintenance manuals, Text
Editor, Compucalc, Personal Data
BAse, Fredi, Assembler, Format,
games, and a file of Colorcue.
$1500.

Also - new 16K RAM module $75.
Steven Forshay
1321 Webster Street D114
Alameda, CA 94501
(415) 522-5935

MORE DISK STORAGE FOR $24.95!

Store 50% more ASCII data.

Works on both V6.78 and V8.79.

Supplied for 8200H and 4000H.

Uses CDO: and/or CD1:

PACK.PRG
Codes,

packs with Huffman
UNPACK.PRG restores.

All ASCII codes
use for ASM.SRC,
CTE files, etc.

accommodated,
Text Editor,

Delay for ©personal checks,
Send Postal Money Order for
same day shipment of program
disk and user instructions to:

VANCE PINTER
P.O. BOX 20
COLUMBUS, GEORGIA 31902

User Group Notes

We are trying to build a Compucolor soft-
ware library for exchange of programs on
a low cost reciprocity basis. We would
like to receive offe.s regarding programs
you have created and wish to share. For
information, please write:

Bernard Lohman
Deurloostraat 103
1078 HW Amsterdam
The Netherlands

COMING NEXT

Focus on your screen with:
Screen memory problems
4096 colors?!

Adjustment advice
A bar cursor

Turn to your disk drives with:
Handy disk utilities in BASIC

Assembly language routines

And more,

27

Fome—-

Editors’ Notes

Several recent letters have inquired
about the meaning of the mysterious num-
ber on the mailing label of their Color-
cue. That number used to be the issue
number of the last issue valid on vyour
subscription. Unfortunately, that number
was never explained or used anywhere in
the magazine, so you have a right to be
puzzled. Having explained that number
now, you'll notice that it's changed.
Since its purpose is to tell you how many
issues you have to go, and a computer
knows what the current issue 1is and what
your last issue will be, 1t seems that
the computer should subtract and tell
you, simply, how many issues are left on
your subscription. That's what the number
does now, and that's what "to go" means.

If your "to go" is zero, you'd best renew
to continue with Colorcue; you've re-
ceived your last issue. When you renew,
rest assured that your investment is
secure. Colorcue maintains a bank balance
large enough to refund subscribers'
unused subscription dollars one for one,
should the magazine cease publication. In
simpler terms, you'll get your money's
worth, or you'll get it back.

Still on the topic of subscriptions, let
us issue a call for renewals. If you'll
remember last vyear, when we did this, we
waited until we had enough renewals in
hand to make sure we still had a viable
operation, and then tegan to work on the
Aug/Sept issue. Because many of you, like
at least one of our editors (guesses?)
were ilate with their renewszls, that issu-
was delayed fabout 2 monthsi. We've b
gotten caught up, even thcugh our iw
¢cns are o.iperb. Please help us a
~at situation this year, and renew
rly. We preomise not te get any further
hind, =nd promisz that you won't lose
ny money in the deal.

REMINDER

Beginning with volume 6 (Aug/Sept),
the subscription rate for COLORCUE
will be USS18 in North America and
USS30 elsewhere,

FASBAS Update

Peter Hiner has improved his FASBAS
BASIC compiler. It no longer has all the
previous limitations mentioned 1in last
issue's review. And apparently all the
bugs have been corrected. I have been
using it successfully for several months
now, and I can report that I am tho-
roughly delighted.

The price of FASBAS was erroneously
given as $20 (US). Please note that the
true price is $25 (US). Peter has gra-
ciously filled some orders even when the
purchaser sent only $20. Let's be fair to
him and his creation, though: if you
bought FASBAS for only $20, please send
him the remaining $5. After all, the more
we encourage Peter, the more likely we
are to see something else wonderous
emerge from his computer room. Besides,
you'll have to agree that $25 is CHEAP!

Speaking of FASBAS, have you been
wondering how Peter came to write it in
the first place, and are you curious to
learn how it works? Then don't miss our
next issue, wherein Peter begins a
multi-issue article which answers these
questions.

ISC News

Years ago many Compucolorists found a
friend in Gene Boughey, who both gave us
advice and produced programs for us on
his own or in association with ISC. Now
Gene has been promoted to manager of
graphics systems sales at Intecolor.
Congratulations, Gene!

No doubt one of Gene's duties will be
to promote Intecolor's new VHR19
graphics terminal. It has 1024H by 1024V
bit mapped color display (1024H by 768V
viewable). Eight of 4096 colors may be
displayed. The VHRI19 has graphics com-
mands such as point, line, polyline,

- tangle, circle, arc, polygon fill,

6o, zoowm and pan. Four sizes of Tek-

v chas-~ter sets are included, plus
sraphire character sets, one of
+hich is user-definable. The detached
keyboard has 113 keys; 36 are program-
mable function keys. Serial port, DMA
channel, auxiliary I/O and printer ports
are also included. The introductory
price {until October 31) is $3995. &

Assembly Language Programming

by Joseph Norris
19 West Second Street
Moorestown, NJ 08057

Part XI: Program Design and
Parsing File Names

In the last issue we discussed the FCS
Interpreter and iniroduced ourselves fto
the File Parameter Block. We mnow begin a
three part series of artic.es that de-
scribe the consiruction of a program to
create, open, edit, print and cliocse a
source file (.S5RC). We have chosen a

SRC
file because it contains eonly "printable”

data, that is, hex numbers which mav be
displayed on the screepn in the form of
alpha-numeric and associated "typewriter”
characters--all these commonly reiferred
to as "ASCII" characters. In addition to
ihis set is a subszt, with hex numbers
below 20H, renresenting, by standard

agreement, such
cadures as a

negessavy

vrinting pro-

carriage return, line feed,

form feed, etc. [i} All these charucters
are simple to 1mser. aad remova from =&
digk file, and are a21r likely to Trun
amok” when hand

a good starting point
experience.
Program Design
Of importance equai to specifics on
the use of {file routines in ROM, in this

is the provedure by which
g designes. Initial assembly
language programming, pr ocee "ng from 2

3 s ur
program is

background 1 BASIU, confronts
tive insecurity; how can I menage without
line numbers? Where on earth do &I beginu
and with what? The traditional answer io
this kind of questioning is "the flow
chart", which, {for many of us, is some-

what like being advised that the best way
to extinguish a fire is to swallow it.
We can begin by acknowledging that the
primary dynamic between computer and
operator is communication. The CPU places
most exacting requirements on the format

4

for giving it instructions and data; the
operator is entitled to the same speci-
ficity, and this is determincd by the

computer’'s messages to the operator,
primarily through a sequence of option
lines. [27 When this sequence is com-
piete, the programmer has a "flow chart”
of a very useful kind, containing a syn-
opsics of questions to be asked and
answe=ys to be given, and formatted screen
displays on which this exchange will tare
place. At this point the "outline” pror
gram may be assembled and run, stepping
through each stage to evaluate order =and

-

completeness. One may then proceed to
£111 1n the operations prescribed
this outline. Lgually important,

programmer should now have a wery

idea as to which details of comonund
wilt bte included with the pro;

explanation in an "
Your programming is noi

whicn noed
.

manual’,

without such a manual, and its prepara-
tion 1s an essential part of "profez-
sicnal’ program generation. Listin

is an cxample of an outline "flow cha
for our entire program. It will "run’
showmn, and you may step thro 1gh

uﬁf'iu*l lines =25 though
incl
unwritten,

ed for in the listing
——— n may use thess 1o
as a guide fovr inserting i(he Trogr
moduies” as we comnstruct ‘i_,en Lhrough..*‘
these articles. The listing cludes

modules we will need from D” id Suits’s

input routine (somewhat modified for our
use). I suggest you construct this
routine, as shown, and test it, before

entering the modules described in these
articles.

;ERROR CORRECTION -

;Please make the following corrections to

s your listing:

3 1) Change label EDSA! to EDSIA

3 2) Modify the last line to DSP3 to make
3 two lines as follows:

H DB ‘ TEXT”

H DSP3A: DB 4$,7,3,8,12,23%
7 3> In module PARSE, change the first

3 line to read -
H LX1

NOTE: The default

letters you wish,

B,DFLT

;jset default type

type may be any three
except for reserved

i

)

; file types such as LDA, PRG, BAS, RND,
; COM, etc, You may also create a “null”’
; file, with no type at all. Why not set
H DFLT: DB ‘ ‘ and try it!
sLISTING T1

H

;SOURCE .PRG;A progr
jtext, Close and Pr
swith parsing added

am to Open, Enter
int a .SRC file

H
; INTERIM OPERATING

;For this program a
;option to view cor

;see synopsis of pr
sproceed. Exit with
;to GETCHA will be

jroutines. For now
jdisplays before mo
sPRINT function you
imessage displays.
ithe master option
;in the

jroutine insertion

INSTRUCTIONS:

s it is so far, select
responding display and
ogram. Press RET to
CPU/RESET. Many calls
replaced by operating
they permit viewing
ving on. At end of the
will view the error
Keep pressing RET until
line reappears. Areas
dered by (j;-————-) are
areas for later use.

H
;EQUATE AREA - put

all EQU’s below: v8.79%

H & U9.80 shown - vé.78 in parentheses
KBCHAR EQU 81FEH s(ram)
LO EQU 17C8H 5 (3392H)
0STR EQU 182AH ; (33F4HD
STacCK EQU 8FFFH ;Cchoose)
H
;ENTRY POINT -
ORG 8260H jor your own spot

SOURCE: ;Initial st

eps explained later!

LX1 H,8 ;clear HL

DAD SP ymove in FCS
SHLD FCSSP ; stack and save
LX1I SP,STACK;our stack!'

MUI A,0C3H s*#input routine
STA 81CSH ;7 Jump to CHRINT
LX1 H, CHRINT

SHLD 81C&H

MUT A, 1FH

STA 81DFH

SETUP:

XX1:

CLBF:

XX23

LXI
caLL
MUI
LX1I
MUT
DCR
INX
JZ
JMP

MUI
LX1
MU
DCR
JZ
INX
JMP

H,CLR
0STR
B,42
H,FS
M,8

B

H
CLBF
XX 1

B,129
H, INBUF
Mo

B
OPTION
H

XX2

sjclear page, page
;7 mode,small char
;clear FS,MCHAR,
; and INBFPR

ydecr counter
;incr pointer
swhen finished
;7 back for next
jclear INBUF
;put “space”’
jdown counter
swhen done

;jclear next

1
sMAIN PROGRAM

complete!

OPTION: CALL BLLN ;border blue
LXTI H,DSP1 jpoint to text
CALL 0STR syand print it
CAaLL GTCHA jwait for select.
CPI 49 ;i CASCIT 717
J2 OPENA
CPI 50 H and vector
Jz TEXT s program to
CP1 S1 H selected
J2 CLOSEA ; routine
CP1 52
JZ PRINT
CPI 53 ;7 (ASCII 57
Jz ENDIT
JMP OPTION ;if illegal entry
i
;BEGIN SUBROQUTINES - insert below as we
jderive them (1 use alphabetical order)
BCKSP: MOV A,C j*input routine
ORA A
JZ xXX3
MU1 A, 1AH ;doesn‘t erase
CALL LO 3 character -
DCX H ; nice for
DCR c ; editing text
XX3 RET
BLLN: LX1 H,DRLNB j;option border
CALL 0STR ;s blue
RET
BOX: LX1 H,BXDSP jdraw text window
AL 0STR
RET
CHRINT: PUSH PsSw ;®#input routine
XRA A
STA 81 FFH
POP PSW
RET
CLOSEA: jclose file, one
CALL BLLN jroutine for new
LXI H,DSP4 ;and one for old
CALL QSTR
3
CALL GTCHA jroutine here
L]
JMP SETUP jrestart
ENDIT: ;3 "END” routines
CALL BLLN
LX1I H,DSP&
CALL 0STR

CALL GTCHA jwait for Key
jvector to appropriate subroutine, in
sthis space

JMP QPTION
ERROR2: CALL RDLN
LX1I H,EDS2 ;/no file”
CALL QSTR
CaLL GTCHA
ERROR4: CALL ROLN
LXI H,EDS4 17file in buffer”’
CALL OSTR
CALL GTCHA
ERRORS: CALL ROLN
LX1 H,EDSS ; FCS problem”
CALL OSTR
CALL GTCHA

sremainder of routine in this space

ERROR&: CALL RDLN
LX1 H,EDSS y"bad file name’
CALL 0STR
CALL GTCHA
JMP OPTION ; - all done!
e -
GTCHA: XRA A ;jget 1 kKbrd char
STA KBCHAR ; see COLORCUE
XX4: LDA KBCHAR ; v2#8 p? and
ORA A 3 Jun/Jul 82 p24
JZ XX4
RET
INPUT: LXI H, INBUF ;%input routine
SHLD INBFPR
MU I c,9
INPUT!L: CALL GTCHA
CPI 8DH ; (CR)Y
JZz INPUT4
CPI 1AH jleft arrow?
Jz INPUT2
CPI 12H sright arrow?
Jz INPUTS
CPI e jspace?
JC INPUT1 jnote “JC”
CPI 129 jmaxkKey+1
JNC INPUT1 ;ignare
MOV B,A ;save character
PUSH H sWHAT?!Y Look at
MQV A,C ;5 maximum chars
LX1 H,MCHAR ; allowed by the
CMP ™M ; caller - OK?
POP H jget pointer
JNC INPUTI jno! ignore
Moy M,B iyes, print it
INX H
INR c
MOV A,B
CALL LO
JMP INPUT L
INPUT2: CALL BCKSP
JMP INPUT1
INPUT4: LDA MCHAR ;1ook for 128
CPI 128 ; if so -
RZ y return, else
MUIT M, 8DH ; add CR for name
RET ; and return
INPUTS: MOV A,C jright arrow

6

CPI 128 ;end of line?

Z INPUTL ;ves, i1gnore'
MUT A, 19H :
CALL LO ;do 1 t! adjust
ITNX H 1 Counts
INR c ;7 and
JMP INPUT ; return
OPENA: ;open file: will
LX1 H,CLR ybranch to one
CALL 0STR jroutine for new
CALL BLLN jfiles, and one
LX1 H,DSP2 ;for old files
CALL 0STR
§
;File open rcutine in this space.
CALL GTCHA
e
CALL BOX
§
;display file here
§ e
JMP OPTION ;and return
PRINT : yprint to RS232
CALL BLLN
LXI H,DSPSA
CALL 0STR
CALL GTCHA sbaud routine
§
CALL BLLN
LX1I H,DSPSB
CALL OSTR
e
CALL GTCHA ;' prepare’ routine

;1§ you want to send setup string to the
;jprinter, do it here, with LXI H,SETPR
yand S10UT.

CALL BLLN
LXI H,DSP5C j;signal operator
CALL 0STR
T
CALL GTCHA sprinting routine
i+ replaces this area: will normally JMP
; OPTION when finished, but go on to view
JMP ERROR2 ;error messages
P
RDLN: LX1 H,DRLNR j;paint border red
CALL 0STR ydraw 1t
RET
TEXT: ;enter text
CaLl BLLN
LXI H,DSP3
CAaLL 0STR
g
CALL GTCHA jroutine here
' JMP OPTION ;and return

H
;BEGIN STRING STORAGE -

BXDSP: DB $,2,3,8,12,11,3,8,13,11
DB 2,8,82,242,127,82,255
DB 2,8,468,242,127,468,255,239
CLR: DB 6,2,12,27,24,15
DB “SOURCE.PRG - SOURCE FILE~”
DB " PROGRAM’ , 239
DRLNB: ;see COLORCUE v2#7 plé & Manual

jfor repeat string with OSTR here:

0B 4,4,3,8,2,30,237,8 DSPSC: DB 20, “PRINT *,4,8," ©,6,3
DB . ©,238,3,0,4,30 (8] <] 3,27,33 PRINTING -7,3,52
DB 237,8, eeeeeecee’ ,238,29,4 OB 3,6,8,
DB 2,3,0,3,11,3,0,3,239 DB 6,4,” PRINT’,3,84,3,239
DRLNR: DB 4,1,3,0,2,30,237,8 DSP6: DB 17, END :,6,72,’)))))’
DB . ©,238,3,0,4,30 DB 6,7}3,2933, E%IT TO :,17,’1:
DB 237,8, ececeeee’ ,238,29,6 0B 23,°FCs °,17,72",23,7BASIC
DB 1,3,8,3,11,3,0,3,”ERROR OB }7’ 3 :23’ C?T !3!52:3i6’72
DB 6.8." ’3,52.3,6,72 OB <LK, 6,1, END’,3,64,3
DB ‘ RET “,6,1,” ERROR’ bB 239
DB 6,7,239
v EDS!: DB 3,0,8,239
DSP1: DB 28, 0PTION 7 ,6,72,75>>>>"))
o8 5.3, 17122, 0PEN < ,19 EDSAL : gg ?’;égéégéaéELow ERROR’
0B ‘27,22, TEXT ”,19,73",22 DB 6,72, RET 7,6,8,3,64,3,239
DB ‘CLOSE ’,19,747,22, PRINT ~’
0B 19,757,22,"END 16172 EDSIB: DB 6,2,3,0,8,11,3,0,9,11,239
DB (K7, 6,4, OPTION”,3,44 12,3,8,8,11,3,8,7,11,
DB 3,239 EDS2: DB 3,20,3,’NO FILE IN BUFFER - ~
DB “OPEN”,3,44,3,239
DSP2: DB 20, OPEN 7, 6,8, ‘ T
OB 6,3, ENTER FILE NAME’ EDS4: DB 3,18,3, FILE IN BUFFER - CL’
0B T W31, 70 7,6,35,7 ‘ DB ‘Q0SE FIRST ©,3,64,3,239
DB 6,67,7 (< 7,6,8,3,52,3
OB ~ RET 7,6,4, QPEN”, 4,35 EDSS: DB 3,15,3,’DISK PROBLEM. WANT’
0B 3,37,3,239 DB * FSC ERROR? (Y/N) 7 ,6,7
DB ©?,3,64,3,239
DSP3: DB 20, TEXT 7,4,8,° ©,6,3
DB 3,23,3, EDIT FILE BELOW -~ EDSé: DB 3,25,3,"BAD FILE NAME’
DB 3,52,3,46,72,” RET 7,6,4 [2):] 3,44,3,239
DB © TEXT’,6,7,3,0,12,239
EXSTR: DB 6,2,12,239
DSP4: DB 28,/CLOSE ,4,8," 1, 6,3
DB 3,25,3, CLOSING FILE’,3,52,3 |
0B 4,8, “yé,4,” CLOSE’ ;BEGIN DATA STORAGE - order is important'
b
DB 3,64,3,239
, FCSsSP: DW { ;FCS stack pointer
DSPSA: DB 19, 7BAUD W 6,72,7557,6,3 Fg: Ds 1 ;File openscl flg
LB © SELECT: //!17/1/722!/“8 "MCHAR: DS 1 j¥max char allowed
B 17,727,22,7158 ~,17,737,22 INBFPR: DS 2 ;®input routine
bB ‘3ee ©,17,747,22,7120@ “,17 FpBt1: DS 38 iFile para block!
OB '57,22,72480 17,767 ,22 INBUF: DS 128 j*input routine
DB ‘4880 ‘,17,°77,22,79400 *
[6]=] 6,72,7<<",6,3," BAUD’ END SOURCE
DB 3,64,3,239
DSPSB: DB 28, PRINT 7,6,8,” “,6,3
DB 3,23,3, PREPARE PRINTER -*
DB 3,52,3,6,72,” RET ’,6,4
DB © PRINT’,3,64,3,239
Entry of a file specification is the
first step to file access. The parts of
Parsin the file specification may be "poked"
g p Y P
Any use of a disk file involves a file into the FPB one part at a time, or you

specification which must always contain,
at least, a file name of one to six
characters. The additional parameters,
which you have already used many times,
are optional; these are the drive number
(CDO0:, etc.), the file extension (.BAS,
s0A, etc.). When these additional para-
meters are not supplied by the program-
mer, the operating system supplies
"default" values. These parts of the file
specification are needed by many other
file handling routines, so they must then
be completed into a place easily identi-
fied--the File Parameter Block.

may type in any or all parts of the file
specification string (such as
0:NEW.SRC;04 but always at least the file
name!) and let the operating system
"parse" it and place each parameter into
the FPB. The guide to accurate parsing is
the order and punctuation of the specifi-
cation. In fact, if the order and punc-
tuation are incorrect, the parsing will
fail, which is why FCS> is so ruthless if
you don't do it right.

