SN NNY N\

W/ S AINT

3

)

A\

w

A

IIII
o

(

A BI-MONTHLY PUBLICATION BY AND FOR INTECOLOR AND COMPUCOLOR USERS

Type1 CALL PFSPC ARSE -
PUSH D Jc ERRO2 '
&1 D,8848H ;ALLOWANCE FO
CALL SUBHD
SHLD FPBi+FBUF;L0OAD ADDRE

POF ’ INPCRT EQU B1C5H

popP PSW
RET CALL RWSE@I ;REWIND INPUT FILE X!

3 ;ENABLE INTERRUPTS PUSH D FSAVE D
I W8 ZEROH&L KBDFL EQU B1DFH ;KBDBUF ADDRESS
DAD gp sADD SP ADDRESS READY EQU 8IFFH 88ACH ;END OF RAM (329
SHLD FCSSP ;5P STORED HERE KBCHA EQU BIFER . SUBHD ;HL-DE=TEXT BUFFE
LXI SP,STACK;SET UP RUNNING STACK LCOINT POP D
CALL SETUP ;WHICH BASIC 2 H,FPBI SHLD FPBI+FXBC;SAVE BUFFER 512
(XI H,LINBUF;CLEAR ALL BUFFERS M,A LXI H,FPBI ;RECALL BUFFER AD
CALL CLRBUF grppM GTPRM: CALL SONQg, - ;SCAN FOR DIGITS
(XI H,PRTBUF A RC NO DIGITS
L temp . GETS THE PRINTER PARMETERSY L 6T WALLE IN (@)
CALL CLRMEM [ELEAR RAM FOR FILE. CALL CALL ERT FROM TABL
W1 A,8C3H JBER e ST gEeRLL IN PRINTER
§TA B1BFH o - 1PC2 sBLANK TO Ef
Lx1 H,EXIT 9 E HOUTECLEARING MEMORY iT0 THE SCRE
SHLD 81COH SCRAPT ER PROGRAM —
MWI i 4,808 DEFAUCY BTD RATE veCTll 5o 1SET UP VE
STA O RATE CALL GIPRY GET PARAY FOR PRINTE 0ZINPCRT
X CA XA A ;ZERD CHAR COUNTER * ERTIMP COv
STA . KBOFL STA CCOINT | NECRTs
(X1 § H,MS68 E ’gg ,EgRg:RSEAgS' Lerd RRUNP INPCRT JL
CALL .™ 0STR @ ;PRINT IT = -) ‘” 178, KEYBOA
(ALL & DRIVE DRIVE NIMBER & DIRECTORY Soy , '\7 or J
CALL VECT OPEN 0PEN THE F 5) AR BPRG SR
MNP FILES ' EN0SH0 DARD CURSIJRL
ERRBZ ;IF CARRYE)/ €N
11
IPC3: SERT TERMINATOR "?ﬁﬁ ARAMETER B S You
jTEXT BUFFER AQDRESS N ONTINUE

sn: 1933 SHLD FPBI*FBUF 1SAVE TEXT s";f‘. D rhg e

INFOT™CALL TYPSET -coansm TEXT AD “DOC” 5 -B:.i,‘_. ER FOR
ET SETUP FILE AND PRINTER PARAMETERS QLTI E0R TR
; GETS INFORMATION FROM COMMAND LINE BUFFE Ue | [reNFANBLFOR SEQU

D RATE) L ADDRESS
INFO: LXI H,BUFFER;POINT AT BUFFER ‘;“, N ZERD COINTER
PUSH PSW 1JLMP VECTOR #31 HPCOH: Y 3R§ER$S;3F12R§§;UN]
PUSH K ;CONTAINS TEXT BUFFER ADDRESS 4R POINT AT BUFFER
LXI— H,FPBI+FTYP 1PCH: v | ;READ FROM KEYBOARI
W1 AD' FIRST LETTER OF /Docr OV e ,i" 'S [1)7 CARRIAGE RE
B N X D,FPBL POINT AT INPUT Fi) h ;YES, 60 PROCESS G
:3; W LXI B,DEFAULT;POINT AT DEFAUL Pl e 78 TS 1T BACK-SPACE -

;YES, GO PROCESS B!
:STORE CHARACTER
1INCREASE POINTER
L ;TEST LO BYTE OF P
49H
INPCOM ;RESTART IF T00 BIi

H,KBDBUF ;POINT TO COUN

VOLUME VI
NUMBER 1

FASBAS
BASIC VARIABLES

FORTH
BOOK REVIEWS
MODEM

Colorcue

VOLUME VI, NUMBER 1 JANUARY/FEBRUARY 1984

CONTENTS

Editor’s Deskco oo 3
COMPILING BASIC: Peter Hiner................ 4
GOING FORTH: Joseph Norris 6

LOADING SRC FILES TO COMPUWRITER...... 8
Myron T. Steffy

THREE BOOK REVIEWS: David Suits 12
GETTING STARTED WITH THE MODEM 13
MORE BLUE SKIEScccvvu.... 14
CUTIES: Tom Napierc...oo... 15
HOW BASIC STORES VARIABLES 16

Gary Dinsmore

ASSEMBLY LANGUAGE PROGRAMMING18
Part XIII: Joseph Norris

BASIC'S FILE STRUCTURE: A Review 22

COVER: A montage of SCRIPT by Myron Steffy.

EDITOR: JOSEPH NORRIS COMPUSERVE: 71106, 1302

COLORCUE is published bi-monthly. Subscription rates are US$18/year in the U.S
Canada, and Mexico (via First Class mail), and US$30 elsewhere (via Air Mail). All
editorial and subscription correspondence should be addressed to COLORCUE, 19
West Second Street, Moorestown, NJ 08057, USA. (609-234-8117) Every article in
COLORCUE is checked for accuracy to the best of our ability but is not guaranteed

to be error free.

2

A CALENDAR PROGRAM is
available from Christopher Zerr
at 14741 NE 31st Unit, Bellevue,
WA 98007. Written in Basic, it
will print a calendar for any
year neatly on an 8%2"’x 117
paper through your printer, or
on the CRT. Mr. Zerr will make
a copy on your submitted, for-
matted CD disk, or send you a
printout of the program. Please
include $2.00 either way for
packaging and mailing.

ROBOT: "Scorpion” isa 97 x
12" mini-wonder that resem-
bles a NASA Lunar Landing
Module built from an ad-
vanced Erector Set. It is
powered by a 6502 CPU, 8K-
bytes of EPROM and 2K-
bytes of RAM. Two 6522
chips provide 32 I/O lines
and four programmable
timers. It has sensors to
detect obstacles in its path,
a two-axis optical scanner,
with 1.5 degrees of scan per
step, which will move over a
300 degree plane both vert-
ically and horizontally.

Visual patterns can be dis-
played on a monitor. Addit-
ional hardware includes
sensing bumpers, loud-
speaker, two ground tracks,
two “eyes” and four motors
- two of which are drive
wheels. Operating froma 12
volt DC power supply, “Scor-
pion’ may be programmed
through any RS232 bus. As a
kit, with complete assembly
and programming instruct-
ions, it is priced at $660.

Rhino Robots, Inc. PO BOX
4010, Champaign, IL 61820.
217-352-8485.

JAN/FEB 1984 COLORCUE

Welcome to another volume of Color-
cue. The magazine has been brought to
maturity by the dedication of Ben
Barlow and David Suits, our previous
editors. The new staff can only hope to
equal their success, and with a little help
from our friends - you the subscribers
- we have a good chance

We have some ideas for the coming
year but it is only your ideas that can
give Colorcue a meaningful vitality.
While the number of subscribers experi-
ences a gradual decline, the decrease
in membership provides an opportunity
for greater responsiveness to individual
needs, and we hope you will assist in
bringing this about by increasing your
communication with us.