There are several system routines that
will parse a file specification string,
supplying default values where they are

7

missing. 1{hese are PFSPC, which parses
anv file type with a default type of vyour
choosing; PSFSP, which looks for a ".SRC"
file; PPFSP, which looks for ".PRG"; and
PNDSP, which looks for a 'null', or ".
" in the file specification. PFSPC is the
all~purpose routine.
Before calling PFSPC,

prepare the following:

you need to

a) A file specification string, lo-
cated at a specific address in
MEmOTy .

b) A string containing the three
letter file default extension
period!) located at a specific
place in memory.

c) A File Parameter Block, located at
a specific place in memory.

d) The address of the file specifica-
tion string in the HL registers.

e) The address of the default file
extension in the BC registers.

f) The address of the File Parameter
Block in the DE registers.

(no

If NAMST is the address of our specifica-
tion string ("NEW;02"), DFLT the address
of our default type string ("SRC"), and

FPB1 the address of our File Parameter
Block, Listing 1 shows how it would work.
If the parsing has been successful, the
Carry and Zero flags will be reset (i.e.
= 0). Carry will be set if an error
occurred, and Zero flag will be set if no

version number was included in NAMST. A
missing version number need not produce
an error, however. The BC registers will
hold any FCS error code, DE will still

contain the FBP1 address, HL will be
unpredictable, and the accumulator will
hold the version number (the default

";01" if none was given in NAMST).

The File Parameter Block will now have
the following slots filled:
FDRYV, the drive number; FNAM, file
name; FTYP, file extension or type; FVER,
version number, and FHAN, file handler
routine. This latter is the system
routine selected by the computer for the
appropriate kind of disk drive named. [3]

At this point the computer has done
nothing but verify a valid file specifi-
cation and place the parameters in the
FPB. No access to the disk directory has
yet been made, and the computer does not
yet know if the file exists, or if there
is room for it on the disk currently in
the drive.

Entesing the #ile Name

We must provide a means for entering
the file name, and we may use the input
routine and INBUF to hold it, with the
address of INBUF acting as NAMST in our
example above. If we want to limit the
entry to the file name only, we might
choose to limit the input to six charac-
ters ("user-friendly"?) and

let parsing
supply the rest of the file specifica-
tion. This is an elegant procedure but

not without its complications.

When the file specification is parsed
by one of the system routines, it will
examine for drive number, name, extension
and version, using the punctuation as a
guide and inserting default values as it
goes. If all the parameters are not given
in the specification string, the file
parameters that are given, however few,
must be marked at their end by a carriage
return, or by another character whose
value is less than 20H, which will signal
the parsing routines to end their search.

Otherwise they will continue forever. So
if our file specification is to consist
of the file name only, some provision

must be made for adding a CR to the end
of the name, and so . our storage space
must have room for at least seven charac-
ters. (Note, too, that upper case charac-
ters must be used for the file name.)

In our program, INBUF is used for the
disk file buffer and the text buffer,
both. As a text buffer it serves to hold
the file name entry and the text file we
have created. In order to differentiate
between file name and text, we use the
data storage address, MCHAR (Maximum
CHARacters) to flag the difference: 6 for
a file name entry, and 128 for text
entry. No carriage return is entered in
the buffer if text is being stored. But
look at INPUT4 in the listing. If MCHAR
does not hold 128, the maximum text char-
acters, this subroutine will add a CR to
the string, assuming it is a file name.
This way our parsing will be valid. You
will add some lines to subroutine OPENA
that put 6 into MCHAR before parsing.
{(See Listing 3.)

Program Modules

When you have assembled and tested
Listing 2 and are certain it is running
properly, insert the modules of Listing 3
as directed. Unfortunately, they will not
access any disk files yet, but we will be
ready to do that when we continue. You

may run the program and enter a file
name, which will return you to OPTION.
ERRORG6 is a file error trap of your own.
It may be displayed by entering a bad
name, such as "$TEST" or "......". (The
file name cannot begin with non-alpha-
numeric characters. Can it be all num-

bers? Try some different combinations and
see.) INPUT will not accept a seventh
character, but it doesn't abort; rather,

it waits to see if you have any further
editing to do. Only pressing RETURN will
terminate the name entry.

The modifications to the input routine
are for fun--not necessarily improve-
ments. The cursor movement procedure here
is handy for correcting only one letter,
early in the text, while permitting you
to see the entire buffer contents. Some
of the material in Listing 2 is not yet
used, but will be accessed later. It will
do no harm to enter the entire listing

now.

As a final word, if you have had
difficulty getting started in writing
assembly language programs, either in

formatting them or learning to apply the
instructions, it is invaluable to set up
a routine such as Listing 2. After typing
all those LXIs and CALL OSTRs with a few
other instructions to round then out,
your proficiency will increase rapidly.
For many of us, it has been true that the
initial "terror" has given way in an
unexpected moment, and suddenly we were
programming with great ease.

In the next article, we will proceed
with file opening routines and learn how
to create a new .SRC file on disk.

NOTES

1 If you examine the ASCII listing in
your programming manual you will find
only the carriage return listed, the
others being assigned to colors, plot
functions and so on. This assignment
is meaningful to your CRT display
only. A printer will interpret these
numbers differently, as we shall see
later on.

material is
"ginger-

2 Such non-computational
sometimes referred to as
bread", meant as a disparaging term.
It is, nevertheless, what makes com-
puters useful. An option line lets the
operator select or escape from a
function offered by the software. Its

design is very critical for
acceptance and efficiency,
termining--alone--whether
sells or not.

operator
often de-
a program

If you have a 3651 computer, this
might be a 5" or 8" floppy disk (MD,
DM, FD.or DF, single or double sided
disk types). @&

LI

1

2)

in module

3

PARSE : LX1I H,DFLT ;set parameters
LXT D,FPB1
LX1 H, INBUF
CALL PFSPC jparse file name
JC ERRORé ;print error message
RET

4> add to STRING STORAGE space:

DFLT: DB

STING IIIl: PARSING MODULES

Add to EQU section:

PFSPC EQU 1 4ADH ; (3877H)

Add following to replace “CALL GTCHA’

labelled OPENA:

LX1 H,MCHAR ;set maximum char
MV I M, é ;7 to six for name
cAaLL INPUT
caLL PARSE

Add this module:

“SRC”

;LISTING [V: Add to SOURCE.SRC

1For EQUATE area

3

;Add these modules after

CLOSEA: CALL FSO jcheck if file open
CALL BLLN
LXI H,DSP4
CALL 0STR
)
LXT, H,FPB1 jinitialize new
CALL INSEQO ; file
CALL WRITE jwrite data
LX1 H,FPB1
CALL CLSEQO j;close new file
XRA A schange flag=8
STA FS
3
JMP SETUP srestart
CREATE: CALL RESET jreset drive
Lx1I H,FPB1 sput "new® file
MUI M, 1 ; code in FPB!
CALL OPEN

- v9.88/V8.7%9 shown,

vé.78 in parentheses
CLSEQRO EQU 15&4CH s (3138H)
EMESS EQU 8AD&H 3 (262DH)
GTBYT EQU 1682H 3 C322CHD
INSEQQ EQU 151DH 3 (38E7H)
OPEN EQU 11E1H 3 (2DABH)
PTBYT EQU 1480H 3 (324AH)
RESET EQU @2B48H 3 C28ASHD
RWSEQRI EQU 14FCH 3 (3B8C&H)

routine OPTION -

ERROR1 :

; read

ERRORS:

FSQO:

NMDSP :

XXS:

OPENA:

Jc
LX1
MU
CAaLL
caLL
JMP

LX1
CaLL
caLL
LXI
caLL
CAaLL
LXI
CAaLL
JMP

;In ERRORZ2 and ERRORA4,

ERRORS yFCS-error

H,FS jset “file open”
M, 1 7 flag

NMDSP ;display name
BOX ;draw text window
CLBF ;erase buffer
H,EDSI sposition cursor
0STR ;7 to display
EMESS ; FCS error
H,EDS1A ;print new

OSTR ; message

GTCHA

H,EDSIB ;erase error
0STR

OPTION

add a last line to

“JMP OPTION- .

CAaLL
CAaLL
LXI

CALL
CaLL

LDA
CP1

JINZ
RET

LDaA
CPI1

JINZ
RET

LK1
CALL
LX1

RESET ;expanded routine
RDLN
H,EDSS ; FCS problem”
OSTR
GTCHA jwalt for decision
8% jis it Y0 ?
ERROR1{ yves! print it
OPTION syno! return
FS scheck file closed
4}
ERROR4
FS ;check file open
1
ERROR2Z2
H,WRFL ;print file rname
0STR
H, INBUF ; from buffer
AyM
aDH ycr?

;¥es, return
LO ;jno, print it
H
XX5
FSC jcheck file closed
H,CLR
0STR
BLLN
H,DSP2
0STR
H,MCHAR ;set max chars
M, 3 to six
INPUT ;get file name
PARSE ; and parse it
H,FPB1 jset ‘existing”
M,8 ; file mode and
OPEN y try to open
CREATE j;doesn’t exist
NMDSP ;OK! display name
H, INBUF ;put address of
FPB1+32 ; buffer in FBUF
H,FPB1+34
M,128 ;length in FXBC
H,FPB1
RWSEQI ;set file pointers
BOX ipaint text box

LXI H,FS
MUT M, 1
CALL READ
P
JMP OPTION

;In routine PRINT,

change the last

;joet file status
; flag to “open”
ifile into buff

;for next command

line

; from “JMP ERRORZ’ to “JMP OPTION’

READ: LXI H,DSP3A
caLL 0STR
LX1I H,FPBI1
MUT B,128
XX9 3 caLL GTBYT
caLL LO
DCR B
RZ
JMP XX9
TEXT caLL FSO
caLL BLLN
LX1 H,DSP3
caLL 0STR
1
LX1I H,MCHAR
MU M, 128
caLL INPUT
s
JMP OPTION
WRITE: MVI B,128
LX1 D, INBUF
LXI H,FPB1
XXA 1 LDAX D
caLL PTBYT
INX D
DCR B
RZ
JMP XXA

;For data storage area,

WRFL: DB
DB 4,7,239

sposition cursor
7 in text box

sjcounter
jprocess one byte
sprint it

jwhen done
;for next one

;check file status

;set maximum chars
; to 128
; and get data

;then return

s;count byrtes
;point to source
;put brte 1n Acc
ywrite it
;adjust pointer
s and counter
sall done!

;90 for next one

4$,4,3,38,8, FILE OPEN: -

sLISTING V: Add to SOURCE.SRC

s For
H vé.78

ADHLA EQU

CRTSET EQU

ESCIH EQU
SlouT EQu

EQUATE area — v%.88.v8.7%9 shown.
in parentheses

194EH ;(3518H)
@1EBH ;v9.g0
$CB20FH) uB.79
§(37CAHY vé.78
BS3aH ;(2420H)
{7FPH 3 (33C3HD

:Add these modules after routine OPTION -

BASJIMP: LX1 H,EXSTR
cALL 0STR
LX1I H8299H
XRA A
MOV M,A
INX H
SHLD 88D4H
MOY M, A
INX H
Moy M,A
INX H
SHLD 80D&H
LXI H,S81DFH

JMP 1F2CH

;clear screen

3 green color &
; exit BASIC, by
; M.A.E. Linden,
3 FORUM INT L

7 V1 ,#5-8 p74

R |

LX1 H,DSPSB
CRTJMP: LXI H,EXSTR j;exit CRT mode CaLL OSTR
CALL 0STR §
JMP CRTSET CAaLL GTCHA iprepare routine
iIf you want to send setup string, do it
ENDIT: CALL Fsc ;chk fite closed ; here with LXI H,3ETPR & 210UT. See text
CALL BLLN ; for “end’ T T T T T T T T T e e e e
Lx1 H,DSPé CAaLL BLLN
CALL OSTR _ LXI H,DSP5C
CALL GTCHA jwait for Key CaLL 0STR
et T T T T T T T T T T T T T T T T T T e e e e e e e e
L,T;’I %smp ;717 =FCS MU T C,s4 iset chr/line ctr
EP' s s —BASIC MU'T E,8AH ;send cr &% 1§ to
le oS e i = L CcaLl St1ouUT ; cet printer hd
e o R MU T B,128 ;5et total chars
- P H =Lk LX1 H, INBUF ;point to text
) Jz CRTJM WX & MO E,M imove In char %
jTT T T T T T TS ST T T T e s T e e CalLL SiouT s oprint it
JMP OPTION DCR C ;1ess | per line
MU A,C
FCSJMP: LXI H,EXSTR j;exit FCS CP1! o} cline full?
caLL aSTR z ’
T Z XX8 ;ryes! index paper
LHLD FCSSP jrestore stack DCR B ;,no,text fin?sr‘:ed?
SﬁHL » JZ XX7 ;ryes! finish up
T;é :é%1 H INX H ;no, point to next
R : JMP XX ; char and get 1t
PRINT: CALL FsO icheck file open XX7 MUT E,8DH ;carriage return
9
Call BLLN CALL s1ouT
ETI H:D:PSA MUI E,0AH ;line feed
CALL DSTR CALL S10UT
JoT T oo s T T o ST ST s e s e MUT C,s4 ;for next 1line
CalL GTCHA ;aet baud number RET ;9o get it
SuUl a30H ;convert to hex
LX1 H,BAUDTB;point to table e
CAaLL ADHLA ;index painter iddd to string storage -
My AM ymove code to A B
ouT S iput it in baud BAUDTB: DB BOH,81H,82H,84H,08H
; rate generator DB A10H,020H,0408H
o
caLL BLLN
Author! Author!
Keep them article submissions acomin',
folks. You can't imagine what it means
to us to have the postman bring us some
material for Colorcue. We encourage you
to put your work on disk, if you can,
and if you wish. We can handle Compucolor
disks and also CP/M 8" (single or double
sided, single or double density). Plain
ASCII text files are just fine. Wordstar
files are OK, too. CompuWriter files
might present little problem, but if
that's all you've got, send them in and
let us worry about it. We'll return your
disk, of course. (Although sometimes
there is an embarrassing delay in doing
so.)

11

Two Handy Disk Utilities

by Tom Napier
12 Birch Street
Monsey, NY 10952

I have two utility programs that have
gotten me out of more tight spots than I
care to remember. Since both are quite
short, the printed page rather than the
disk seems to be the medium sharing
them.

The first enables me to display the
contents of any block on the disk, edit
it, and rerecord the block con the disk. I
have found this to be invaluable whenever
a disk read error occurs, since, after
ltoading the program, one can keep on

for

reading the faulty block until an error-
free version turns up. Rewriting the
bilock will cure the read error in wmost
cases that aren't caused by physical
damage io the disk. (Most EDCS errors -
ed.)

I also use the program to locate
files when a {ile erasure has aborted,
and the directory no longer correctly
indicates the disk content. Its other

major use 1s for minor editing of text or
source code. If one has typed a colon in
place of a semicolon, it is much quicker
to edit a long source file by editing the
block directly than to reload the editor,
read the file, correct, and rewrite it.
it alsc saves disk space, since the en-

tire file is not rewritten.
The program (Disk Block Examiner and
Editor, Listing 1) works as follows. It

asks if you want the display to be "ALL

HEX?". Type "Y" and it will display everv
byte in the block in hexadecimal no-
tation. Type "N" and the output format

will show all printable ASCII
a period before a character indicates
that it is lower case, unprintable char-
acters are displayed in hex form.

12

characters;

Next the program asks for the block
number. Enter this in hex form as it
appears in the directory. After you type
a valid block number, the program reads
and displays the block. ¥You then have the
option of typing another block number,
rewriting the block displayed (ftype "W"),
or editing the block (type "E"). Beware!
Wo trapping is present to stop the user
from typing "W" before any block has been
displayed.

On entering the Edit mode. you have
the option of changing the character at
the current cursor position (iwc red
carets under a byte in the block).Typing
any printable character other than RETURN
will cause the editor to replace the
character over the cursor, and advance it
cne position. Typing two characters and
then RETURN will cause the two charact
to be taken as a hex byte, and
replace the indicated original.
move the curscr by typing "MM", and an-
swering gquestions for X and ¥ coordinates
of the mew cursor location. X runs frewm 0
to 15, and Y runs from 0 toc 7. The
columns of the 16 by 8 byte array are
labelled in hex, but the question should
e answered in decimal form. Y counts
down from the top (0) row. After entering
coordinates, the cursor is placed under
the desired location, and the program
returns to Edit mode. Press RETURN to
return to the block number mode, and "W"
to rzwrite the modified block to disk.

A practical note -~ thisz program
197 byies of RAM, a 128 byte buffer, a 1
byte fiag, and a 68 byte machine codec
subroutine. In the program as printed,
these occupy locations in RAM between

this will

[%

B

nes

R

5F00 and 5FFF. If you don't have RAM
available at these addresses, you will
have to allocate part of BASIC's RAM area
as buffer space. This program uses the
BASIC CALL instruction to call a fast
decode and display routine.

Variable A points to the CALL rou-
tine, B points to the CALL vector, C to a
one byte flag location, and D points to
the block buffer. A, C, D, and E will
need to be changed if RAM between 4000H
and 5FFFH is not available. (Or write Tom
Devlin for an 8K add-on RAM board ~ ed.)

How often have you had trouble
reading a disk and on checking the direc-
tory found things like a start block of
FFEF and despaired of ever being able to
read the disk again? Have you copied a
disk and wanted to change its title? Have
you ever wanted to change the start
address of a program?

The Directory Edit Program (Listing
2) gives you a complete directory editing
facility. You can even hide a file by
changing the free space location. The
program is very easy to use. It asks for
a file number (files are numbered con-
secutively from the top - it's up to you
to count them from a DIR command). A file
number of zero selects the disk title.
After selecting a file number, the screen
will display the existing directory entry
and request changes, parameter by
parameter. To change a value, type the
new value in hex form, or just RETURN if
there is to be no change. The corrected
entry will be written automatically and
you then have the option of selecting
another entry or returning to BASIC. @&

=T REM
£ REM
T EEHM
{00 A=
110
120

COPYRIGHT 19:%
UERZION £r1-82

240641 B= 33282 0= 24570 0=

T. M. HAFIER

FOKE C.1:REM HESX FLHG
175 =0= iY0= HE= Y= (REM
120 PLOT A 2 1215 10, 18010
5 FRIMT
140 THPUT "RILL HEXT " d3%
150 TF 2= "YUTHEH POKE .0
160 GOEUE

165 IF M= "WUTHFERM 234
167 IF HE= "B"THEM EH[
170 FLOT 172,274 PRINT
180 H== Q:¥= 0:MF= MN¥
130 GOSUE 200 REM LISPLAY
2320 G070 180

240 PLOT 27 .4 PREINT
250 GOSUE 00 PRIMT
ZEOOFOR Is= 0700 10000 HERT
270 o070 10

00 REM BLOCE EFDRIT
F10 GOsUE g

70 THRUT "HEW BYTE OF MOUE CURSOR
ZI0 IF Q= "OUTHEM 1ai

240G IF 9F= "MMUTHEW GOSUER S0 THPUT
IR0 L= LEH 00

IED TF L= JTHEM HE= R CQF>
IV0 OBl= ASC CLEFTE (9,100
N JF Bi= 48THEH HMB= B2+ I7:

RIS

REOUTIHE

CGOT
A=

DISE RLOCKE FSAMIMER AMD EDITOR

FOKE B. 195 FPOKE B+ 1. 0:FOKF B+ .5
ELTTORE CURSORE

*DISE BLOCK EAAMIMER":PRIMT (FRIMT

ELIT CEx OF MRITE

"REF "N$P SFOO-SFTFFLOT 57,57,

SFOO-SFVF" FPLOT 27,37
"E_OCKE, REWRITTEHY

CIM
"HEW CURZOR cx,%0 Mok
S

CRIGHTE (0F.120
GOTO SO0

Chis "oHEIF HE= "EUTHEN 340

.10

ToOE

OG0T S50

13

14

330 Bl= Bi- 48:1F Bl> 2THEN Bl= Bl-
Bz- 43 IF B2>

440 B
410 H
SR
510 A

5311
540

P
o=

9THEM BZ=

B= 16+ Bl+ BZ

EM UFDATE ELOCK
b= D+ X+ 1% Y
520 POKE AD, NE:

#= R+ L IF k=
IF %= E&THEM Y= 1

1ETHEN =

S50 GOZUR 800

580 HOTO Za0

EM UPDATE DISPLAY

210 PLOT 2, 0.3

£20 PRINT " 0 1 2 3 4
330 PLOT 3, 0.5:0= CALL <0

gu0 R

240 PLOT 6. 1,3,4% K6, 2% YO+ 5,32
8250 PLOT &.1.3.4% X,

2F e 6,94,

g2ed =0= Yo=Y
890 RETURH

ann
1000
1G10G
1020
1030
1040
10510
1061
1070
1080
109G
1100
111¢@
1124
1130
1140
1150
1161
1194
&3000
AR
&3070
63030
630410

#150

PLOT

REH

DATH
DATA
DATH
DATA
DATA
DATA
DARTH
DRTA
DARTA
CATA
DATH
DARTA
DRTA
DATH
DATH
DATA
LRATH

I= 0
READ Hx#: IF H¥s= "

3.0.22,11RETURN
BLOCK DISPLAY ROUTINE
21.00.5F

IALFRLSF

A7, FE.CR.3E. SE
FE.=0.02.3E.5E
FE.20.0A.3E.5E
FE.€0.3E.20.DR. 1E,SE
JE.2E.CDL 92, 33
FELDR.ZVLSE
Ee,DF . CL. 92,33
Ch,BZ.24, 20, B2,
20,70, E&. OF . CCL 2B
vl FE, 20

£2. 03,58

Co

0. 98,33
CZ.Z2R.5E
it

L

RN

4
PN

ay

=] =

Bz2-

=¥+ {

on
S

- T

94,62

Mo "THEM RETURM

23246,
=
£

=J
[anl
)
I
[anl

C1= ASC cHXKF»— 48:IF C1:> 3THEM Ci= C1- V¥
C2= ASC (RIGHT# cHH®.123- 48:1F C2» 9THEN Ci= 02~ 7
FOKE A+ T.1e% Ci1+ C2:71= I+ 1:GOTO 63010

REM

155 REM

160

DIRECTORY EDRIT PROGRAM 11-10.-87

COFYRIGHT 1933 T. M.
CLEAR 200

190 FLOT 12

200

205 PLOT 12.10.10

210 B=

220 HN= F-~

230

260
265

INT CFs &2

% R

IF B> 9THEN &= B+ 7
250 B#$= CHRS$

LB+ 43

2?0 FF$= nn :FT$= nn

NRFIER

INPUT "SELECT FILE NUMBER ":F

PLOT 27,4:PRINT "REA "B#" SFOO-SFPF":PLOT 207.%27
IF F= OTHEN 1000:REM EDIT DISK TITLE

D

Al

280
2310
300
Itn
320
B4
3490
50
J60
80
4090
420
440
460
4910
500
Sia
520

[el

T
AL

540
S50
S60
570
5¥5
R0
390
595
&G0
510
520
530
640
53{
=
A7
B2
&30
L]
oS
ra g
r2n
73
g
v40
oo
TEQ
g
7R
e
aon
210

C ez

830
S
210
Va1

299

S= Z21% W+ 24321

FOR I= 2TD 7

FF$= FF#+ CHE$ (PEEK @S+ 112

NEXT

FOR I= 2T0 10

FTe= FT$+ CHR$ (FERK (S+ L2

NEST

F= 1:G0SUE 1200AMNE= =$

F= 11:6GOSUB 1300 LUM$= =%

P= 12:G05UB 1200:SB$= Y&

F= 14:G60SUR 1200:528= Y'$

P= 1&6:G0SUB 1900: LB$= X¥

F= 17060808 1800 LAE= Y$

P= 19:G0SUB 1200 SA$E= Y$§

FRIMNT :FEINT "RTTEIRUTE "ANE

PRIMT :FRINT “"FILE HAME "FF#$

PRIMT :FRINT "FILE TYFE “FT#

PRINT :PRINT "UERZION HO. "LIN$

FRINT :PRINT "START BLOCE "CB$

PRINT :PRIWT "SIZE RESFS

PRINT PRINT "LAST BLOCK "LE#

PRINT :PRIHT "LOAD ADDRESS "LA$

PRIMT :PRINT "STHRHET ADDRESS "ZR%

FRINT :PRINT

INPLUT "CHARMGE THIS ENTRY? “.G#%

IF (%= "Y"THEN &20

FLOT 28,11

INFUT "READ ANOTHER EMTEYT ".0%:IF Q8 > "HYTHEM 190

EHD :REM ekokddcrmks

INPUT “"CHAMGE ATTRIBUTE ".GiE:IF OF{ > “"0"THEM ANE= 0Ff
IMFUT "CHAMGE MAMET ", 0% IF Q< > "0"THEM FFE= Q%

INFUT "CHAWNGE TYPFEY "“:0$:1F GF{ > "0"THEH FT$= (f

THRUT “CHAMGE UERSIOMT “:08$:IF QF< > "0"THEN UHE= 0%
INPUT "CHAMGE STARARET BLOCKT "R IF O0%{ > "0"THEN SBE$= Q¥F
IMPUT "CHARHGE SIZEY "o IF 2% > "0"THEM =504= GF

IMFUT "CHAMGE LAST BLOCKY ":Q%:1F Q%< > "0"THEMN LE$= 0%
IMPUT “CHAMGE (ORC ADDREZZ? " G$:1F @34 > "0"THEM LA$= 0¢
INFLIT "CHANGE STHRRT ADDRESST " 0% IF G$< > "OYTHEM SH$= (%
FF$= LEFT® (FF&+ " LR

FOR 1= 1T &

POKE =+ I+ 1,ASC CMIDE (FF$,1.123

MEXT

FT$= LEFT$
FOrR I= 170 3
POKE S+ I+ 7.RASC CMIDE (FTH.T7.105

HEXT

F= 11:x%= UN$:GOSUEB 1700

P= {2:Y$= SBE:GOSLIB 1600

F= 1d:Y$= 37§ G0SUE 1600

P= 1faixE= LBEGOSUR {700

P= 17:%$= LRA%:GOSUR 1&00

P= 19:¥$= SAFGOSUR 1500

= 1y Rd= AMEGOSLR 1700

FLOT 27 4 PRINT "WRT "R SFOO-SFYF":PLOT 27.27
FEIWHT 2R THT

SOTO EN0

FEM Ford ek e

1000 REM DISK TITLE
1010 DT¢= "

15

1020
ER A
10470
1650
108D
10710
1080
1910
11
1105
1110
1124
1150
1140
1593
10
1e1i

IF W S
0 POKE S+ Foied Hi+ K2

S= 74E2

FifF T= 7T 11

[T$= DT$+ CHRE (PEEE (254 T2

HE=T

FRINT PRINT "[IZSK MAME "ITE
FRIMT (FREIHT

INFPUT "CHAMGE DISE HAMZY " 0%

IF Q% > "Y"THEH 595

THFEUT "HEW DIZE HAME @& IF 0% > "0"THREH
[Tk= LFFTE (DTHE+ " ol
FiOR T= 170 140

FORE S+ T+ 1.RSC JpIDE (DTE. 1,000
HEAT

GOTD 200

FEM #k HEX TO WORD +#

HE= RIGHTE OWE. 2 GOSUR 1700

F= P+ 1

wFS OLERFTE Y. 20 GOEUR 1700

I0RETURN
I3 REM o+ HE: TO RBRYTE ##
0 1= ASD (LEFTE o¥$. 103~ 48

IF W1

STHEM ¥l= ®i- 7
D CRIGHTH CRE. 13- 48
HTHEM =%

1o

FETURH

3 REM HE LORE TO HEY #+

w= FEFK ¢S+ FOOGOSUE 1910
Y= NE

1A= PEEK ¢S+ P+ 10 GOSUE 1910
I OYE= NE+ VE

i RETURH

1910 =
1920 =

19320
1940
{950
19640

s REM % BVTE TO HEX

u= CHRE (M4 48

RETLIRH

S

Cueties

10 C(9)
20 C(1)
30 C(2)
40 FOR Y= @TO 127

50 PLOT 6,C(Y- 3* INT (Y/ 3))
60 pPLOT 2,250,0,Y,127,255

79 NEXT

1
7
4

16

Screen Memory — Problems and Cures

by Tom Devlin
3809 Airport Road
Waterford, MI 48095

I have noticed a few references to
screen memory problems recently and while
these problems are usually simple to fix
information on how to diagnose and repair
them has been lacking. The following will
give a quick overview of the operation of
the screen memory as well as examples of
some of the more common problems and
“heir solutions.

As most of you know, the screen memory
has nnly 4K of RAM but occupies 8K of
memory space. This 8K area runs from
6000-7FFFH and is divided into two
halves, ‘fast' (6000-6FFFH), and 'slow'
(T000-7FFFH). If the 'slow' memory is
addressed the CPU waits until the 5027
CRT Controller chipr iz finished with a

character belore accessing the screen
memory; addressing the 'fast' area lets
the CPU gazin acczss at once. This is

arcbhably only of academic interesty i

mention it only 1o point out that there

is in fact a difference.

sCresn nemory proper consists of 8

! 4027 dywamic memory chips {(UD4-
Eacli c¢hip handles 1 bit of the 3

character/CCI data word.

The most commen problem is random dois
of color anpearing cn the screen. This is
the 5 volt power supply
The 4027 memory chips

usually caused Gy
belog a little low.
s

very f

are 1ssv aboul the 5 volt level and
setting the supply to exactly 5 volts
with a digital wvoltmeter should clear

tuings un.
A bad memory chip can cause scome weird
‘ngs to happen. Characters can switch
or <hange te an entively different

er. “ou mav have bleocks of color
ill not crase or 2 character may
or refuse) tc blink. This is more

than just annoying, it disables your
DELete, COPy and, on V6.78, DUPlicate
functions because these commands use the
screen memory as a temporary buffer.

Finding the chip responsible requires
nothing more than a knowledge of the
ASCIT character values and the CCI code.
if, for example, a green character (PLOT
6,2} changes to cyan (PLOT 6,6) it must
have added blue (PLOT 6,4). Since binary
bits add up in 1,2,4,8,16,32,64,128 order
within the data word,you know that the
third bit has turned on. Which chip con-
trols the third bit? Simple;y the chips
are mounted on the logic board in the
same order as the bits in the data word
(UD4 is bit one, UD5 is bit two and so
on). A little counting makes it obvious
that UD& is the culprit.

Characters changing can be diagnosed
ihe same way; if a space (ASCII 32) sud-

denly becomes an exclamation point (ASCII
33) UD4 (vit one) is at fault.
Once vyou have identified the mal-

functiioning chip you will have to find a
replacement. This isn't easy; the 150ns
4027 memory chips originally used are hard
to find and even harder to pay for. 1
have discovered that the more readily
available {and far cheaper due to higher
production volumes) 150ns 4116 (16K by 1)
will plug wight in. The 4116 chips are
also not as sensitive to the 5 volt sup-
ply as the 4027 part. (At this point some
of you are thinking "if we have all that
extra memory in the 4116 chips is there
any way of using it?". Sure is, assuming
thet there is any interest (drop me a
line] next time I'll show you how to add
another page of screen memory.)

Most of the problems due toc bad memory

17

chips will show up as one bit (of the
possible eight) being erratic. Another
less common problem involves entire rows,
columns or sections of the screen going
berserk. This is usually caused by one of
the three 74S153 address multiplexers
UE8, UE9 or UDI12. There is no handy one-

to-one relationship between these chips
and the problems they cause; unless you
can read schematics and have access to a
scope the best bet would probably be to
replace them one at a time until the
problem goes away. @&

Unlagsified Advertising

We are offering for sale the following

machines:

(1) Intecolor 8063 {(I) CP/M, hi-res,
dual 250K floppies plus word pro-
cessing software. Tube & keyboard
need work. SN 20384. Original cost:
$9200.

{2) Intecoior 8001G with dual floppies,

modem port. Fair condition. SN
18974. (Floppies SN 41229.) Original
cost $1550.

(3) Intecclor 8900 with floppies and
word processing. Mint condition. SN

400644. (Floppies SN 41838.)

(4) 2 NEC printers. Condition unknown.
SN 541005053-7812
SN 541006301-7902

(5) ADDS 580 console.
A25519.

No responsible offer will be refused.

Needs work. SN

Bonnie Krypel

Inside Sales Coordinator
Apache Electronic Systems,
900 Jorie Blvd., Suite 124
Qakbrook, Illinois 60521-2211

Inc.

sk sk sk ok ok >k 3k ok ok sk sk 3k ok 3k 3k 3k ok ok K sk sk ok ok ok ok sk sk ok >k ok vk ok %k ok sk ok ok ok sk ok k

WANTED: Genesis III program. Will buy or
trade.

Maurice Adams
3621 Buffalo Rd.

New Albany, NY 14513

sk sk sk sk ok ok ok sk sk ok ok e sk sk oK KoK ok sk sk ok ok ok ok ok ok oK sk oK ok oK sk ok

FOR SALE: Compucolor IT V6.78

Two disk drives, deluxe keyboard, Assem-
bler, FORTRAN, Text Editor, Formatter.
Cost $3000, will sacrifice for $1500 or
best offer.

Andy Mau
5 Eldridge Street, Store North
New York NY 10002 (212) 431-1277

18

Tech Tip

by John Newman
PO Box 37, Darlington
Western Australia 6070

Since the publication of the article on
disk drive improvements in the Feb/Mar
issue, a couple of improvements have been
suggested. One is to reduce the 1000uF
capacitor to 47QuF in the motor run-on
circuit (Figure 3). The reasons are that

most 1000uF caps are too large to fit
under the disk drive cover, and it has
been found that some drives
intermittently misread, causing the usual
track 0 reset.

The other suggestions have to do with the
speed control switch. One user has fitted
a multi-turn pot to the front panel which
is connected in circuit only when the
switch is set to the low-speed position.
The normal speed is left at 300RPM. A
related modification is to use a spring
loaded switch so that it cannot
inadvertently be left in the low-speed
position. @

Tech Tip

by Alexander V. Pinter
P.O. Box 230
Columbus, GA 31902

The Compucolor Assembler program
(#990014) doesn't need the 20 disk
blocks allocated to it on the disk. The
last five blocks are "DS" type variable
spaces that are filled in by the program
itself at run time. To make the assem-
bler take up less room on disk, do this:

FCS>LOA ASM.PRG 8200
FCS>SAV ASM.PRG 8200 D7D

Now the program is smaller by 5 blocks
(and will load more quickly, too). @&

Tid-Bits for Compucolor

by Howard Rosen
Box 434
Huntington Valley, PA 19006

From my experience servicing the CCII
I have found an improvement over the
Maintenance Manual's procedure for pro-
ducing sharp color images. Enter CRT mode
with the key sequence ESC (CRT), BG ON.
The computer is in the CRT mode for
changing background color. Press CONTROL
(and hold) and Q (for red). Press ERASE
PAGE to produce a full red screen. Review
the screen for no other color. If re-
quired, make adjustment, provided you are
experienced. If you do not know how and
feel that you wish to try, please contact
me for instructions. This step is not for
the inexperienced. Repeat GREEN, YELLOW,
BLUE, MAGENTA, CYAN and WHITE back-
grounds. Omnce satisfied that each screen
was only one bright color, then continue.
Set background to BLACK and then press FG
ON for foreground color. Press CAPS LOCK
key to put the computer in graphics char-

therefore we are going to adjust the red
to combine with the green to produce the
best yellow possible. First observe the
center portion of the screen, approxi-
mately a four by four inch square. The
controls for moving the red up/down are
on the neck of the picture tube. Don't
touch anything other than those parts I
tell you. For that matter, please think
twice if you're not too sure. The red
knob on the white housing will move the
red up/down. Again, this adjustment is
only for the center of the screen. Press
the ESC Y N keys for vertical lines. The
adjustment is the round dial immediately
beneath the red knob we just used. Repeat
the above for the following sequence of
colors: CYAN, MAGENTA, WHITE. Did you use
the blue knob in the above procedures
when adjusting the blue color? Now that
the center of the screen is pretty well

acters. Set color to GREEN and press the adjusted, we are concerned with the
following sequence of keys: edges. Please refer to your maintenance
ESCY G manual for the adjustment of the
You will see green horizontal lines. upper/lower/right/left edges. The main
These lines are your reference lines. point I wanted to get across was the
Green, red and blue are individual change described above to get the job
colors. The other colors are mixtures of done better. A BASIC program to test the
them. Now we are going to review and trim colors all over the screen is given in
up the colors as best we can. Set the Listing 1. I call it "COLOR". &
color to yellow. Yellow is red and green,
Listing 1 5 PLOT 12,15,6,3

12 FOR I = 1 TO 1E6

13 FOR K = 1 TO 7

@ FOR J = @ TO 63

33 PLOT 3,J,M,6, K, K + 48

353 PLAOT 6,K

4@ NEXT J

42 M =M + 1

43 IF M = 64 THEN M = @

45 NEXT K

5@ NEXT 1

19

Blue Sky Dept.

by David B. Suits

Is it possible to enhance the color
capabilities of the Compucolor II? Not
being very far advanced in analog elec-
tronics, I will allow myself to speculate
on matters I know little about. The re-
sult will be, I hope, interesting enter-
tainment, even if more knowledgeable
readers find these ideas impractical.

Consider: The CRT color is maintained
by illuminating zero, one, two or all
three of three different colored dots on
the screen. We specify which dots will be
intensified by controlling three electron
guns. Figure 1 shows a simplified dia-
gram. If a magenta dot is showing on the
screen, that means that, at a particular
location on the screen, the red and blue
dots are being intensified, which means
that there are signals travelling to both
the red and blue guns. If you were to
reach inside the computer and rip out the
blue line, all magenta colors would in-
stantly change to red. (And any other
color which incorporated blue would
change: blue to black, cyan to green, and
white to yellow.) But it is inelegant
to change screen colors by ripping out
wires. A more sophisticated procedure
would be to place a switch in each of the
lines. Now, if those switches could be
activated wunder software control, we
would have a nifty new addition to the
Compucolor's color graphics capabilities.