Many of you are in possession of
splendid material for an article which,
for one reason or another, never saw
the light of day. The editorial staff can
help! We will take your rough drafts and
expand them, collaborating with you on
the final copy. If that seems too for-
bidding then throw caution to the wind
and ask a few questions. We can prob-
ably put you in contact with someone
who has an answer. This simple ex-
change can lead to good articles; you
may be sure someone else has wanted
the answer too. It may help you to know
that our readership contains those with
all levels of proficiency, from beginners
in Basic to accomplished assembly lan-
guage hackers. Colorcue serves us all.

There are users involved with other
computers, or thinking about “‘moving
on.” 1t would be valuable to hear how
you are choosing your next machine.
What will you be looking for, and how
will your experiences with CCIl affect
your choice?

Some of us are privileged to be near
active user groups and know and share
with others on a regular basis. Many,
many more are isolated and working on
their own. Let this be the year for know-
ing one another better. The comment
| have heard most often, since | became

COLORCUE JAN/FEB 1984

“...we do it all for YOU!”’

editor, has been an expression of desire
for more interaction with other CCII
users. Several authors have told me they
wish they could hear more from readers
- some response to an article, or just a
note to share ideas or ask questions. The
hobby belongs to us all, and you’ll find
most authors pleased at your respon-
siveness.

We continue to be impressed with the
savings offered by THE COMPUTER
SHOPPER. If you spend more than $50
each year on some kind of computer
supplies you will spend nothing for this
magazine. There are interesting things
popping up in its pages from time to
time that you won’'t read about
anywhere else.

Several requests have been made in
the past for your network mailing ad-
dress. A list of subscriber network num-
bers would be a valuable asset for
isolated CCll users. We are repeating
the request, and for those of you who
are curious but don’t know how to
begin we have included an introduction
to modem communications.

Colorcue is offering some new serv-
ices to readers which are described in
this issue. They are there for you to use.
We are prompt with our correspond-
ence and we can guarantee every
reasonable effort will be made to pro-
vide a useful response to your questions
and comments. Take note of the
SOURCEBOOK, to be printed as VOL
VI, No. 3. and the pamphlets we have
been preparing for specific applications,
such as using the modem and FORTH.

We will try, too, to keep you informed
about user group activities. You can be-
come part of a user group by joining
yourself, even if you cannot attend
meetings. A $10 membership fee pro-
vides access to interesting newsletters
and often a valuable free disk library. So
make a few waves and see what a dif-
ference a little risking can make. It's
going to be a good year!

LINKUP is a new magazine
dedicated to network users and
small computer communica-
tions in general. A monthly,
printed in Minnesota, LINKUP
will contain the latest informa-
tion on data bases —new and
old, reviews of pertinent hard-
ware and software, protocol
descriptions (!), book reviews,
news of upcoming shows, user
group notes, and tips on using
telephone lines at minimum
cost. Charter subscription is
$19.83 for 12 issues. Newstand
price is $2.95/copy. Credit card
orders may be phoned to 1-800-
543-1300, or write to LINKUP,
PO Box 26345, 3938 Meadow-
brook Road, Minneapolis, MN
55426.

FORTH COMPUTER: The
Juniper Ace 4000 is a
dedicated FORTH computer
with keyboard (no monitor
or media storage) for $175.
It may be used as an intelli-
gent programmable control
for AC and DC devices with
a suitable interface. Using
the Z80 microprocessor at
3.25 MHz , the Juniper uses
standard FORTH-79 in ROM,
with 51K-bytes maximum
RAM capacity. The comput-
er may be connected to
monitors and displays 32
columns by 24 lines. Low
resolution graphics are av-
ailable. Storage is by means
of a cassette recorder. A
FORTH programming man-
ual is also available at
$14.95. Computer Distribu-
tion Associates. 17 South
Main Street, Pittsford, NY
14534.

COMPILING BASIC

—Part Two

In Part One we looked at how some
of the simplest BASIC statements are
handled by the Basic Compiler
(FASBAS) and at the same time noted
how these statements are handled by the
Basic interpreter resident in ROM. In
this part we continue to compare the
Basic compiler and interpreter but con-
sider more complicated functions.