(Some such on-off control is used, by the
way, in some Intecolor computers.)
Specifically, it would provide for fast
(practically instantaneous) changes of
some colors or color combinations. You
could, under software control, turn off
the red gun. Then anything you drew in
red would not show on the screen. Turn

the red gun on, and--poofi--there it
would be.
Let's extend the possibilities. Some

color CRTs (such as your TV set) allow
for more than eight colors. But how do we
get more than eight colors if we have
only three control lines? Easy. Open up
your computer and you will find some
trimpots, or variable resistors, one for
each color. These determine the intensity
of each color. Turning up the red pot,
for example, will brighten the red and
consequently slightly change those colors
in which red plays a part: yellow,
magenta and white. All we need, then, is
to put these trimpots under software
control. We'll still be able to display a
maximum of eight colors at one time, but
these may be any eight colors we wish.
My idea is to build two parallel out-
put ports which will provide 16 control
bits in all: 1 bit each for the on-off
control for each of the three guns; 4
bits each for controlling the intensity

Figure 1

CRT CONTROLLER

control, address, data

of each gun; and 1 unused bit. (See
blue
green CRT
red
sync, etc.

20

Figure 2.) This gives us 1§ intensity
levels for each primary colce. That's a
choice of eight colors out of a palette
of 4096!

Will it be easy to implement? Well,

the on-off control for each primary color
might be arranged as an AND gate just
beyond the CRT controller chip. (Figure

surprised fo learn that there is =.me
simple chip that could select th=z 1o
ievels. Omn the other hand, the voltage
levels there might be too high to be

easily dealt with. Or perhaps the scheme
suffers from some more fundamental flaw.

There's your challenge for today:
either built it, or else tell the rest of

3.) The control of the intensity is us why it's impractical. @&
beyond my abilities, but I wouldn't be
Figure 2 PORT B
bit 7 6 5 4 3 2 1 @
(not
blue jgreen| red used)
On—Off Control intensity blue
PORT A
7 6 5 4 3 2 1 @
intensity green intensity red
Figure 3 PORT B 4,
(low) 7
PORT A 44
(high) 7
PORT A . _ 4, e
(low) /
4
PORT B é
(high) ‘
5 %
4 — x |
- A —1 0 blue
""\‘ P green CRT
Y— CRT CONTROLLER .
control, address, data -—-—/
- { 7 red
e)"—““
sync, etc.

21

Bar Cursor

by F M Good
(Reprinted by permission
from CUWEST, Aug, 1982)

The BAR program is a machine language
program which allows input to a BASIC
program to be done via a coloured bar
which the user moves up or down across a
list of selections printed out by the
BASIC program. When the user has posi-
tioned the bar on the selection he
chooses, he presses the RETURN key and
program execution returns to the BASIC
program.

The subroutine is the
function:

Y = CALL(X)

accessed by

where X is the top left hand memory posi-

tion of the list, and Y is the number of
the chosen selection.

Before executing the Y = CALL(X) instruc-

tion, the program must POKE into the

third byte of the subroutine the number

of selections in the list. The printed

list must follow the following format:
(1) For best results, it should be
printed in white.

(2) There must be four spaces in front
of each selection in order to
allow for the arrow. @&

ORG 0DOOOH

START: DI
DCR B
SHLD

XCHG
SHLD

REGTMP1
TOPPOS

XCHG

XRA A

PUTBAR: MOV H
MOV L

MVI M

INX H

MVI M

INX H

MVI M

INX H
M

H

M

H

M

H

H

H

A

MVI
INX
MVI
INX
MVI
INX
INX
INX
STA

v

W1

CCTMP |

LOOPPUTBAR1: MVI [
LOOPPUTBAR: INX H
MOV A
ORI 0

- X

0100000B

22

MVI B,20 ;No. of selections in list.
;B=counter for maximum no.
;of movements down.

;Store HL.
;Store D - position of the

stop selection.

,D ;Get position of bar
JE ;from DE into HL.
! +Put in red arrow.

;Temporarily store A
sA=no.

.3 ;Put in cyan background (bar).

of current selection.

;Set background to cyan.

LOOPGETKEY :

LOOPSLOWGETKEY:

UP:

DOWN :

MOV
INX
MOV
CPI
JNZ
DCR

LDA
MOV
LXI
DCX
MOV
ANA
JNZ

*# CHECK FOR KEYS *¥

MVI
ouT
IN
CPI
JZ

MVI
ouT
IN
CPI
JZ

MVI
ouT
IN
CPI
JZ

MVI
ouT
IN
CPI
JZ

XRA
STA
MOV
JMP
CALL
MVI
MOV
STA
LDA
ANA
JZ

CALL
LDA
DCR
STA
LXI
DAD
XCHG
JMP

CALL
MVI
MOV
STA
LDA
CMP
JZ

CALL
LDA
INR
STA
LXI
DAD
XCHG

M, A

H

AM

32

LOOPPUTBAR1

C ;Continue bar until 3 spaces in
1@ row.

LOOPPUTBAR

KEYFLAG ;Put KEYFLAG

C,A sin reg. C.

H,5000

H

AH

A

LOOPSLOWGETKEY

A,2

7 ;:Check for return

1 ;by direct accessing

OEFH ;of keyboard,

GOTSELECTION ;Yes, return pressed.

A3

7 ;Check for up arrow.

1

ODFH

up ;Yes, up pressed.

A5

7 ;Check for down arrow.

1

OEFH

DOWN ;Yes, down pressed,

A7

7 ;Check for home.

1

OEFH

HOME ;Yes, HOME pressed.

A ;Key not pressed,

KEYFLAG ;so clear KEYFLAG

C,A ;and reg C.

LOOPGETKEY

PAUSE

C,1 ;Set C to 1.

A,C ;I.e. key pressed.

KEYFLAG ;Store at KEYFLAG.

ACCTMP ;Restore bar position.

A ;At top of list?

LOOPGETKEY :Yes, then don't move bar.

CEARBAR :Clear current bar.

ACCTMP ;Restore A.

A ;Move bar up,.

ACCTMP ;Store new pos.

H,-128

D ;Get new bar position,
;Put new pos in DE.

PUTBAR ;Put new bar.

PAUSE

C,1 ;Set C to one,

A,C ;I.e, key pressed.

KEYFLAG ;Store at KEYFLAG.

ACCTMP ;Restore bar position.

B ;At bottom of 1list?

LOOPGETKEY ;Yes, then don't move bar.

CLEARBAR ;Clear current bar.

ACCTMP ;Restore A.

A ;Move bar down.

ACCTMP ;Store new pos.

H,128

D ;Set new pos.

:Put new bar pos in DE.)

23

24

JMP PUTBAR ;Put new bar.
HOME : XRA A ;Clear KEYFLAG.
STA KEYFLAG
CALL CLEARBAR ;Clear current bar.
LHLD TOPPOS ;Restore top bar position.
XCHG ;Put into DE.
XRA A ;Bar position = 0.
JMP PUTBAR ;Put new bar.
GOTSELECTION: LDA ACCTMP ;Get position of bar.
INR A ;Convert to selection no.
MOV E,A ;Put value into DE
MVI D,0 ;for return to BASIC.
LHLD REGTMP1 ;Restore HL.
EI ;Enable interrupts.
RET ;Return to BASIC program.

;:This routine checks the value of KEYFLAG
;and depending on its value either waits

;for a short while or returns to the program
;immediately.

;7 This allows the user to either step slowly
;down the list by pressing and releasing the
;key or move rapidly down the list by keeping
;the key pressed.

i KEYFLAG indicates whether the key is kept
;depressed or not ;

H if KEYFLAG=0 then not depressed.

5 if KEYFLAG=1 then depressed.

+ Thus us KEYFLAG=z1 then routine will not
;execute a pause and will return to the
;program immediately and if KEYFLAG=0Q the
sroutine will pause before returning.

PAUSE: LDA KEYFLAG ;Get value of KEYFLAG.

ANA A ;Is it zero?

RNZ iNo, return without pause.
yPause while HL counts down to zero.

LXI H,20000
LOOPPAUSE: DCX H
MoV AH
ANA A
JNZ LOOPPAUSE ;Not zero, decrement again.
RET sPause ended, return to program.

CLEARBAR: MOV
MOV
MVI
INX
INX
MVI
INX
INX
MVI
INX
INX
INX
INX

;Get bar position from
sDE into HL.
;Clear arrow.

wm g
rn

w
o

I LT T IIXI T XTI T
o
rn

LOOPCLEARBAR1: MVI
LOOPCLEARBAR: INX
MOV
ANI
MOV
INX
MOV
CPI 32
JNZ LOOPCLEARBAR1
DCR C ;Continue to clear bar
JNZ LOOPCLEARBAR suntil 3 spaces in a row.
RET +Finished clearing.

w

;Clear bar.

00111B ;Set background to black.

O -
>0 X

L X O > IO

=4

REGTMP1: DS 2 ;Temporary storage for HL.
TOPPOS: bs 2 ;Position of top selection.

ACCTMP: DS 1 ;Temporary storage for A.
KEYFLAG: DS 1 :Flag indicating whether key
;i3 kept pressed (=1) or key
;pressed then released (=0).
END START

SUUERTISEMERNT +from HOWARED BEOSER, Inc
F.0O. Baox 4324
£ 215 -4£4-7145 Huomtingdon Yal

Fesponse to our jast For fe MES- 2 EFIAL
IMTERFACE +or the zurprising. We guesz that the
probiems encountered were common, and the INTERFACE bDoard as &
sotution quit hottly scught = tion and

ter, For more intoarmad
1

= = ; U t
crice on that gem of an interfazce board o

1 ease contact us=s.
There ars zome gams dizskette=z :uai?ab!e +rou I=sC CoCI T in ztock
- i ttr Piea;e =t

us Koo what
Se Dprogram
NG some wx«mp?
+rom our AT 1nwerntarsy
ration 1 an actua!

demonzt
ttabite, Piease reqguest;:
of o wou nesg of mraers. or other computer 1 tems,
JESE srs, we 2]l Pimging Drands:

MAUE SO TURER MEMUFACTURER

oy
Al

T

ELE”IEEF

iy

e

P oAl

l'[l -

[

"

L

m woo
a — emrd il
L

]

g driwe, double side

cones, doubd ubie

zr:d awaitable in either
Computer, Monitor,
CRAM 2.2, BEasll

Both MWEC Computers
(LA S OO T A §
L O

Fonr o e intormetilon incluyding oricing, Diease write gs with wour
soeslti D reguests,

25

The Freepost 64K Bank Board:

a review

by Christopher J. Zerr
14741 NE. 31st Unit 1-C
Bellevue, WA 98007

ITEM: Freepost 64K Bank Board (kit form)
SUPPLIER: Freepost Computer Systems
431 East 20th Street 10D
New York, NY 10010
Price: $199.00
Most CCII owners are presently not
utilizing their full memory capacity.

ISC left an 8K address space in memory
{4000H -~ 5FFFH) for use with EPROM
(Erasable Programmable Read Only Memory)
chips as desired by the end user. First
we saw Tom Devlin's RAM board for this
area which gives you an extra 8K of RAM.
Shortly thereafter we had the announce-
ment of a multi-bank ERPOM board from
Freepost Computers in New York. This
board can be purchased in two ways:
assembled and tested for $249.00 or in

kit form for $199.00. I purchased the
kit 1{form, so this review will pertain to
that.

Assembly of the board is quite simple.
All you need is a pencil type soldering

iron, some solder, and about three hours.
First you soider ail the sockets into
their respective holes. Be alert, though,

because sockets are not supplied for UF®6
{the 7447 BCD decoder/driver). The parts
I got were confusing because I got a 16
pin plug and two 16 pin socketis, and
there just happen to be three 1%
areas for sockets, and the pilug 1s not
one of them. The plug is to be used in
case you install the Deviin KAM board:
the plug is supposed to replace the IC in
UF8. But why Freepost sent a 16 pin plug
for a 14 pin socket I don't know.

Once the bank board is assembled, you
may install the Devlin 8K RAM board if
you have one, or you may use another ROM

26

o

1
rees

=B

board. I am wusing the Devlin board,
which requires eight wires to be connec-
ted to the logic board. Two come from the
RAM board to their places as specified
in Devlin's documentation. The other six
come from the bank board to the logic

board. With only eight wires to connect,
I saw no reason to purchase Freepost's
optional card edge connector ($10).

There are places on the logic board for
soldering all of the wires except one,
which I soldered directly to the 50 pin
bus edge.

There were a few problems. First, the
component layout drawing is incorrect.
(Some ICs were mislabelled.) Second, it
wasn't clear how to set one of the RAM
card jumpers. One connection is from
jumper J on the card to a spot on the
logic beard. But nothing was scid about
the pre-wired jumper on the ram card
from J to K. When I cailed Freepost

about this, they said to remocve to
juaper .

Third, the 7447 IC (UF6) is wired
incorrectly. If vou use a common anode

for the LED (by the way, this option was
nci documenied very well), then pins 3, 4
and 5 of the 7447 must be conrected (o
voits. I pulled the three pins our of the
socket and wire-wrapped them fogether
and then attached them to -5 =nl:zz. Alsc,
pins € and & must be pulled to ground.
{This option, by the wawv,
bank has been selecte:i.)

After all this I was »
the CCII. I turned it and...on it
came with no problems. I typed "OUT
255,7" to set up the RAM card and then
ran a memory test. Everything worked just
fine.

G

iy

shows you which

eady to power up
on

Colorcue

A bi-monthly publication by and for
Intecolor and Compucolor Users

June/July, 1983
Volume 5, Number 6

Editors:
Ben Barlow
David B. Suits

Compuserve: 70045,1062

10

13

14

17

18

19

20

25

Editors' Notes

Big Money in Advertising, by Ben Barlow
How does Colorcue compare?

Assembly Language Programming, by Joseph Norris
Part XII: Opening/Closing Files

The Final Frontier, reviewed by John R. Bell
The Final Frontier, another review, by Bill Barlow

Tech Tip, by John Newman
More on disk drive improvements

Compiling BASIC, by Peter Hiner
Part I: History

Cueties

Go the Superior Way with Your IRA, by Doug Van Putte
Avoiding the tax man

Transformers (not electrical), by David B. Suits
A curiosity about numbers

Unclassified Advertising

Repairing BASIC Line Numbers, by Mike Barrick
Recovering from disaster

Animated Hourglass, by Tom Andries
The PLOT thickens.

Garfield Bairy Deal Calendar, by Mike Barrick
Revised from a program by Carl Reinke

Editors’ Notes

A Changing of the Guard

We have some good news and some bad
news. The bad news is that our editorship
of Colorcue comes to an end with this
issue. It is a decision we have been
thinking about for a while, and it was
not an easy one to make. We have been
putting Colorcue together for two years;
and what a fine two years it has been! We
have come to know many of you through
your letters, articles and phone calls,
and we hope to have generated at least a
little bit of communication among Compu-
color and Intecolor users.

The good news is that one of our most
articulate and prolific contributors is
to become the next editor: Joseph Norris.
Joe has had (and continues to have) an
on-going involvement with ISC equipment.
He is very much concerned to keep Color-
cue alive for another twelve months and,
in the process, to help encourage Compu-
color and Intecolor users to take note of
the resources generally left available to
them. He has some good ideas for the
coming year's issues, so hang on to your
hats. The new subscription rate (US$18 in
the US, Canada and Mexico, US$30 else-
where) will remain in effect; the publi-
cation schedule of every other month will
be kept; and the guarantee that you'll
get your money's worth or your money back
will of course be honored.

Back issues of Colorcue will still be
available (see the inside of the back
cover for details) from our Rochester
address. Requests for back issues of the
issues under Norris' editorship, as well
as all editorial and subscription corres-
pondence, should now go to:

Joseph Norris
19 West Second Street
Moorestown, NJ 08057.

Although we are leaving as editors, we
hope that we will not be leaving as po-
tential contributors. There is still much
to be said about these machines we've

been pounding on for four or five years,
and we will probably have more to say. By
the way, your articles and contributions
are needed just as much as ever. Don't be
lazy. -- BCB and DBS

FASBAS Revealed

Speaking of FASBAS, this issue of
Colorcue brings to you the first of a
series on the FASBAS BASIC compiler by no
other than the author himself, Peter
Hiner. Even if you're not expert in
assembly language, and even if you're not
really the sort to go mucking about
inside a compiler, you will probably
learn a lot by reading his articles.
They tell you a great deal about regular,
interpreted BASIC along the way.

ISC News

Knox Pannill III, well known to
readers of the Compucolor software man-
ual, has been appointed to the position
of manager of graphics systems support
in Atlanta. Intecolor Corp. (now a sub-
sidiary company of Intelligent Sytems
Co.) announced the 2427D color graphics
terminal incorporating a 16 bit Zilog
28002 and an 8085, compatible with Tek-
tronix' 4010, 4014, and 4027, and with
DEC's VT100/VT52 terminals. The terminal
features a readable bit map, 560H X 288V
resolution, a 64 color palette with 8
colors concurrently displayable, and a
$1,995 price (100 quantity). Intecolor
is also offering its VHR-19 terminal for
$3,995, which features a 19 inch high
resolution screen (1024 X 768 displayed
out of 1024 X 1024), high level graphics
with ploygon fill, and 8 displayable
colors selectable from a palette of
4,096. An NEC 7220 graphics processor, a

seperate alphanumeric processor, and a
Z80 team up to drive the machine. (Note:
before rushing out to buy one, check out

the NEC APC which offers the same
graphics, and more. -- BCB)

QOur congratulations go to Tom Devlin,
the first reader in memory to mention the
Colorcue covers! At our editorial con-

ferences, we spend a long time discussing
covers, and have thought at times of
going to a standard format "table of

contents" type cover. It' nice to know
that someone likes them the way they are.

3

Big Money in Advertising

by Ben Barlow

If you're anything at all like me, you've
hefted a recent copy of Byte magazine
with all that advertising and wondered
just how much money they take in. I've
also wondered how many pages of ads they
have (never wondered enough to count
them, though). The other day I came
across some information in a trade publi-
cation called Computer & Electronics

Marketing that helped answer those
burning questions. The summary is dis-
played for you in the table below. Just
for fun, I added a line for Colorcue to
see how we stack up against the "big
boys", and got surprised - advertising in
Colorcue costs more per reader than any
of the less popular magazines, even Byte!
For a moment, I felt that our adver-

tisers would feel cheated. After all, our
rate per reader is more than three times
Byte's! But after reflection, I convinced
myself that Colorcue is really a bargain
for advertisers. Almost anyone in the
country can afford at least a quarter
page, and our readers represent a
specialty market. Although Byte might
reach 304,230 people per month, only a
small fraction of those represent a mar-
ket for any particular product. IBM PC
owners won't buy software from an Apple
ad; Apple people aren't interested in Z80
disassemblers. 100% of our readers,
though, are a market for our advertisers.
So considered on the basis of cost per
applicable subscriber, Colorcue comes out
on top. e

Magazine Circulation Ad pages Ad cost Ad ratio Ad cost per Revenue
(monthly) per yr per page ads/eds subscriber from ads
Compute 1,957,670 1,494 3,895 1.1 .00 5,819,130
Personal Computing 525,000 1,857 9,950 1.2 .02 18,477,150
Popular Computing 306,231 809 4,900 1.5 .02 3,964,100
Byte 304,230 4,001 5,950 1.5 .02 23,805,950
PC World 170,000 2,400 3,800 1.1 .02 9,120,000
PC 110,000 4,200 3,226 1.5 .03 13,549,200
80 Micro 108,160 N/A 2,395 N/A .02 N/A
Creative Computing 108,007 2,082 4,995 1.1 .05 10,399,590
Infoworld 58,913 2,237 3,780 1.0 .06 8,455,860
Colorcue 401 18 30 .1 .07 540
Ad rates quoted for full page b&w. Eds refers to editorial (non-ad) pages.

Assembly Language Programming

by Joseph Norris
19 West Second Street
Moorestown, NJ 08057

(Note: This article refers to program
listings which, for completeness, were
printed in the April/May issue of Color-
cue. In order to devote more space to
articles, we are not reprinting them
here. If you do not have a copy of the
previous issue, we will gladly send a
copy of the listing (and a refund of your
postage) at your request. - eds.)

PART XII: Opening/Closing the File

As we begin this second of three
articles, we know how to parse a data
string for a valid file name, and we have
placed some parameters in the File
Parameter Block (FPB). We are ready to
call upon the disk directory and OPEN
the disk file.
The OPEN routine

The operating system will open files
that exist already on disk, or a new
file that we wish to create. There is a
separate procedure for opening each of
these types. In our program a "new"
is a file with a name unique to the disk
in the drive, i.e., we cannot have
"FIRST.SRC;01" existing and hope to open
"FIRST.SRC;02". [1] To call the proper
routine, we have only to enter the cor-
rect code number in the first cell of
the FPB (FPB1 in our program). A "0" in
this slot will cause the routine to look
for an existing file name and version
(default is ";01"); a "1" will ask it to
open a "new" file. I have chosen to use
unique file names because, with this
feature, SOURCE.PRG can serve as a func-
tioning mini-data base.

files’

Since we eventually want to recall and
edit previously created files, our pro-
gram always looks for an existing file
first. Here is the procedure (see OPENA
in Listing IV).

We must give the OPEN routine the
address of the FPB by placing it in the
HL registers, place a "0" in the first
byte of the FPB and call OPEN. At this
point the OPEN routine will access the
file directory and look for the file
name we have parsed. The following
parameters will follow the routine:

-The "0" will be replaced in the first

FPB slot by a code number (usually 06H

or 20H);

-any error code will be in BC (with the

carry flag set if error),

-DE will be unpredictable, and

-the FPB pointer will reside,

HL.

-If the carry is reset, no errors

occurred in opening. It is possible to

follow CALL OPEN with CALL EMESS, to

still, in

print the error message.
In our program we assume, for the
moment, that any error is EFNF (File Not

Found) and proceed to open a new file at
program module CREATE. But let's see
what happens if the old file is accepted.
Continuing in OPENA, we display the name
of the opened file (NMDSP) and then
prepare to read it into the disk buffer,
which, for us, is the same as INBUF, the
text buffer. (This dual usage of buffer

space must be approached with care, but
is quite secure in our program.) At this

point, INBUF is still filled with spaces.

To read the file, we must supply the
FPB with two more parameters: (a) the
starting address of the text buffer
(INBUF) in FBUF, and the length of the
text buffer in FXBC. These may be ref-
erenced as FPB+32 and FPB+34. (See Part X
of this series.) FXBC, the buffer
length, must be a multiple of the stan-
dard block size of 128 bytes. We now
"rewind" the file--that is, we set
parameters so the FPB knows which byte is
the first byte~-by calling RWSEQI. This
routine initializes FBLK, FAUX and FPTR
by setting them to zero. With the FPB
data complete as described up to this
point, all RWSEQI needs is the FPB ad-
dress in HL. This call must follow the
call to OPEN. There are no status
parameters when RWSEQI is complete. Now
all the required data are in the FPB,
and INBUF is still cleared with spaces.

We are now ready to transfer the text
bytes from the disk file into INBUF. We
draw our text box and then call READ,
which uses the routine GTBYT to read
data from the disk. A simple loop pulls
all 128 bytes quickly. GTBYT has the
following properties:

To operate, it needs only the address
of FPB in HL. Each accessed byte will
appear in the accumulator at the end
of the call. BC and DE are unaffected,
and the FPB pointer remains in HL. The
carry bit will be set if there is an
error. If the carry and zero flags are
both set, then the prescribed buffer
length was filled without reading all
the data bytes in the file.

As we "get" each data byte, we also
print it with LO, in the text box on the
screen. In routine READ (Listing IV) the
B register is the counter, set to the
number of bytes to be read and printed.
In the File Parameter Block, the last
entry, FPTR (pointer), begins with the
value 0000H and increments by one each
time GTBYT is called. At the end of the
last counter decrement, FPTR will hold
0080H (=128 bytes). Now we can draw an
analogy between BASIC's GET statement in
random files, and the GTBYT routine. In
the BASIC example: GET 1,3,5;G$[20]--FPTR
would be loaded with the number of the
byte to begin reading on--in this case
"5"--and the B register counter would be
loaded with 20--the number of bytes to

6

be read. (We have not yet considered a
System routine that uses the file-
record-byte organization, but it exists.)

At this point we return to the option
line for the next instruction. But sup-
pose our file does not yet exist. What
happens to create it? Going back to
OPENA, we see that, after the instruction
line CALL OPEN, a "jump on carry" in-
struction branches the program to
CREATE. This branch will be effective if
OPEN generates a file error, such as
"file not found" mentioned before. (If a
file error occurs, the carry flag is
set.) It may be that a different file
arror has occurred, and, if so, we will
have another opportunity to explore it,
but our assumption is that the desired
file does not exist and must be created
on disk.

The CREATE routine

The possibility of a file error
gests that we call RESET, a System
tine to reset the heads on our disk
drives, as a precaution. We will now
call OPEN again, but this time with the
"new file" code in the first slot of
FPB1l. If an error again occurs, routine
ERROR5 will display it for us; otherwise,
we print the file name on the screen for
reference, as before, draw the test box,
and go back to the beginning of the pro-
gram to erase the disk buffer for new
text (but leaving the FPB data undis-
turbed!). Routine OPEN, this time, will
verify that the file name does not exist,
and will place reference parameters in
the FPB. At this point, the directory is
unchanged, so that, should the program be
aborted, no damage to data on the disk
will result. However, the FPB data is
essential to closing the new file cor-
rectly and must not be changed before the
closing routine has been called.

The choices in our option line are
appropriate either to the program with
an opened file or to a program with a
closed file. For instance, we cannot
print a file that has not been opened,
neither can we edit its text. I have
installed a byte in memory to hold a "1"
if a file is open and a "0" if no file is
opened. This slot is labelled FS: (File

sug-
rou-

Status) in the data storage section of
the listing. You will notice that
several routines install the appropriate

status byte in FS.

When any option is selected, the pro-
gram routines FSO and FSC (File Status
Open, File Status Closed) are used to
test the FS flag. A jump to a likely
error message results if the test fails.
The TEXT routine

The next likely option to be selected,
after opening a file, is the entering or
editing of text. Option 2 will branch to
routine TEXT, which sets the buffer
length to 128 bytes and uses INPUT (David
Suits's routine) to enter or edit the 128
byte buffer, simultaneously showing
changes on the screen. We are altering

the disk buffer too, of course, since it
is the same as the "text buffer". As long

as the maximum buffer length is not
exceeded (monitored by MCHAR) the FPB
data will remain valid. With the text in
its final form, the file may now be
written back to disk and closed.

The CLOSEA Routine

We check FSO first to verify that an
open file exists. The procedure which
follows insures that new text or edited
text will be written back into the ex-
isting version of the file, or to a new
file if the new name was unique to the
disk. INSEQO uses RWSEQI for another
initialization, and continues by veri-
fying that there is room on the disk for
our file. Since we use only a single
block of 128 bytes, we will never have
trouble rewriting an edited file. With-
out this feature, we could never write
back to the same .SRC file, if we went
beyond 128 bytes, without danger of
writing over a subsequent disk file. In
the case of a new file, we need only one
block to verify a good file write.

The next step is to use PTBYT to write
the disk buffer to disk. (See routine
WRITE.) It works much the same as GTBYT,
moving FPTR as before, from 0 to 128.
PTBYT requires the presence of the byte
to be written in the accumulator and the
FPB pointer in HL. The B register is our
counter for 128 bytes; the DE registers
i2ep track of the current buffer address.
I'ne following status will result:

The accumulator will contain the byte
written, BC and DE are unchanged, and
tie HL registers still hold the FPB
pointer. Carry flag reset indicates no
errors. If both the carry and zero
flags are set, the allocated file
space was filled before all bytes were
written.

With the file written to disk, we must
now update the directory--add the new
file if appropriate--and free the disk
buffer space. CLSEQO does all this for
us. It needs only the HI. pointer to the
FPB. All other parameters are already in
the FPB for final closing. The status
parameters are:

-The accumulator contents are altered,

-BC holds the error code, if any,

-and DE is altered.

-The carry flag set indicates a closing

error, in which case the HL registers

will be altered.

At this point we have "closed the
loop". Listing IV contains all the nec-
essary modules in their entirety. If
portions of any routine from the last
issue were previously installed, check
them carefully to see that they now
coincide with the expanded listing.

A WORD OF CAUTION: Since this program
makes use of the disk directory, it
would be wise to create files on a clean
disk until you are certain the program
holds no errors; otherwise the directory
may be damaged and other programs on the
disk will be inaccessible.

Next Time

In the final article in this series we
will examine routines to print the text
file to a printer through the RS232 port,
and install the ENDIT routines. We will
also examine, briefly, a few remaining
disk file routines. While you are wait-
ing, it could be a useful experiment to
reformulate the 128 byte record into a
data base page of an address book. You
can print the field headings, one below
the other, and apportion the 128 bytes
into name, address, telephone, etc. In
such an application, rather than printing
each byte as it comes from GTBYT, you
will want to transfer bytes in their
field lengths from INBUF to the screen,
field by field. Use OSTR to position the
cursor after the field heading. You are
invited to write to me if there are
questions or comments.

NOTES [1] In other formats, a "new" file
can also be one with a previously
established file name, and a higher
version number. To do this, we would
open the file as version ;01, for
instance, edit the text as before, but
poke 0Z2H into FVER before calling
aASHD. «

7

The Final Frontier — ¢ Review

by John R. Beli
8300 Fourth Avenue
North Bergen, NJ 07047

We are all familiar with the Compucolor
version of STAR TREK and many have come
to know the updated version in the
Rochester Users' Group library, but The
Final Frontier, a new STAR TREK from Rick
Taubold and Bill Goss, is a quantum leap
above them both. For starters, when you
run the menu on the The Final Frontier
disk, you hear the STAR TREK theme song!
Those of you without soundware will real-
ly miss something. The song drags a bit
.toward the end. All the notes are there,
they just come out slower than you'd
expect. An animation spectacular is the
next treat. The ENTERPRISE and a Klingon
battlecruiser glide onto the screen and
exchange phaser fire.
victorious (of course) and the Klingon
ship shimmers into nonexistence. The two
starships are superbly drawn.

As with most sophisticated games, the
commands are numerous and a bit overwhel-
ming at first. But not to worry, there's
a HELP feature available and extensive
instructions before the game. During the
game, the screen lists the various items
like energy in the shields, warp drive,
and phasers, number of photon torpedoes
available, and number of Klingons and
Romulans still in the galaxy. Yes, there
are Romulans to contend with, and they
are nastier than the Klingons, because
they don't show up in the Long Range
Sensor scans. (As every trekkie knows,
they have a cloaking device.)

At the start of the game, you can seed
the random number generator with a number
from 1 to 9, or have the machine generate
a really random one based on both the
realtime clock and the amount of time
since you last pressed return.

Once having selected a seed, ycui can
then define the size of the galaxy, from
3 (for a 3 x 3 galaxy) to 10 (10 x 10).
This, coupled with the methods of seeding
the random number generator, gives you a

The ENTERPRISE is.

choice of 7,992 repeatable games and an
unlimited number of random games. But
what really sets this game apart from all
others is the graphics. You have a large,
functional viewscreen, and you can see
the shields "flash" when you take phaser
hits from the enemy. When you're in RED
ALERT the screen changes color, and a RED
ALERT signal flashes. Various items can
appear in your viewscreen; stars, Kling-
ons, Romulans, and your Starbase, and
they change size depending on their dis-
tance from you! Up close, the images of
the Klingons and Romulans are quite im-
pressive. I won't tell you what happens
when you go into hyperspace - I don't
want to spoil the surprise.

The game has some interesting aspects
to it. When you're all domne, if your
rating is high enough, you will be pro-
moted to the rank of Starfleet Admiral.,
If you quit, you will be apprised of the
consequences of your action and will be
told what the universe thinks of you. The
instructions say "BEWARE OF BLACKHOLES!"
and you should believe it. Blackholes are
present in this game, and can really
alter your game plan. Also, the gravita-
tional field of stars can affect your
photon torpedoes. I tried to shoot a
torpedo through some stars, and the de-
flection was such that the torpedo came
back and destroyed the ENTERPRISE (with
rather spectacular results).

In summary, I would say that this is
undoubtedly the best STAR TREK program
{'ve seen. Friends of mine with Ataris,
Commodores, Apples, NECs, and TRASH-80's
would rather play this STAR TREK than any
other STAR TREK they've ever gotten their
hands on. The programmers set the price
at a low $25. so that everyone can afford
it, without resorting to piracy. All in
all, The Final Frontier is the best STAR
TREK game available on any machine at any
price. «

The Final Frontier — Another Review

by Bill Barlow

Captain's Log, Stardate 8173.65. I just played The Final Frontier on my Compu-
color II. It was fascinating with its STAR TREK introduction and the graphics that
went with it. The first time I tried to play I got blown away by Romulans and
Klingons. Since I thought it was going to be easy with the experience I've had I
thought there was a bug in the program! This is kind of like a hit and wait for your
punishment game. You hit the Klingons and wait for them to destroy you. It has good
graphics and sound except that the music doesn't have a beat to it, and there's only
sound during the intro. The commands are easy to remember. You have "t" for Torpedo
and "m" for Move etc... The only thing that I didn't understand was the LONG RANGE
SCAN. I didn't know that my ship's position was always in the center of the scanner,
so I thought I was where I was supposed to be when really I was almost in front of a
Klingon warship! If you understand the scanner you can find your Federation Starbase
and get more torpedoes and impulse power. Overall this game is very good, if you
like to be challenged! It's hard to win at this one, fellow crew members, so set
your phasers to stun and go get 'em! « (made for 32K)

Tech Tip

by John Newman
PO Box 37, Darlington
West Australia 6070

Since the publication of the article on disk drive improvements in the Feb/Mar
issue, a couple of improvements have been suggested.

One is to reduce the 1000uF capacitor to 470uF in the motor run-on circuit (Fig.3
in the Feb/Mar 83 issue) - most 1000uF caps are too large to fit under the disk
drive cover, and we have found that some disk drives intermittently misread, causing
the usual track 0 reset.

The other suggestions relate to the speed control switch. One user has fitted a
multi-turn pot to the front panel which is only connected in the circuit when the
switch is set to the low speed position; the normal speed is left at 300RPM. A
related modification is to use a spring loaded switch so that it cannot be inad-
vertently left in the low-speed position. @&

9

Compiling BASIC

by Peter Hiner

11 Penny Croft

Harpenden, Herts
ALS5 2PD England

PART I: HISTCRY

Dave Suits thought that the chance of
some free publicity might induce me to
write about my BASIC compiler (FASBAS),
how it works and what I learnt during its
development. He was right.

Winding the clock back about two
years, it all started from a curiosity to
find out what was hidden in ROM. I spent
a lot of time vainly trying to follow the
program step by step from address 0000
and got lost in the mysteries of cold
start routines, I decided that a better
approach would be to try to identify the
purpose of the subroutines without
worrying about details, and then see how
they fitted together. So I borrowed a
printer and a large pile of paper, and
generated a complete listing of the dis-
assembled contents of ROM.

After many weeks of labour, helped by
some lucky guesses, the jigsaw started to
fall into place. I suppose I had expected
to find a lot of convenient BASIC sub-
routines that I could easily use in
Assembly Language programs; this was not
to be. The first problem with the BASIC
routines was that they operate on float-
ing point values, and I could not see how
to handle them within the body of an
Assembly Language program. Then I got the
idea that if I wrote a rudimentary sort
of compiler, which would take simple
BASIC instructions and generate an Assem-
bly Language SRC file, I could edit the
file to add the rest of the program,
somehow keeping the floating point rou-
tines separate and avoiding the difficult
problem of interfacing with them. Al-

10

though I did not eventually follow this
route, the concept of generating an
Assembly Language SRC file was retained,
and I got started on the compiler.

The first major landmark was when I
managed to compile a program like this:

10 A=1

20 PRINT A
What a tremendous achievement!

I knew the addresses of the subrou-
tines for COS, SIN, etc., so I was soon
able to compile A = COS(B). The arith-
metic functions were a bit more tricky,
as they involved putting things onto the
stack, but once I had mastered these, and
included simple IF statements, I had an
elementary language for writing BASIC
programs and compiling them. The first
program of any consequence that I com-
piled gave a spectacular ten times in-
crease in speed, but I have subsequently
realized that this was partly due to the

rudimentary (and hence slow) nature of
the BASIC program. For example, the
statement:

100 IF A+B*C =3 THEN GOSUB 500
had to be broken down into:

100 X =B *¥ C

101 X = A+ X

102 IF X = 3 THEN GOSUB 500

I went on to add further essential
instructions such as INPUT, PLOT, etc.,

and at this stage I had achieved my am-
bition to be able to compile useful pro-
grams, even if they had to be written
specially to match the limited set of

instructions available. I might have left
it alone at this point, but at the insis-
tence of fellow members of the UK User
Group (and encouraged in particular by
Dave Thomas) I continued towards the goal
of being able to compile any BASIC pro-
gram without imposing restrictions on the
way it was written. And when at last I
thought I had finished and I released
FASBAS VER12.20, I got back not only bug
reports, but also requests for removal of
the few remaining limitations (and in
this case I mention particularly the
Australians as hard taskmasters!). With
the current version (VER12.21) I hope I
have reached a satisfactory level of
transparency, and further versions will
extend the scope of the program to in-
clude V9.80 BASIC, generating code for
lcading into EPROM, etc.
FASBAS BASICS

Enough of the history. How does the
compiler work? First it loads from disk a
table of Assembly Language instructions
including a library of subroutines and
the ROM addresses appropriate to the
version of the machine for
BASIC program is to be compiled. Then it
assigns input and output buffer space for

the BASIC and Assembly Language files.

The library of subroutines is immediately

transferred to the output buffer, to.

become the start of the compiled program.
During
FASBAS program itself gets overwritten,
and that is why it can not be interrupted
and restarted without reloading from
disk. The library space will be overwrit-
ten by lists of wvariables, etc., but the
table of ROM addresses is retained for
use in generating the compiled program.

Now the BASIC program is loaded to the
input buffer and FASBAS scans through it
looking for DATA statements (also for
multidimension numerical arrays, but
these will be discussed later). If a DATA
statement is found, a label Dnnnn: is
generated (where nnnn is the BASIC line
number}, and written to output buffer
together with the actual data. Thus all
the data is gathered in order and suit-
ably labeled so that the BASIC functions
of READ and RESTORE can easily be simu-
lated by the compiled program.