We have looked at evaluating
mathematical functions like A+ B-C
from left to right, but in contrast the
function A + C*C requires that B should
be multiplied by C before A is added.
This is achieved by assigning priorities
to the arithmetic operators, as describ-
ed in the CCII Basic Manual. The order
of priority is such that the contents of
the brackets are evaluated first, follow-
ed by the power function, followed by
multiply and divide, etc. Within a pair
of brackets the same priority sequence
is applied, and if two operators have the
same priority, then evaluation is from
left to right. Both the interpreter and the
compiler use the same fundamental
technique for handling evaluation,
which is to compare the priority of the
next operator with that of the one cur-
rently being handled, and if the next has
higher priority, then all current informa-
tion is pushed onto the stack to be
retrieved after the higher priority func-
tion has been dealt with. So in our ex-
ample of A+ B*C, the procedure would
be as follows. Move the contents of
variable A to the Basic Accumulator,
and when the + sign is encountered,
move the contents of the Basic Ac-
cumulator to stack. Move the contents
of variable B to the Basic Accumulator
and then look at the next operator. So
far the operation is the same as for the
simple A + B evaluation.

If the next operator were an end of the
line marker then everything would be set
up ready to pop variable A from stack
to registers BC and DE, and to proceed
with addition (as described in Part One.)

4

Peter Hiner

11, Penny Croft
Harpenden
Herts, AL5 2PD
ENGLAND

But in this case the next operator has a
higher priority, so we must push the +
instruction and the contents of the Basic

- Accumulator (i.e. variable B) to stack.

Now we move the contents of variable
C to the Basic Accumulator and check
the next instruction, which is the end of
the line. So we can go ahead with
multiplication, popping variable B from
stack to registers BC and DE and call-
ing the multiplication subroutine. This
leaves the result B*C in the Basic Ac-
cumulator. Now we pop the previous in-
struction (+) from stack and compare
its priority with that of the next instruc-
tion (end of line.) The comparison tells
us to perform the addition next, so we
pop variable A from stack to registers
BC and DE, and call the addition
subroutine, giving the result A+ B*Cin
the Basic Accumulator. If the Basic
statement had been longer, with another
instruction (such as *D) having higher
priority than addition, then we would
have pushed the + instruction back on-
to the stack, pushed the contents of the
Basic Accumulator (B*C) to stack and
carried out *D next.

So how do we know when we have
finished? The answer is that before we
start an evaluation we push a zero value
to stack, and we treat this just like the
other operators (+, *, etc.). The zero
value has lowest priority, equal to that
of an end of statement or end of line
marker, so it will not be dealt with until
we have completely evaluated all the
other mathematical functions. Then it
will cause us to return from the evalua-
tion subroutine to the routine we were
in previously (e.g. return to a PRINT
routine with the result of evaluation in
the Basic Accumulator).

This is a convenient point to pause
and consider the overall structure of
Basic, which influences the design of
both an interpreter and a compiler. We
can identify three classes of Basic in-

structions, which I will call command,
sub-command and operator.

Commands can be simply defined as
those instructions which can appear as
the first instruction in a line, and which
include GOTO, GOSUB, PLOT,
PRINT, IF, INPUT, etc. This class also
includes LET, which never appears ex-
plicitly in our version of Basic, but is im-
plied in statements such as A =B. These
commands immediately put limits on the
structure of the rest of the Basic state-
ment. For example GOTO or GOSUB
must be followed by a line number and
then an end of statement or end of line
marker. PLOT must be followed by a
mathematical expression (variables, con-
stants, etc.), and after that either an end
of statement/line marker or else a com-
ma to indicate that more PLOTS are
required.

A command can therefore be used to
direct the interpreter or compiler to a
routine specifically designed to handle
all the types of structure which are
allowed in the rest of the Basic state-
ment. The GOTO routine wil
automatically treat the next character(s)
as a line number. The PLOT routine will
automatically treat the next character(s)
as a mathematical expression to be
evaluated and plotted, and will look for
a comma to cause it to loop back and
perform the same task again.

“We can identify three classes
of Basic instructions....”’

Sub-commands are instructions like
THEN, TO, STEP, etc., which can on-
ly appear in statements following
specific commands. Therefore they will
be handled within the routines design-
ed to handle the commands that must
precede them. For example the IF
routine includes a routine to handle
THEN.