During the second scan through the
BASIC program, the main body of the com-
piled program is written to output buf-
fer. To describe this I will give exam-
ples, starting with the simplest.

which the.

these operations part of the:

Each line of BASIC starts with a two
byte linking address (pointing to the
start of the next line) and then the line
number expressed as a two byte (16 bit)

binary value. FASBAS skips over the link-
ing address (which is not needed) and
generates a label Lnnnn: for the line

number.
Suppose that the first line is:

10 GOTO 500
FASBAS generates L10: JMP L500. At this
stage we do not know what the memory
address for line 500 will be, but it will
be labeled (L500:) when we get to it, and
the Assembler will insert the actual
memory address later. Similarly GOSUB 500
would become CALL L500. To digress for a
moment, let us consider the difference in
operation between the compiled JMP L500
and the BASIC GOTO 500. The compiled
version contains a direct jump instruc-
tion which will be executed almost in-
stantaneously. The BASIC interpreter
would operate on GOTO 500 as follows: The
token representing GOTO "would be looked
up in a table to find the address of the
appropriate routine, and then 500 would
be converted from the three ASCII charac-
ters '5', '0', '0'" to a 16 bit binary
value. This value would be compared with
the current line number to see whether
the search for line 500 could be carried
out by scanning forwards from the present
position or whether the search had to be
started from the beginning of the BASIC
program. (It cannot search backwards.)
The search is carried out by reading each
line number and comparing it with 500. If
not equal, then the linking address is
used to enable the interpreter to skip
directly to the start of the next line,
tc compare that line number with 500; and
so on. Clearly, for this function the
compiled program can operate hundreds or
even thousands of times faster, depending
on the length of the BASIC program which
has to be searched through.

Now we will deal with a statement like
A=5. FASBAS sees that the line begins
with a variable and therefore knows that
it has to deal with an equate statement.
FASBAS keeps a record of variables used
(for assigning memory space at the end},
so first it looks through this list to
see whether it has already recorded
variable A (which will be given the label
VA). FASBAS also stores VA in a temporary
buffer for use in a moment. Then it skips

i1

over the equal sign and evaluates the
rest of the statement (in this case sim-
ply 5). Constants are handled very much
like variables, and 5 will be called K5,
will be recorded in a list, and at the
end will be assigned memory space, into
which FASBAS will put the 4 byte floating
point value for 5.

LT H,KS
CALL ...

Point to location containing value 5.
; Subroutine to move contents of
identified location to the BASIC
Accupulator,

Point to location of variable A.
Subroutine to eove contents of

BASIC Accumulator to identified
focation.

LI H,VA
TALL ...

- B mm W awe WE ms wem

Listing 1

The compiled program generated by the
statement will be something like Listing
1. The BASIC Accumulator mentioned in the
listing refers to a 4 byte store located
at 80DEH to 80E1H, which is central to
all BASIC mathematical operations. Again,
we will digress to consider how the BASIC
interpreter would handle the statement
A=5, and you will see that it uses the
Accumulator in a similar way, but has a
lot of additional work to do. When the
BASIC interpreter sees a line starting
with a variable, it knows it has to deal
with an equate statement. First it
searches through its store of variables,
looking for A, and if it cannot find A,
it creates a new variable location for A.
Variables are stored at the end of the
BASIC program and are followed by storage
space for arrays. So if it has to create
a new variable location, it must first
move all the arrays 6 bytes higher in
memory to make space (2 bytes for the
name of the variable and 4 bytes to store
a floating point value). The interpreter
pushes the address of the wvariable lo-
cation onto the stack and then checks for
the presence of an equals sign (SN ERROR
if missing). Now it evaluates the rest of
the statement, and since this is the
constant 5, it has to convert 5 from
ASCII to a floating point value, which it
puts in the Accumulator. Then it pops the
address of variable A from the stack to
registers HL and moves the constants of
the Accumulator to the location identi-
fied by HL. If the statement to be inter-
preted were A=B, then the second part of

12

the operation would be like the first
(search for variable B, etc., and then
move the contents of variable B's loca-
tion via the Accumulator to the location
of variable A).

I hope you can now see why BASIC can
often be speeded up by replacing con-
stants with variables which have been
used early in the program: the search for
a variable location will then be faster
than the complicated routine for convert-
ing a constant from ASCII to floating
point. The compiled version of a program
saves times by pointing directly to the
location containing the required floating
point value, and it does not make any
difference whether this is a variable or

a constant, or where it is first used in-

the program.

The mathematical functions such as
SQR, LOG, COS, etc. are simple to deal
with provided that we do not attempt to
delve deep into the subroutines for hand-
ling them. If we consider A=COS(B), the
first part is as described for A=5 above.
To evaluate COS(B), FASBAS notes that it
has to generate a statement to call the

COS subroutine (it pushes onto the stack

a pointer to the address of the COS sub-
routine in its table of ROM subroutines),
and goes on to evaluate the parenthetical
expression. The compiled program will
follow the principle of putting a value
(in this case variable B) into the BASIC
Accumulator, calling a subroutine to
operate on the contents of the Accumula-
tor, and then expecting to find the
result of that operation in the Accumula-
tor. So the compiled version of A=COS(B)
would be as in Listing 2.

LYI H,vB ; Point to location of variable B.

CALL + Subroutine to move contents of identified
; location to BASIC Accusulator.

CALL ; Subroutine to generate COS(B) with
; result in Accusulator,

LXT H,VA ; Point to location of variable A.

CALL ; Subroutine to move contents of
H

Accumulator to identified lacation.

Listing 2

When we start looking into an example
of simple arithmetic, the same principles
for using the Accumulator will apply, but
there is an added complication that we
now have one more variable (or constant)
to handle. For the statement A=B-C, we

know that we have to get the result of
evaluating B-C into the Accumulator so

that it can be moved to the location for
variable A. As FASBAS works through the
line, it finds variable B and generates

instructions to move it to the Accumula-

tor. Then it finds the minus sign, so it
generates an instruction to PUSH the
contents of the Accumulator onto the

stack. Now it generates instructions to
move variable C to the Accumulator, to
POP variable B from the stack to regis-
ters BC and DE and to call the Subtrac-
tion subroutine. Now B-C is in the Accum-
ulator. This principle could easily be
extended to handle A=B-C+D, and the
result of B-C would now be pushed onto
the stack, variable D would be moved to
the Accumulator and the Addition subrou-
tine would be called, resulting in B-C+D
in the Accumulator. The compiled program
© for A=B-C+D would look like Listing 3.

LiT H,VE ; Point to variable B,

CALL ... ; Move variable B to Accumulator.

CALL ..., ; Push variable B onto stack.

Ll H,vC ; Point to variable C.

CALL ; Move variable C to Accumulator,

CALL 3 Call subtraction routine (which includes
; instructions to pop variable B frome stack
; to registers BC and DEJ,

CALL 3 Push result B-C onto stack,
s
H
3
1
¥
H
3

LiT H,vD ; Point to variable D.
CALL ; Move variable D to accusulator.
CALL ; Call addition subroutine (which

i pops B-C froas stack to registers),
LIT H,vA ; Point to variable A,
CALL ; Move B-C+D fros Accumulator to

location of variable A.

Listing 3

No doubt you will comment that this is
very long-winded. The final compiled
version takes up 36 bytes of memory space
compared with 7 bytes for BASIC (or 12
bytes if you include line number, linking
address and line terminator). I am afraid
this is- the penalty you have to pay for
getting an increase in speed.

The method described for evaluating
and compiling an expression like A=B-C+D
is fine as long as you are simply working
from left to right. I will leave the
delights of carrying out arithmetic op-
erations in priority order until next
time, when we will also look at some of
the more complicated functions.

Meanwhile I should include a note of
explanation about the SRC file, which
FASBAS generates as an intermediate step
towards the final compiled version of a
BASIC program. I have described the out-
put of FASBAS as if it were Assembly
Language, and originally it was precisely
that. But I found that the SRC file was
typically 10 times the size of the orig-
inal BASIC program, so I tokenized many
of the instructions to save space. 'IJMP'
becomes lower case 'j', '"CALL' becomes
lower case 'c', etc., but if you do not
have a lower case character generator you
will see a lot of graphic symbols. Also I
omitted all spaces, commas, and carriage
returns, and the H character denoting
hexadecimal values. All of this serves to
disguise what is really genuine Assembly
Language, but the special version of
Assembler (FBASM) sorts it all out.

NEXT TIME: Expression evaluation and
string handling. a

Cueties

5 FLOT 23:iC= @
13 PLOT 27,24, 12
28 FOR

IS FLOT &.C

Y= @TQ TISTEF 4

I8 FOR <= ©6TO0 B8ZSTEF I

43 PLOT 3.w.%. 118, 117,32
S FLOT S.is'd+ 1,118,113.32
od PLOT Z.HK.Y+ Z,32,116,117
Y8 FLOT S.k.'W+ 3,32.118.1193
SR HNERT #iC= C+ LiMHERT Y

o0TO e

13

Go the Superior Way with your IRA

by Doug Van Putte
18 Cross Bow Drive
Rochester, NY 14624

This article is for you Compucolor/Inte-
color users who have invested or plan to
invest in an IRA. Is there one of you
that would pass up the chance to earn
thousands of extra dollars on your IRA
investment using a safe and simple
method? I think not! My goal is to per-
suade you that this can happen, and that
it will require very little effort or
risk on your part. It all begins with an
IRA investment, but it goes one important
step beyond. In carrying out this step,
your computer can be a real profit-making
partner.

Last year was a landmark in the evolution
of government approved retirement plans.
For the first time, individual retirement
accounts became available to all workers.
Regardless of other plans, you could set-
up IRA's for a maximum of $2000 for both
yourself and for your working spouse.
And millions of Americans did just that.
That act allowed them to:

o Deduct the amount invested from their
gross income before taxes - an
immediate tax savings. And ..

o Participate in a myriad of investment
vehicles to accummulate tax deferred
savings until retirement at a minimum
age of 59 1/2 years.

It sounds like the American dream tax

shelter, doesn't it? It certainly is,
especially when you invest that IRA
wisely.

14

The wise folks have their IRA's in in-
vestments that stress high interest or
high dividends. Its a simple economic
fact that one can profit immensely from

the compounding of high vyields. The
preferred investments include money mar-
ket funds, utilities, bonds, and high

yielding stocks. If you are not invest-
ment wise, you can still have access to
all these investment vehicles without
brokerage fees by participating in a
mutual fund. If you are already doing
all of this and are wondering where all
the extra thousands are coming from -
hold onto your socks because I'm going to
convince you that you can achieve even
greater returns.

I propose to you a method that will allow
you to participate in all of the above
vehicles and skim off the cream from each
one at low risk, without much effort, and
all without much investment savvy.
Sounds almost too good to be true,
doesn't it? No, it's not against the
law! Read on further...

Mutual funds not only offer all the in-
vestment vehicles I've talked about, but
they allow you to switch from one vehicle
to another with a toll-free telephone
call - in other words, you are your own
money manager. You can switch your IRA
when the time is right to maximize your
yields.

Why does this opportunity arise? Con-
sider Figure I : Interest Rates vs. Stock
Values. It is generally accepted that as

stock prices increase, interest rates
decrease, and in the opposite manner, as
stock prices decrease, interest rates
increase. Wouldn't it be great if one
could take advantage of both high stock
values and high interest rates? Well, it
is possible by making use of a strategy
originally proposed by R. Fabian [1].

STOCK INTEREST STOCK INTEREST
VALUES RATES VALUES RATES
N/ N/

UpP /\ \/ \/ /\ UP
II I1 II II
II I1 II IT
II IT II II
II IT II IT
II 11 II II
II II II II
/\ \/ DOWN \/ /\

/ \

FIGURE I: STOCK VALUES vs.

INTEREST RATES

What is the strategy?
a plot of a typical stock value over
This plot illustrates

11,

a two year period.

the basic strategy in two axioms.

Consider Figure

- On a rising stock market, you switch
from an interest fund to a stock fund.
Suppose your IRA is invested in a money
market fund which has a nice interest
rate, when the stock fund begins to
appreciate in value. As the money
market interest rate starts to drop,
you'll begin to wish you could get some
of the stock fund action. You can get
that action by a simple telephone call.
The mutual fund will sell your money
market shares and invest all the pro-
ceeds into the stock fund you specify.
Now you can profit from the appreci-
ation in the stock fund shares and also
collect the stock fund dividends.

- On a falling stock market, you switch
from a stock fund to an interest fund.
Sooner or later the stock fund shares
will begin to depreciate in value. By
making another telephone call, you con-
vert your IRA back to money market
shares. Now you can begin to proft
from the increasing interest rates in
your money market shares. Meanwhile,
you are patting yourself on the back
for taking that nice capital gain from
the sale of your stock fund shares.

I know that you are thinking that it's

all too neat. After all, Figure II is

plotted after the fact, and everybody
tends to be 100% accurate with hindsight.

So...

i I SWITCH TO INTEREST FUND .

I . .
F I *
Ul
NI . %,
DI . .

I .
Vi . *
AT . .
LI . . .
UuTI.. .
EI SWITCH TO STOCK FUND

I

I

+= + + ¢ ¢

TWO YEAR PERIOD
FIGURE II: STOCK FUND FLUCTUATION

15

Where does one get the switch signal in
real time?

o One way relies upon my computer pro-
gram, STOCK FUND SWITCH STRATEGY
PROGRAM, to help you make the switch
decision. @ The program allows one to
calculate the direction of the stock
shares each week based on data taken
from his local newspaper. The data
input required by the program are the
week-ending values of the stock
fund(s), and the Dow Industrial and the
Dow Transportation indices. A com-
parison is then made between the week-
ending values and their respective 39~
week averages. The individual com-
parisons are then combined to compute
the upward or downward direction of the
stock fund shares.. A menu of the pro-
gram functions is listed on Figure III.
Contact me if you'd like more details
[2] on the stock program.

funds. The switch method results in about
30% better return for the Nicolas Fund,
while it yields a 560% greater return
over the holding method for the Penn-
sylvania Mutual Fund. That is the result
of compounding that extra return over a
10 year period! Now you can visualize
the source of those extra thousands of
dollars for your retirement.

You can manage your own IRA's aggressive-
ly, using a simple, relatively risk free
method to earn thousands of extra dollars
for your retirement. Are you ready to

join me now in reaping the extensive
benefits that are ours for the taking? e

[1] Based on article in PERSONAL FINANCE,
Vol. IX, No. 11, entitled "Beat The
Market with No-Load Mutual Funds" by R.
Fabian, an SEC-registered investment
advisor.

[2] Send $1 to cover postage for copies

of the SFSSP program documentation and
STOCK FUND SWITCH STRATEGY PROGRAM the article in footnote 1:
[31 TELEPHONE SWITCH NEWSLETTER, P.O. Box
. CREATE STOCK FILES. 2538, Huntington Beach, CA 92647.
2. ENTER WEEKLY VALUES,
3. PRINT DECISION TABLE.
4, PRINT & EDIT DATA FILES.
5. INPUT MULTIPLE WEEKS OF DATA.
6. PLOT STOCK & DOW FOR ONE YEAR.
7. ADD A NEW STOCK FILE.
8. EXPLANATION OF PROGRAM STRATEGY.
9, STORE DATA AND END PROGRAM.
FIGURE III: SFSSP PROGRAM MENU
o Another way is to sub- PERCENTAGE GROWTH RATE+
scribe to a financial GAIN (%)
newsletter [3] that
will give you the BUY TELE- BUY- TELE~
switch signal. AND PHONE AND PHONE
HOLD SWITCH¥* HOLD SWITCH*
Both the SFSSP Program NICHOLAS
($39.95) and a typical FUND 277 378 14,2 17.0
newsletter subscription
($97/year) are tax de- PENNSYLVANIA
ductable. MUTUAL FUND 115 528 7.2 20.2

What are the potential
gains of the dynamic
switching method over
the typical static hold-
ing method? Consider
Figure IV which compares
the methods for two

+ COMPOUND ANNUAL GROWTH RATE.
* ASSUMES 6% YIELD ON MONEY MARKET FUND.

FIGURE IV: SWITCH vs. HOLD STRATEGY COMPARISON

FOR 10~YEAR PERIOD ENDING 12/31/81

16

Transformers (not electrical)

by David B. Suits

Here's an interesting fact about num-
bers. Given any positive integer (i.e.,
1, 2, 3, ...), if it is odd, then multi-
ply it by 3 and add 1. Otherwise, divide
it by 2. Repeat the process for the re-
sult. Continue this for as long as you
please. Curiously, the result you get
will eventually be 1. Any positive
integer will "transform to 1". (I don't
know whether anyone has actually been
able to prove that yet.) You can test
this to your satisfaction using the
program in Listing 1.

Actually, this might just as well be
called "transform to 4" or "transform to
2", since, if you don't stop at 1, the
next step will be 4, and the next will
be 2; and then you'll be back at 1, and
you'll loop in this fashion forever.
Perhaps it should be called "transform
to the 4-2-1 loop".

You can enhance the transform to 1
program by printing out a list of num-
bers along with the number of steps it

takes to transform to 1. The number of
steps is usually surprisingly small. And
there are a few peculiarities: 5 takes 5

is equal to its transform step count an
isostep. Is 5 the only isostep? I don't
know how to prove whether it is or not;
but the program in Listing 2 will help
you look around for others. I put vari-
able TN into program ISOSTEP so that you
can use 4 or 2 as the terminating number
and look around for isosteps in transform
to 4 and transform to 2 sequences.
Incidentally, can you think of other
transforms which will necessarily lead
to a final loop? I don't mean trivial
transforms such as "If n is odd, then
add 1, else divide by 2." I mean,
rather, simple transforms which vyield
surprising results. And what's more, the
transform ought to have the same result
for any number. That is, the transform
"If n is odd, then add 1, else subtract
1" will of course lead to a simple loop
(and right away). But it won't be the
same terminating condition for every
number. Just to get you started, here is
an alternative version of the transform

to 1: "If n is odd, then N=3*N-1, else
N=N/2." In this case, 1 1is subtracted
from 3*N instead of being added to 3*N,

steps. That's a nice symmetry. Let me as it is in the original transform to 1.
invent a term. I'll call any number which Will this work? And if so, will there be
Listing 2

10 REM Program ISOSTEP
20 TN = 1 : REM Terminating Number.
st 30 LO = 1 : MAX = 100 : REM Look at numbers LO .. MAX,
Listing 1 40 PRINT
10 REM Program TRANSFORM TO 1 50 FOR J = LO TO MAX
20 PRINT 60 N =J
30 INPUT "Enter any positive integer: ";N 70 REM Transform it to TN and count the steps it takes.
40 IF (N <> INT(N)) OR (N < 1) THEN 30 80 COUNT = 0
50 COUNT = O 90 IF N = TN THEN 160
60 IF N = 1 THEN 120 100 IF N/2 <> INT(N/2) THEN N = 3*N+1 : GOTO 120
70 PRINT N; 110 N = N/2
80 IF N/2 <> INT(N/2) THEN N = 3*N+1 : GOTO 100 120 COUNT = COUNT+1
90 N = N/2 130 GOTO 90
100 COUNT = COUNT+1 140 REM Print the original number and its step count.
110 GOTO 60 : REM Repeat until N = 1. 150 REM If the number is an isostep, print it in red.
120 PRINT N : REM It will be 1 when it gets here. 160 IF J = COUNT THEN PLOT 17 : PRINT J,COUNT, : GOTO 180
130 PRINT COUNT" steps." 170 PLOT 18 : PRINT J, : PLOT 23 : PRINT COUNT,
140 GOTO 20 180 NEXT J

17

the same isosteps as in the original
transform to 1?

All this is to whet your appetite.
There's a lot to investigate here. For
example, do prime numbers play any
peculiar role in the transform to 1 (or
4 or 2)? Are there numbers whose step
count is prime? Are there prime iso-
steps? Is there a relationship between
any two numbers which have the same step
count (e.g., 5 and 32)? Is there a rela-
tionship between any two isosteps? Is
there any way to predict what a number's
step count will be, or whether it will be
an isostep? And.... Well, you get the
idea.