JAN/FEB 1984 COLORCUE

Operators are all those instructions
which can appear within an expression
that requires evaluation. This class in-
cludes the mathematical and logical
operators like +, -, AND, OR, =, SIN,
COS, etc., and also some less obvious
operators such as PEEK and CALL.

The importance of this distinction
between commands and operators is
that this concept allows for a very sim-
ple structure within an interpreter or
compiler. The initial command is used
as a key to a table of addresses for the
routines which handle commands.
When the appropriate command routine
has been entered, it will be used as the
main program for interpreting the rest
of the Basic statement. The command
routine will call other subroutines as re-
quired, and in particular will call an
evaluation subroutine (which 1 will
name EVAL) to evaluate any combina-
tion of variables, constants, or operators
that may be present between the com-
mand and the end of the statement (or
other termination point such as a com-
ma or a sub-command). The EVAL
subroutine must handle this evaluation
completely and leave the results set up
in a suitable form for immediate use by
the command routine. Evaluation in-
cludes not only mathematical functions,
but also all forms of string and string
functions, and all forms of comparison
(for example in the statement IF A =
2 THEN..., the portion A = 2 is
evaluated as a comparison and results
in a value of -1 in the Basic Accumulator
if true, or O if false).

The EVAL subroutine is extremely
powerful and is central to both inter-
preter and compiler. There are major
differences in implementation of the
EVAL subroutine in the interpreter and
compiler, but both apply the same fun-
damental principles. We have already
looked at the principles of evaluation
from left to right and in priority order.
Now I will describe evaluation of
brackets, and in particular nested
brackets.

When a bracket is opened, evaluation
of other parts of an expression must be
suspended (everything pushed onto
stack) until the contents of the bracket
have been evaluated as this has the
highest priority. To avoid any confusion
in priority order between items inside

COLORCUE JAN/FEB 1984

and outside the bracket, the EVAL
subroutine treats the contents of a
bracket as a completely new evaluation,
and to do this the subroutine calls itself.
Subroutines using this technique are
described as being recursive, and great
care must be taken to prevent their
vanishing inside themselves like the fabl-
ed Oozlum bird. Each time a bracket is
opened, EVAL will call itself, and it will
then unravel itself as the brackets are
closed again. Although this technique
makes it difficult to follow through the
flow of a program, it does have the vir-
tue of making the program very com-
pact (for example the core of the EVAL
subroutine in the Basic interpreter is less
than 500 bytes long). The EVAL
subroutine in the compiler sorts out
nested brackets and presents them in the
required order for computation in the
final compiled program, so that, for ex-
ample, ABS(INT(COS(A))) is presented
for evaluation in the order A, COS,
INT, ABS.

““...of practical value in speeding
up programs.”’

I mentioned above that EVAL must
also handle strings and string functions.
For a proper understanding of this sub-
ject we should start with some fun-
damental properties of strings. The in-
terpreter stores the references to strings
in the same area as it stores variables,
and distinguishes them by adding 80H
to the second character of the name (e.g.
variable A is stored as 4100H and string
AS is stored as 4180H). The other 4
bytes of a numeric variable location con-
tain its floating point value, but for a
string these bytes contain references to
the address at which the string itself is
stored and its length.

If, for example, line 100 contains the
statement AS$ =‘OK*, then the reference
address will point to the location within
line 100 at which the first letter of the
string is stored, and the length will be
2 characters. If line 110 contains
B$ =AS$, the EVAL subroutine will be
used to evaluate AS$, and will return with
an address in the first two bytes of the
Basic Accumulator (80DE-F). This ad-
dress will point to the four bytes of the
AS$ storage location containing the
references to the address of the string

itself (i.e. OK) and its length, Now B$
can be made equal to A$ by simply mov-
ing these four bytes to the storage loca-
tion for B$, so that both A$ and BS$
point to the same string.

If we then have a statement PRINT
B$, the EVAL subroutine will return
with the address of the four byte storage
location for B$, and this time the infor-
mation stored there will be used to find
the string (OK) and to PRINT two
characters.

The compiler makes use of the same
string subroutines as the interpreter in
the final compiled version of a Basic
program. It saves some time by loading
the string name (e.g. 4180H for A$)
directly to the registers and then it uses
the ROM subroutines to search for the
six byte string location, which is stored
dynamically (i.¢. at run time) in exactly
the same manner and the same memory
area as in a normal Basic program. This
is still faster than in Basic, because the
compiler allocates a separate storage
area for variables at compilation time
and therefore the search for a string
does not get slowed down by having to
sort through a large number of
variables.

Generally the most that I can hope is
that this series of articles will satisfy
your intellectual curiosity, but the next
section may also be of practical value in
speeding up programs. This description
of string contatenation applies equally
to the Basic interpreter and to compil-
ed programs.

When strings are contatenated (as in
A$=BS$ +C$), the resultant string is
stored in the string manipulation area at
the top of memory. If B$ equals
‘GOOD’ and C$=°‘ MORNING’, a
string ‘GOOD MORNING’ will be
created and the AS$ storage location will
contain a reference to the storage ad-
dress and length of this new string. If
we now have A$=A$ + ¢, SIR’, another
new string will be created in the string
manipulation space and A$ will point to
this string instead. But the string
‘GOOD MORNING?’ will be left as a
piece of garbage until the string
manipulation space has been filled.
Then the interpreter will sort through
the strings throwing out garbage and
making available as much free string
space as it can. This can happen at unex-

5

pected times during a program run and
cause a complete suspension of other ac-
tivities for up to several seconds (par-
ticularly if you have increased the
amount of string manipulation space
from the minimum allocation of 50
bytes, by using a statement such as
CLEAR 500). If you set the string
manipulation space at the smallest size
that will allow the program to run
without OS ERROR messages, then you
will spread the effect, causing a lot of
short interruptions, but the overall result
will be a longer run time. For example
you might cause 100 delays of 0.1
seconds (total 10 seconds) instead of 1
delay of 5 seconds.

You can force garbage collection at
any time you want by putting in a state-
ment like W = FRE(X$). A suitable time
would be when you have a message on
screen which will require some time for
the user to read. Beware of collecting
garbage when you want a keyboard
response from the user, as the inter-
preter will not be able to accept a key
entry via a normal INPUT routine, and
the user may respond before the inter-
preter is ready.

The best solution is to minimize the
number of string concatenation opera-
tions, which are slow operations in
themselves, apart from the delays caus-
ed by garbage collection. It is faster to
PRINT A$;B$ than to PRINT A$ + BS.
When you really need to concatenate
strings, do it all at once rather than as
a series of statements repeatedly tack-
ing bits on the end of a string.

I once wrote a program which includ-
ed a subroutine for converting numbers
from decimal to hexadecimal, dividing
the decimal number by 4096 to generate
the first character of a string, then
dividing the remainder by 256 to get the
second character and concatenating
them to make a two character string,
then dividing by 16 and so on until I had
generated a 4 character string. Now I
know why it was so slow!

In Part Three of this series of articles
I will describe how the compiler deals
with arrays and the Basic commands. [J

[FASBAS is available from the author for
$25US. Ed]

FOREIGN LANGUAGE DEPARTMENT:

The indescribable language, FORTH, has been issued in
three different versions for Compucolor computers. One
issue is available for the 3651. It is probably the most-
avoided language invented, yet the experience of FORTH
has much to add to one’s programming education.

FORTH is a language that combines high-level and low-
level language functions. It is fast, self-‘compiling’, may be
used in ‘immediate mode’ during the learning process—just
like Basic—and provides a programming grammer of
unusual proportions. FORTH has a vocabulary of ‘key’
words—just as Basic does—that may be invoked to perform
specific predetermined functions. These words are arrang-
ed in sequence, by the programmer, to provide an ordered
set of instructions.