Happy transforms. @&

En@lagsified Aduertising

dkhdhkkNkhkhkhkkkdhhihdhiitddkhikikfhiokhfihkfdikt

FOR SALE: Compuccler II V6,78.
16K RAM. Analog board needs repzir.

Sold as is. Money order only, please,
$450,

Roland Lundberg

1506 44th Ave. SW
Seattle, WA 98116

Kkkkhhkkkhkhikbikkiikikkdhkhhrhkkiiirikihkikitdk

FOR SALE: Intecolor 3621 V8.79.
16K, standard keyboard. Includes
Programming and maintenance manuals.
Excellent comdition. Asking $800.

Stephen Zehl

19 Courtenay Circle
Pittsford, NY 14534
(716) 586-3787

khkEhfkhdkhikisklkkikkhkkhiikiikkihkhkirikdik

Repairing BASIC Line Numbers

by Mike Barrick
Valley Forge High School
9999 Independence Blvd.
Parma Heights, OH 44130

A short time ago a single bad memory
location in my CCII damaged many of my
programs. When parts of the program would
scroll through the bad memory location,
the ASCII value would change by sixteen.
For example, the letter "T" would become
"D" because the ASCII value would be
reduced by sixteen.

After replacing the bad memory IC, I
began to repair the programs. This was
time consuming, but easy using FREDI.
Unfortunately, some line numbers had been
changed, and FREDI doesn't edit line
numbers. I had repaired a few line num-
bers in the past using tips from Dennis
Martin's article "How to Poke Without
Getting Jabbed" in the Dec/Jan 1980
Colorcue, but this time there were too
many to repair using that method.

I wrote the following program to ap-
pend to each program to be repaired. The
program is begun with a RUN 65000 and
requests a START ADDRESS where a scan of
memory is to begin looking for a line
number. The starting address is usually
the beginning of BASIC in RAM, but may be

1000 REM
2000 REM *
3000 REM *
4000 REM *
5000 REM *
6000 REM *
7000 REM *
8000 REM

a best guess of the memory location where
the line number that is to be repaired is
located. Beginning at the starting ad-
dress, the program scans memory looking
for a zero which indicates the end of a
line of BASIC coding. It then jumps to
the memory location of the next line
number which is contained in the third
and fourth bytes beyond the location of
the zero. The line number is converted
from hex to decimal and displayed. If the
line number is the one to be repaired, it
allows a correction to be made. If there
is still quite a span to the desired
number, enter a zero and the program
returns to START ADDRESS for a better
guess at the location of the desired line
number. If the second guess brings the
user a few line numbers before the de-
sired one, a move to the line number to
be repaired can be made by entering the
same line number as displayed and the
program moves to the next line number.
This procedure can be repeated until you
reach the line number to be repaired. &

LI 22222222222 2222222222222 2222 222 X2 s st s X

*
CORRLN - REPAIR DAMAGED LINE NO. *
M. P. BARRICK - VFHS - 07/83 *
ALL INTECOLORS ~ USE CORRECT AD *
*

*

AARKKARRKRAAR KA RARAAAR R AR RRRR AR AR AR IR Rk hhhhhhkhhhh

65000 REM APPEND THIS PROGRAM TO REPAIR A DAMAGED LINE NO.
65050 REM BASIC ON THE CC-II STARTS AT 33434

65100

INPUT "START ADDRESS - ";AD

65200 REM LOCATE FIRST LINE NUMBER AFTER START ADDRESS

65210
65220 AD=AD+1
65250 GOTO 65200

IF PEEK(AD)=0 THEN GOSUB 65300

65300 REM CONVERT LINE NUMBER TO DECIMAL
65310 LN=PEEK (AD+3) +PEEK (AD+4) *256

65330 GOSUB 65400
65340 AD=AD+4
65350 RETURN

65400 REM DISPLAY LINE NUMBER AND CHANGE IF DESIRED

65410 PRINT
65420 PRINT "CHANGE LINE NO.
65430 IF CN=0 THEN GOTO 65000

65440 HB=INT(CN/256)

";LN;" TO~- ";

: INPUT "";CN

: LB=CN-HB*256

65460 POKE AD+3,LB : POKE AD+4,HB

65490 RETURN

19

Animated Hourglass

by Tom Andries
815 W. Douglas Rd. Lot #1
Mishawaka, I[N 46545

David Suits's book Color Graphics for
the Intecolor 3651 and Compucolor II
Computers impressed me with the speed and
elegance of animation that could be
achieved using the PRINT command. It also
made me wonder how effective and impres-
sive the various graphic plot modes
incorporated in the CCII could be in an
animated situation. At first it appeared
that most of the plot graphics were too
sluggish for most animation purposes,
but I finally decided that what we
needed was merely an appropriate subject.
Sand flowing in an hourglass struck me
as being a suitable compromise for speed
and realism.

The appended program is well-remarked
and should generally be easy to follow.
However, a few words are in order about
the routine and subroutines which move
the "sand" from the top of the hourglass
to the bottom.

Lines 1070 through 1500 cause the
screen memory location where the "sand"
is, and where it is going, to be PEEKed
at in a predetermined sequence. The
contents of a given location will then
determine what is POKEd in by the sand
movement subroutines. Only the locations
actually being operated on are looked at,
to keep the routine as speedy as pos-

sible. My first intention had been to
sequence through the affected cursor
positions, but it soon became clear that
it would be more efficient to use plot
positions and derive the respective X

and Y coordinates and screen memory loca-
tions from them.

The term "pass" in
material refers to the

the descriptive
manipulation of

20

the hourglass: top-left, top-right,
bottom-left and bottom-right, in that
order.

The routine moves one "grain" of
"sand" at a time in each of these quad-
rants until the right-center column (plot
column 63) is reached. Then the starting
pass values are reset for the next dia-
gonal line in each of the four quad-
rants. .

The subroutines to drop and heap the
sand use a modified form of the PLOT
2,254,x plot submode. Those of you
familiar with the plot submode know that
each cursor position on the screen is
composed of eight blocks, called plot
blocks, which can be turned on or off
depending on the value specified for x.
Figure 1 shows a cursor position divided

up into plot blocks and the value as-
signed to each ©block. To create a plot

character using this submode, the desired
plot blocks are filled in and the binary
weights associated with each filled-in
block are added together. This is the x
value for that particular character. It
should be obvious that any combination of
plot blocks can be represented by values
from 0 to 254. The value 255, which
should turn all the blocks on, cannot be
used as it is reserved to signal an exit
from PLOT mode.

1116
2] 32
4164
8 (128

Figure 1

Actually the plot subroutine is not
used at all; the desired x values and
CCI codes are POKEd directly into screen
memory. This is not only faster than
using the PLOT mode, but has the added
"advantage of allowing us to use the 255
character, which of course is outlawed
in PLOT mode. A plot character with a 255
value looks just like a space on the
screen, but unlike the space, which is
printed in the current background color,
the plot character is printed using the

found at the top, it has to be yellow,
and at the bottom, cyan. When a space is
found its location determines what re-
places it. If the space is in the top-
left quadrant, plot character 16 is used;
if in the top-right quadrant, plot char-
acter 1; bottom-left, plot character 128;
and bottom-right, plot character 8. From
now on when we fill in any position with
a solid color it will be done with the
255 plot character.

Referring again to Figure 2, and com-

foreground color. paring it to the checks made in the
CCI Code = 30(Cyan on yellow) + 128 = 158
(.
< Left ——m———m ==
O N Right ————m———ooe >
TOP
T 1 1
o
|
Character 16 17 49 51 115 119 247 ?55 127 119 55 51 19 17 1
Plot code ! ;
by
I 1
1
oy
< - Left ——eeeex ﬂ-—)
g—{ ---------- Right ———m—e——o >
b BOTTOM

!
Character 128 136 200 204 236 238 2511::255' 239 238 206 204 140 136 8

Plot code 8 |
CCI Code = 51(Yellow on Cyan) + 128 = 179
Figure 2

Figure 2 shows the sequence used to subroutines (lines 1600 to 1750 for the

advance from one sand grain configura-
tion to the next. The progression is from
the outer edges toward the center. The
very first thing the PEEKer will find in
each virgin screen position is a yellow
space (32 in the even-numbered screen
memory location and 24 in the next higher
screen memory location) at the top, and
a cyan space (32 and 48) at the bottom.
The CCI codes represent black on yellow
and black on cyan, respectively, because
that is what we used when the hourglass
was first drawn. We don't have to check
for the color, though. If a space is

top and 1830 to 1960 for the bottom), we
can see that the plot character value
found in a given screen location deter-
mines the next code to be inserted there.
For instance, if either a 49 or 19 is
found in a screen location at the top of
the hourglass, a 51 replaces it. A 119
will change to either a 247 or a 127
depending on whether the X cursor value
is less than 31, or greater than 30
(left or right side). We only have to
POKE the CCI code in once, right after
finding a space, because once we start
painting a location either yellow on cyan

21

or cyan on yellow,
to anything else.

You may have noticed that the CCI
values are 158 and 179 for top and bot-
tom respectively. At the top we want to
end up with cyan on vyellow which is CCI
code 30, and at the bottom we want yellow
on cyan which is CCI code 51. To each of
these we must add 128. This is how
screen memory knows to use a plot charac-
ter. Without the added 128, we would get
a character from the special character
set.

The routine for the bottom of the
display is similar but not as complex as

it will never change

the top; however, we must also check the
bottom for the straight vertical yellow
line that makes up the "sand stream"

(character 110 from the special character
set). Line 1850 takes care of this.

The subroutine composed of lines 1770
through 1810 provides the correctional
data to keep our starting pass values
accurate when we reach the special tri-

angular characters which form the angled
glass at the top. These are not plot
characters and must be handled differ-
ently. Lines 1730 and 1740 make sure
these change from yellow to cyan when
the adjacent cursor positions are all
cyan. We don't have to worry about this
at the bottom as the sand never gets high
enough to reach the angled glass. All we
have to do there is freeze the X pos-
ition value once we reach the edges, and
increment the Y value as each row fills
with sand. Line 1480 checks the last top
location to be filled in. If it is cyan
we're done except for erasing the re-
mainder of the sand stream.

All in all, I think the action is
impressive and realistic. I was pleasant-
ly surprised to discover that the sand
completes its movement from the top to
bottom in 3 minutes and ten seconds,
which is roughly the time it takes for a
great number of egg and telephone-call
timers of this type. a

1 FEM ELIE T I R T I T S I T T T R L R L I L
2 REM * CANIMATED HOURGLASS” BY TOM ANDRIES +
3 REM * 315 W. DOUGLAS RD. LOT #1 *
4 REM * MISHAWAKAR, INDIANA <0545 *
S REM * SEPTEMBER 21, 1383 *
5 REM R I I L I I A I A L T S I I L L
7 REM

3 REM R URAW THE HOURGLASS Ko

3 REM

18 FPLOT S,a:3REM SET COLOR, BLACK ON BLACK

<8 PLOT 1Z:REM ERASE SCREEN

3o FLOT 1S:REM SMALL CHRRACTERS

4 PLOT 27, 1gsREM WRITE WVERTICAL

S8 PLOT 29:REM MAKE SURE FLAG 15 OFF

o9 REM R ORAW LEFT UFPRIGHT R

78 FLOT 5,36:iREM SET FRAME COLOR - BLACK OHW WHITE

38 FOR == 13TO Z1:REM CURSOR COLUMH FOR LEFT UPRIGHT
38 FPLOT 3. %, LiREM SET CURSOR STARRTING FPOSITION

189 FOR Y= ©TO 3@8:REM CURSOR ROW

1la PLOT Z6:iREM PRIMT CROSSHATCH CHRRACTER

log HERT YiREM NEXT ROW

128 PRINMT :REM COMT LET THE CHARRCTER COUNTER SET WOU!
148 NHEXT X:REM NEST COLUMN

13a RER ki DRAW RIGHT UPRIGHT R

1&g FOR <= 4170 4IJ:iREM COLUMN

17a FLOT I, =, LaiREM SET LCURSOR

lSig FOR Y= gTO Ig:REM RO

15& PLOT 26:ReEM FRINT CROSSHATCH

248 HEAT YaREM HERT ROW

z1la PRINT iRENM WHTCH THE CHARACTER ZOUMT!

228 MESRT RaiEEM HEWT COLUMN

239 REM A LRAW TOF CROSS-MEMEER Rt
24 PLOT 2V, Z4:iREM SET FAGE MODE. WRITE LEFT T3 =IGHT
258 FOR W= ZTO0 Z:REM TWO ROWS HIGH

68 PLOT 3, z2.%:iREM SET CURSOE

278 FOR == Z2TO <& REM 13 COLUMNS WIDE

233 PLOT o:REM PRINT CROSSHATCH

238 NERT wiREM NEXT COLUMH

Jaa PRINT

31a NEST YiREM HEXT ROW

22

389 PLOT 6.6:REM CVAN 0N BLACK
526 PLOT LI4:REM LEFT-TO-RISHT DIRGOHAL

288 FRINT :REM CHARACTER ~0UMT

319 NEST ViREM HEXT RGOW TILL COHE

329 FOR I= 1TO 1808:HEAT I:REMN WATT AUHILE

5T@ REM www START THE SAHD STREAM e

340 PLOT 3.54,3:REM HIDE THE LISIELE CURSCR

5@ FOR Y= L1TTQ 28:REM 12 ROWS OF VERTICAL VEiilW LIfES

258 PLOT 3.1Z7:REM © BLIND CURSOR. SHALL CHRARACTERS

378 PLOT 31:REM COLUMN <CEHTER OF SCREEM)

93@ PLOT Y:REM ROW

598 PLOT S1:REM BELIMD CURSCOR CCI CODE - WELLGW oM £'WAM

1868 PLOT 116:FREM VERTICAL LIME <SEE CHARRACTER SETS

1818 FOR I= 17O 1S:MEXT I:REM WAIT A SIT TO SLGW STRESM

1326 HEXT YiREM NEST RGh

1638 REM

1648 REM wwk ROUTINE TQ DROP SAND ek

1658 REM

1668 REM -SET UP STARTING FARAMETERS

1873 C= 8:REM COUNMTER TO KEEF TRACK OF PRASSES

1886 TL= 52:REM TOP-LEFT COLUMH

1898 TR= S3:REM TOP-RIGHT COLUMM

1188 BL= SZiREM BOTTOM-LEFT COLUMH

1118 BR= 6J:REM BOTTOM-RIGHT COLUMN

1120 Tv= 3S:REM TGP ROl

113@ vB= L1:REM BOTTCM RO

114@ LT= 47:iREM TOP-LEFT EDGE LIMIT

1158 RT= 7S:REM TOF-RIGHT ECGE LIMIT

1168 LB= 43:iREM BOTTOM-LEFT ELGE LIMIT

1178 RB= 32:REM BOTTOM-RIGHT EDGE LIMIT

1186 vT= 5S:1REM TOF ROW LIMIT

1138 BY= L1:REM BOTTOM ROW LIMIT

128@ C5= Z3772iREM SCREEN CHECK FOR TGP EDGE LIMIT ADJUSTHMENT
1219 LS= 32:REM CHECK WALUE FOR TOF-LEFT DIAGOHAL FLOTTING
220 REM - THE ROUTINE -

1238 A= INT TL- 20:FEM DERIVE TOP-LEFT COLUMN FROM FPLOT FOSITION
1248 v= INT <{1Z7- TW>~ 4)3REM LERIVE TOF-LEFT ~OW

1259 3C= 128% Y+ K+ <+ Z367ZiREM CALCULATE SCREEH MEMORY LOCATIOHN
1268 GOSUB 161@:REM SEE WHAT S IN THERE AMD REFLACE IT

#= INT (TR~ 23:iREM
SC= 123% Y+ K+ s+
G0SUB lela:REM

DERIVE TOP—-RIGHT COLUMM
23872 REM CALCULATE TOF-RIGHT 3SCREEN LOCA
REFLACE THE CONTENTS -

TL= TL+ (:iREM UPDATE TOP-LEFT PLOT FOSITION
1319 TR= TR— {:REM UPDHTE TOP-RIGHT FLOT POSITION
1320 Tv= TVY- 1:RENM UPDHTE TOP FLOT FOSITIOM =G
1536 IF TR= BZTHEMW C= C+ 1:G03UB 177@:REM SET UF HEST FRZS
1349 ¥YB= YB+ LiREM UFDATE BOQTTOM ROW FLOT FGSITIONM
13508 <= INT (BL- Z2):iREM DERIVE BOTTOM-LEFT COLLMM
1388 Y= INT ({127- YBi~r 40:REM CERIVE BOTTOM-LEFT RGU
1378 5C= 128# Y+ i+ X+ ZBBT21REM CALCULATE SCREEM HEMORY LOCATION
1358 GOsUB 1338:REM SEE WHAT S THERE, FOKE SOMETHIMG HEW
1338 BL= BL+ 1:REM UPDATE BOTTOM-LEFT FLOT POSITVICH
1408 IF Bl.= oITHEW BL= oz~ CiREM ZET UP FOR MEXT PASZ
1418 IF BL= < LBTHEW BL= LB+ l:REM FARST LEFT EDGEY FREEZE ITY

w= INT <BR. 2)iREM DERIVE BOTTOIM-RIGHT COLUMN FOZITIOHN

A
¥
v
-
7
7
v
-
-
2
3
3
~
3
e
3

(RS
oot oa®

DO
i
=

XX
L

[N
i

&a

335k

==t

37

REM
FOR Y=

FOR

<970
PLOT 3. 22, ViREM
= Z2TO <@:REM

URALW BOTTOM CROSS-PMEMEER
TWa ROWS

SET CURSOR

12 COLUMMS

ek
I8 REM

B =

FLOT 26:REM FRINT CROSZHATCH

NERT «wiREM HEST COLUMN

PRIMT

NEXT YiREM NE=T ROW

REM Auokde DRAW TOP AND BEOTTOM STRAIGHT-SIDED GLASS

PLOT o5.48:REM
4TQO BiREM

W=

FOR

PLOT 3,22.°
FRINT SPCK
NEXT “ViREM
PRIMNT :REM
FEM

:
¥

FOR W= ZoTO
PLGT 3.! 22) Y
FRIMT SPCK
NERT Y¥:iREM
FRINT :REM
REM
PLOT 3.