FORTH uses a ‘stack’ just as assembly programming, but
in a more immediate way. It also uses ‘reverse Polish’ nota-
tion, much as the Hewlett-Packard calculators. As an ex-
ample, here is a FORTH instruction line to add the numbers
‘3’ and ‘5’ and print the sum to the screen:

35¢+. { Type {3} {space) {(5) {space)
() {space) (.})

Here is what happens as FORTH reads the above line:
3 { ‘3 placed on top of stack)

] { ‘3’ moved down the stack and 5
placed on top)

+ { The symbol ‘+’, which aeans
"add the top two numbers on the
stack". These two numbers are
popped off the stack as they are
read, and their sum, ‘8’ is placed
on the top of the stack. ‘+’ is a
FORTH command word.)

. (The symbol ‘.’ means "print the
top of the stack to the CRT. After
this operation the stack is empty.)

FORTH gives you the power to make your own com-
mands. If you feel more comfortable using the word
‘PRINT’ to print, then an instruction early in your program
can make this possible. It is very easy to define a new word
in FORTH. On a separate line, one types a ‘:’ (colon) to
indicate a new word definition. Next the name of the new
word to be defined is entered, followed by the list of instruc-
tions the new word is to signify. Finally, a semicolon is
entered to terminate the definition. Here is an example (note
each element of the definition is separated by spaces):

JAN/FEB 1984 COLORCUE

(This means “hereafter when 1 type
PRINT, perform the ’.’ function.®)

Or I might want to make a word that adds and prints both: '

t PRINTSIN ¢+ . ; (This means “hereafter whea I
type PRINTSIM, add the top two
numbers of the stack and print

their sum on the screen."”)

This introduction of ‘new words’ to FORTH provides the
programmer with a set of instructions (subroutines of a sort)
tailored specifically to his needs. You can actually design
your own programming language and never use a single
word of ‘real’ FORTH, once your own words have been
defined. For this experience alone, FORTH is worth some
investigation.

You may combine your own new words to make still another
valid command. Here is a word defined to perform a car-
riage return and a linefeed:

s CRLF 10 13 EMIT BMIT ; ¢ My command word is CLRF.)

The command word ‘EMIT’ is like the Basic ‘PRINT
CHRS$(x)’ word. Numbers on the stack will be printed in
their ASCII character equivalent rather than as numbers.
Now I may define a FORTH word which I will call ‘GO’,
which will simulate line 20 in the following Basic program:

10 &1 : B=4
28 C=AtB : PRINT : PRINT C : PRINT

First I define my special FORTH word, equivalent to line
20 -

: 60 CRLF + . CRLF ;

And this is how I would simulate the Basic program above,
in FORTH:

16460 (Pat ‘1’ and ‘4’ on the stack,
ther do "60.")

Another consequence of the FORTH experience is that
8080 assembly programming takes on a fresh and creative
aspect. Many stack manipulations of FORTH are transfer-
rable to assembly routines. Since most of us don’t use the
8080 stack fully, FORTH provides us with valuable insights
for increasing the vitality of stack-related instructions.

I was captivated by the method FORTH uses to store disk
files. There need be no disk directory since FORTH uses
the REAd and WRIte disk routines, storing files in 1024 byte
blocks directly to the uninitialized disk. When you want to
call a program to the screen you do so by specifying what
start block it may be found on. If you keep no records on
paper about the storage location of programs, it can be in-
teresting trying to find them again. Nevertheless, there is
a quality of magic about the process.

COLORCUE JAN/FEB 1984

We are probably inclined to stay away from things that
are ‘good’ for us but, for me, the primary value of FORTH
has come from the discipline of total submission to a new,
strange and demanding programming pattern. It is
frustrating at first to lose the facility we have in other
languages as we plod through the elementary learning pro-
cedures all over again. But second and third languages build
on our previous experiences and facility does seem to come
more rapidly with each new language.

FORTH may not become your favorite form of relaxa-
tion, but it is just plain fun to play with - and it’s a good
way to rekindle your excitement at the keyboard. Further-
more it is inexpensive. The Rochester Users Group has a
version, free for the price of a $10 annual membership (Gene
Bailey, 28 Dogwood Lane, Rochester, NY 14625). Bill
Greene has just released a version for CCII and 3651 at no
charge (but PLEASE send him a formatted disk and about
$5 to cover costs: 3601 Noble Creek Drive, Atlanta, GA
30327). There is little documentation from either source but
you will not have too much trouble until it’s time for more
advanced procedures.