=
e & ¥

PLOT 1Z245REM

PRINT 5SPCx

PLOT 126:REM

PRINT ::REM
REM

REM SET
w= ZZIREM
SP= L7iREM
FOR Y= 370
A= K+ LIREM
SP= 3P—
PLAT 3, K.Y

PLOT 124:REM

PRINT 3SPCx

PLOT 1263REM

PRINT :REM
NEXT YiREM
REM

PLOT
PLOT
PLOT
REM

g
S

3,311

129:RE

S1:REM

SP= - l:iREM
FOR Y= 1VTO
= s- LiREM

SF= 3P+ LiF:

PLOT B,s5:REM

FILOT 3; ;‘:) ":":

PLOT 126:FREM
FLOT s.43:REM

FRIMT SPCK

e

R
PLOT o.24:REM

2iREM

&, 63 REM

SET GLASS COLOR <BLACK ON CYAMND
:REM

133 REM
NEHT
CONE

SET CURSOR STHERT
PRINT CWAN SFARCES

ROW

AT THE TOF

BOTTOM

THREE ROWS OF
SET CURSOR START
YFN SPACES

Z3:REM
s REM
1303 REM

NEXT RO
DONE AT BGTTOM
ORAW CLEARR SLOFPED GLASS AT
CURSOR START
LEFT-TO-RIGHT CIAGOHAL
1705 REM VAN SPACES
RIGHT-TO-LEFT DIAGOHAL
DOMNE WITH CYWAN
FILL TOP WITH 3SAND
BLACK ON “ELLOW
JRLUES

ik TGF
REM
ZW3EE

LSEE
s

STARTING
COLUMN
NUMBER OF 'YELLOW SFACES
1S:REM ROW HUMEERS
IMCREMEMT COLUMH
DECREASE MNUMEER CF
CURSGR START
LEFT-TO-RIGHT OIAGONAL
SP3 s REM YELLOW SFACES
RIGHT-TO-LEFT UIAGOHAL
CLEAR CHARACTER COUMT BUFFER
NEXT ROW UNMTIL CONE AT TOF
ek URAW "WRIST ™ OF
VAN ON BLACK
SET CURSOR TGO CEWMTER OF LDISF
DRAW ~~SHAFPED CHARALTER <322 CHA
Ak DRAW SLUFED BOTTGM GLASS
COLUMM START
NUPMBER OF SFRCES
23 REM HIME RGWS
DECREMENWT COLUMH ~O03TT IS
[HZREASE HUMBER GF
CYEN DM BLACK
SET CURSGOR- 3TRRT
RIGHT-TO-LEFT CIAQSiAl
BLACK N CYAEH
ISP REM CYAr SFRCES

SFRACES &Y

“

REM

53 REM
|

SPACES

EM

FEM

GLASS

ik

LAk

=3

THREE ROWS OF STRAIGHT-SIDED GLASS

STRAIGHT-5IDED GLASS

14358 5C= 123# Y+ K+ <+ ZBO7ZIREM CALCULATE SCmEEM MEMCRY LICATION
1448 GO5UB 138T8:REM CHECK IT AMD CHAMGE IT

1458 BR= BR— 1:REM UPDATE BOTTOM-RIGHT PLOT FOZITION

14680 IF BR= oS2THEW BR= oI+ C:WB= BYiREM SET oF eZia¥ o fhss

14v89 IF BR= > RBTHEHW BER= RB- 1:B%= BY¥+ 1l:Yb= IViREN m1anT Seast
1480 IF PEEK <Joe3S4,= ZSTTHEM. 1S2&

1490 REM AN ZPACE THEREY DOME. EHCEZFT FOR ZLZAM-LUF.

1508 GOTO 1230:REM DEOF SOME MORE ZAMD

1519 REM ek GET RIL OF REMAIMIMG ZANG STREAM Py
1526 FOR Y= (VTOQ 22:FEM FILE ROWS

1538 FLOT 3,127,31.%,S1:REM ELIMD CURSOR — BLRCE D DA

1548 PLOT 32:REM FRIMT SFPACE QUWER “3AMD STREAM

1S5S0 FOR I= 1TO 1S:HEXT I:REM WHIT A BIT FOR RERLISH

1Sel NEXKT YiREM DO IT AGAIN

1S7V9 PLOT s, 2:REM BACK TO HORMAL FRINT

1572 PLOT 3.8.13

1574 FPRINMT "MOUR S-MINUTE ":PRINT

1576 PRINT “EGG I5 *

1578 PLOT 3.5, 17:FRINT "!":PLOT 3,25

1588 PLOT 27, 11:REM EMABLE SCROLL MODE

1S58 END

1686 REM 4ok SUBROUTIHE TO DROP SHHD ke

1ALA_IF PEEK. (SCO=_32ANG > JETHEM POKE SC. 1iPOKE S0+ L
52 © ¢50)= S2THEM POKE 5C. 15:FOKE 3C+ 1, 153:5G0T0

iZES %E iggt £5Cy>= 1OR PEEK «5C»= LSTHEM FOKE 5C. 17:GOTO

1633 IF PEEK ¢5C>= 17AMND x> 3OTHEM FOKE 5C.13:50TC LVI@

1658 IF PEEK £5C>= 17THEM POKE 3C.43:G0TC 1736

1668 IF PEEK (S5C>= 430R PEEK <{5Cy= 19THEM POKE SC.S1:30TC 1738

1670 IF PEEK (3Cr= SIAND %> SOTHEN POKE 5C,SS:G0TO LT3

1688 IF PEEK <5C>= S1THEMW POKE 5C.115:GOTO 1739

1699 IF PEEK (5C)>= SSOR PEEK <5C)= 1ISTHEN FOKE SC. 11%:E0TO L7783

1788 IF PEEK (5CO= 119AND x> 3BTHEM POKE 5C, 127:50TO 177&

1718 IF PEEK ©5Ci= L19THEN POKE 5C.,247:GOTO 1779

1720 IF PEEK ©5Cy= 1270R FPEEK <35C»= 297THEM POKE 3C. 259

1730 IF X< SZAND M+ W= LSAND PEEK (3Cr= ZSSTHEN FOKE 50— 2. LI$:PORE

SC- 1,48:L5= L5+ 2

1740 IF X+ Y= $8AND PEEK <3Cr= ZSSTHEW POKE 3SC+ Z,1Z2:FOKE SC+ 3.43
1¥358 RETURN’

1758 REM Ak SUBROUTINE TG RESET TOFP FARSS VALUES Atk

1778 TL= 82- C:TR= B3+

1788 IF PEEK (CS5y= 2SSTHEN LT= LT+ 2:RT= RT~ Z:WT= WT- ZiCZ= C3+ lzg
1798 IF TR= > RTTHEN TR= RT- 1:TL= LT+ 1:3%T= ¥T— L:iT¥= VWT:350T0 1Sid
1308 TY= ~T

181e RETURH

1820 REM e SUBROUTINE TO ACCUMULATE SAND Kk)
1338 IF PEEK «<5C>= 3J2AND K> ITBTHEN FOKE 3C.3:iFOJKE 5C+ 1, 1738 G0TO {3aw
1548 IF PEEK (5Cy= 3J2THEN FOKE 3C. lZS:FOKE SC+ L. 172:G0TD L35
135@ IF PEEK «<5C)= 1108THEN POKE 3SC.33FO0KE 5C+ 1,172:GOTO [3ei
1368 IF FEEK (5C>= 30R PEEK «3C)»="1Z3THEM PGKE SC. 136:30TO L3
13709 IF PEEK (5C)= 138AND > JOTHEM POKE 3C.148:G3TO [38a
1388 IF PEEK (5CO= 1T6THEMN POKE 3SC.2@d: 30TQ 13ed

1899 IF PEEK «5C>= 149Q0R PEEkK <3CO= ZOBTHEN POKE 3SC, 204:50TO iFed
1388 IF PEEK <3C)= ZO4AMD > TOTHEMW POKE 3C. 205:50T0 L3

1318 IF PEEK (3C)>= 204THEM POKE 35C,ZTo:iG0TQ 1358

1328 IF PEEK (5C>= 2ZBBOR FEEK (5CIr= Z35THEN
1338 IF PEEK (5C>= 2Z5&8AND X> SOTHEN PORE 5C.Z
1348 [F PEEK (5Ch= Z33THEN POKE 35C, 25+4:G0TO
1358 IF PEEK (5C)r= 2320R PEEK (5Cr= ZT4THEH
13680 RETURN

HAVE YOU RENEWED?

It's renewal time for most subscribers. In order for COLORCUE
continue, your subcriptions are urgently needed. Don't delay!

24

to

Garfield Hairy Deal Calendar

revised for CCII by Mike Barrick
Valley Forge High School
9999 Independence Blvd.
Parma Heights, OH 44130

Iy Jony
S8 AOW TUE MO THN FIT A% SUW MOM TO® WED THR FRI BAT

s
{38
1

3 14 15 18 11 12 13 14 13 18
8 17 18 13 1 1 17 1e 19 20 u 12 0B
i3 1

12
» 1 22 13 20
FCE A TR T AT 13 16 @ o1 1 16 0

FROGRANSES ¥Y DM IFDEEE o= VALLEY FOMGE II0F SCBOOL - CLARS OF 1941

1000 REM LA AR AR RS RSRSRRLARERR AR 22 X 2 X2 2R 2 R 2]

*
2000 REM * *
3000 REM * GARFLD - GARFIELD HAIRY DEAL CALENDAR *
4000 REM * AUTHOR : CARL REINKE - VFHS - MAY 1983 *
5000 REM * REVISED FOR CCII - M., BARRICK - 5/83 *
6000 REM * *
7000 REM Redkkrkkdadkkk ke k kA Rk ke k kR AR AR R AR AR AR AR AR Rk R AR *hh
8000 REM

9000 CLEAR 1000 : DIM A(12,42),A$(12)

10000 REM ROUTINE : MAIN PROGRAM

10300 L=0 : PLOT 12 :

10400 PRINT "GARFIELD CALENDAR BY KARL REINKE "
10500 PRINT " COMPUCOLOR II VER 8/79"

10600 PRINT

10700 INPUT "ENTER YEAR NUMBER - ";YR

10800 PRINT : IF Y/4=INT(YR/4) THEN L=l

10900 PRINT "SUNDAY = 1 SATURDAY = 7"
11000 INPUT "ENTER DAY THE YEAR BEGINS - ";D
11100 IF D>7 OR D<1 THEN 11000

12100 PRINT

12200 PRINT "TYPE PERSONALIZED MESSAGE BELOW:"
12300 INPUT "";HS(3)

12600 PRINT

12700 INPUT "TYPE 4 FOR 1200 BAUD - ";PR
12800 IF PR>0 THEN PLOT 27,18,PR

14200 PLOT 27,13 : POKE 33289,80

14400 HS (1) ="GARFIELD'S BIG, FAT, HAIRY, DEAL"
14600 H$(2)="CALENDAR FOR"+STRS (YR)

14700 PRINT : PRINT : PRINT : PRINT

15000 REM BEGIN GARFIELD PICTURE ROUTINE
15100 READ A,B,C : IF A=999 THEN 20000

15300 FOR X=A TO B : PRINT TAB(X);"*"; : NEXT X
16100 IF C=1 THEN PRINT : GOTO 15000

16300 IF C=2 THEN PRINT " BIG, FAT,"; : GOTO 15000
16500 IF C=3 THEN PRINT " HAIRY DEALI";
17500 GOTO 15000

9T

20000
20200
20400
20600
20700
20800
21200
21300
21500
22100
22300
22500
22700
23100
23300
23500
25200
25400
25600
26200
26400
26600
26800
28200
28300
28400
29700

29900
40000

40500
40700
40800
40900
45000
45300
45500
45600
45700
45900
50000
51100
51200
51300
51400
51500
51600
52100
52200
52300
52400
52500
52600
52700
52800
52900
53100

REM BEGIN CALENDAR PRINTING ROUTINE

FOR X=1 TO 12 : READ A$(X),N : IF X=2 AND L=1 THEN N=N+l

FOR Y=1 TO N : A(X,Y+(D-1))=Y : NEXT Y
D=D-(28-N) IF D>7 THEN D=D-7

NEXT X

PRINT : PRINT

FOR I=1 TO 3 : PRINT TAB((80-LEN(HS$(I)))/2)HS(I)
PRINT : NEXT I

OUT 6,12

FOR X=1 TO 6

PRINT TAB((25-LEN(R$(X)))/2);A$(X);

PRINT TAB (49+((27-LEN(AS(X+6)))/2)) ;A% (X+6)

Z=0 : GOSUB 40000

PRINT TAB(01l); "SUN MON TUE WED THR FRI SAT";

PRINT TAB(49);"SUN MON TUE WED THR FRI SAT"

Z=0 : GOSUB 40000

FOR Y=1 TO 6 : Q=1 : U=0 : FOR Z=1+(7*(Y-1)) TO 7*Y
GOSUB 45000 : NEXT 2

Q=49 : U=6

FOR 2=1+(7*(¥Y-1)) TO 7*Y : GOSUB 45000 : NEXT Z
PRINT

NEXT Y

NEXT X

PRINT : PRINT

PRINT TAB(03) "PROGRAMMED BY KARL REINKE";

PRINT " *** YALLEY FORGE HIGH SCHOOL - CLASS OF 1983"
OUT 6,12 : OUT 6,12 : POKE 33265,0

ggﬁTORE 10000 : GOTO 10000

FOR Y=2+1 TO 2+27 : PRINT TAB(Y)"="; : NEXT Y

IF Z=0 THEN 2=48 : GOTO 40000

PRINT

RETURN

REM

PRINT TAB(Q-1);

IF A(X+4U,2)=0 THEN PRINT " ": : RETURN
DN$=STR$ (A (X+U,2)) : IF A(X+U,2)<10 THEN DN$=" "+DNS$
DN$=" "+DN$: PRINT DNS$;

RETURN

REM GARFIELD PICTURE DATA

DATA 33,39,1,19,24,0,26,32,0,40,40,1

DATA 12,18,0,25,25,0,41,44,1

DATA 11,11,2,45,45,1

DATA 10,12,3,46,46,1

pATA 10,12,0,16,16,0,20,20,0

para 26,26,0,30,30,0,36,36,0,42,46,1

paTa 13,15,0,17,19,0,21,25,0,27,29,0,31,35,0,37,41,1
DATA 32,34,1 :

DATA 32,34,1

DATA 35,37,1

DATA 35,37,1

DATA 37,39,1

DATA 37,39,1

DATA 40,42,0,51,57.1

DATA 40,42,0,47,50,0,53,57,0,61,67,1

DATA 37,37,0,41,43,0,46,46,0,51,57,0,59,60,0,64,67,1

53200
53300
53400
53500
53600
53700
53800
53900
54100
54150
54200
54300
54400
54500
54700
55100
55200
55300
55400
55500
55600
55700
55800
55900
56100
56200
56300
56500
56700
56900
57100
57300
57500
57700
57900
58100
58300
58500
58700
58900
59100
59300
59500
59700
59900
60100
60300
60500
62000
62100
62200
62300
62400
64500
64600

35,36,0,38,38,0,41,43,0,45,45,0,49,58,0,61,67,1
33,34,0,37,37,0,39,39,0,41,44,0,47,47,0,49,49,0
51,51,0,53,53,0,55,55,0
57,57,0,60,60,0,62,62,0,64,64,0,66,66,1
35,42,0,49,55,0,57,58,0,66,66,1
35,41,0,52,53,0,57,57,0,59,63,0,65,65,0,69,71,1
33,40,0,46,46,0,58,58,0,65,66,0,68,68,0,70,73,1
32,34,0,38,40,0,45,45,0,59,59,0,66,72,1
32,35,0,40,40,0,42,43,0,45,45,0
58,58,0,66,66,0,68,68,1
30,36,0,39,41,0,44,66,0,68,69,1
31,32,0,38,38,0,44,44,0,46,47,0,53,55,0,57,57,0
60,62,0,64,68,0,70,70,1
30,33,0,38,38,0,43,45,0,49,56,0
59,63,0,69,69,0,71,71,1
30,35,0,38,38,0,46,46,0,57,59,0,65,65,0,70,71,1
31,36,0,39,43,0,47,56,0,60,64,0,66,66,0,70,71,1
29,33,0,69,70,1
23,30,0,33,33,0,39,39,0,62,62,0,64,68,0,70,70,1
21,25,0,28,30,0,34,38,0,42,42,0,62,62,0,67,69,1
19,25,0,29,30,0,36,46,0,61,61,0,68,68,1
18,25,0,30,30,0,41,43,0,60,60,0,62,63,0,66,67,1
17,20,0,24,25,0,31,31,0,59,64,1
17,20,0,25,25,0,58,59,1
16,21,0,27,27,0,30,35,0,59,59,1
16,17,0,20,22,0,25,25,0,27,30,0,32,37,0,60,60,1
16,18,0,21,23,0,26,29,0,33,34,0,38,39,0,60,60,1
17,19,0,28,28,0,32,32,0,38,40,0,61,61,1
11,21,0,37,41,0,61,61,1
08,14,0,17,17,0,20,23,0,36,41,0,45,45,0
47.47,0,52,52,0,54,54,0,62,62,1
06,10,0,13,13,4,18,18,0,40,41,0
46,47,0,52,53,0,62,62,1
0s5,07,0,09,11,0,17,25,0,38,41,0,47,47,0
52,52,0,62,62,1
05,07,0,14,19,0,22,28,0,35,41,0,47,47,0
52,52,0,62,64,1
05,09,0,13,13,0,16,18,0,22,28,0,38,45,0
47,47,0,52,58,0,61,61,0,63,63,0,65,65,1
06,06,0,17,17,0,22,28,0,44,44,0,46,47,0
54,54,0,57,57,0,59,59,0,61,61,0,63,63,0,65,65,1
06,07,0,23,28,0,41,41,0,45,45,0,48,48,0
54,54,0,57,57,0,59,60,0,62,62,0,64,65,1
08,09,0,25,28,0,42,42,0,45,45,0,47,48,0
54,54,0,57,63,1
09,11,0,24,31,0,36,36,0,42,42,0,45,46,0,49,57,1
12,23,0,32,45,1
999,999,999

*#**% CALENDAR DATA ***
"JANUARY",31,"FEBRUARY",28
"MARCH",31,"APRIL",30
"MAY*,31,"JUNE",30,"JULY",31

"AUGUST",31, "SEPTEMBER", 30
"OCTOBER", 31, "NOVEMBER",30

"DECEMBER", 31

Back Issues Sale

Back issues of Colorcue are an excellent source of information about
Compucolor computers, ISC computers, and programming in general. Inter-
views, interesting articles, and programs are all there with a touch of
history.

The list below includes every Colorcue ever published. If it's not on the
list, then there wasn't one,

RETROVIEW: Vol. 3, #1 (Dec T79/Jan 80) includes: an interview with Bill
Greene; Compucolor-teletype interface; user group hotline; introduction to
the Screen Editor; PEEKing at BASIC programs; talking to other computers;
making programs compatible with V6.78 and V7.80 software; software
modifications.

MULTI-ISSUES at $3.50 each

___ Oct, Nov, Dec 1978 ___Apr, May/Jun 1979
___Jan, Feb, Mar 1979 ___Aug, Sept/0Oct, Nov 1979
INDIVIDUAL ISSUES at $1.50 each
___Dec 1979/Jan 1980 ___Feb 1980 ___ Mar 1980
___Apr 1980 ___ May 1980 __Jun/Jul 1980
INDIVIDUAL ISSUES at $2.50 each
___Dec 1980/Jan 1981 __Aug/Sept 1981 ___ Oct/Nov 1981
__ Dec 1981/Jan 1982 __ Feb/Mar 1982 ___ Apr/May 1982
___dJun/Jul 1982 ___Aug/Sept 1982 ___ Oct/Nov 1982
___ Dec 1982/Jan 1983 ___ Feb/Mar 1983 ___ Apr/May 1983
___Jun/Jul 1983
POSTAGE
US, Canada and Mexico —-- First Class Postage included.
Europe, S. America -- Add $1.00 per item for air, or

$.40 per item for surface,
Asia, Africa, Middle East -~ add $1.40 per item for air, or

$.60 per item for surface

Discount

For orders of 10 or more items, subtract 25%
from total after postage.

ORDER FROM: Colorcue
Editorial Offices
161 Brookside Drive
Rochester, NY 14618

	Vol. 5, No. 1, Aug/Sep 1982
	Vol. 5, No. 2, Oct/Nov 1982
	Vol. 5, No. 3, Dec/Jan 1983
	Vol. 5, No. 4, FebMar 1983
	Vol. 5, No. 5, Apr/May 1983
	Vol. 5, No. 6, Jun/Jul 1983