There are three tutorial books that can be recommend-
ed. (I needed at least two!) The most accessible is by Thom
Hogan: Discover FORTH. Osborne/McGraw Hill, 1982.
The second is a little more formal—by Paul Chirlian: Begin-
ning FORTH. Matrix PUblishers, 1983. Both of these
volumes are available at leading bookstores or computer
stores. The third volume is very recent: The Complete Forth
by Alan Winfield, published by Sigma/Wiley, NY, 1983.
For me, this third volume was the most appealing since it
spoke to my level of programming savvy—not too little, not
too much, but just right. I was disappointed that none of
them discussed assembly or debugging, but I’m not that far
yet! While none of these volumes is specific to the CCII,
you will find that the FORTH basic vocabulary is fairly con-
stant among different versions and that few special com-
mands are required. All you need to get started is one ver-
sion of FORTH on disk and one of the above tutorials.

[COLORCUE is preparing an ‘interface’ pamphlet to help
you get started with Bill Greene’s FORTH. You may write
for it; the price is $2.00. If you are interested in reading more
about FORTH in COLORCUE, drop us a line.]

A SERIAL TO PARALLEL INTERFACE is
available for $90.00 which connects to
the RS232 output of the CCll and pro-
duces a parallel “Centronics’ output for
a peripher device. It works well with
pen plotters, printers, paper punches,
and robots. Handshaking is provided as
well as 8 Baud rates. It may be ordered
from Engineering Specialties. Phone
805-487-1665 for information (CA).
[Also see Ben Barlow’s do-it-yourself art-
« icle in Vol IV No. 3, DEC/JAN 1982.]

A PROGRAM TO LOAD SRC FILES INTO COMP-U-WRITER

The COMP-U-WRITER series of
word-processors provide three modules
for converting their own brand of text
files into a type-labeled ‘DOC’ that may
be stored with the usual FCS disc SRC
files generated by the COMPUCOLOR
DOS. The DOC file retains the first 40H
bytes of the file as necessary instructions
to COMPUWRITER for reloading. In
this form, the file could not be read by
the Screen Editor but could be printed
by a program named 'SCRIPT’. The
first 40H bytes were simply discarded
and the remaining text loaded and
printed. There has been no easy way of
performing the converse operation, that
is, loading an original SRC type file in-
to the COMP-U-WRITER framework.

The routine labeled ‘LDFCS’ is a
machine language method of supplying
the missing information and then
loading the SRC file into the COMP-U-
WRITER system. It will operate with
versions 3.4, 3.5 and the current 3.6
generally known as the ‘EXECUTIVE’.

The SRC files generated with the
Screen Editor will have their lines ter-
minated with a carriage return and a line
feed. If the file has had its lines justified
by a program similar to ‘SCRIPT’, there
will be extra spaces inserted between
words to stretch out the lines to a
uniform right margin. When ‘LDFCS’
is used to load the file into COMP-U-
WRITER, the line feeds are
automatically removed as they are not
required. There is an option in LDFCS
that will allow you to alter the file so
that the COMPU-WRITER’s justifica-
tion mechanism can operate.

If this option is selected, the carriage
returns are replaced by 0AOH when they
occur singly. This code is a terminator
used by COMP-U-WRITER at the end
of a line prior to justification. When
double C/R’s are encountered, they are

Myron 7. Steffy

retained to provide paragraph spacing
as originally intended. All of these
operations are more or less predicated
on a 60 character line which is all that
will fit on the CCII screen. If the file has
longer lines, LDFCS will still work but
the lines may double back upon
themselves on the screen.

Since 'LDFCS’ uses some functions
within COMP-U-WRITER itself, the
latter must be in place prior to running
‘LDFCS’. This is also true of the other
three modules. The method of operation
is very much like the other modules. Be
sure to do a [COMMAND/RESET]
before loading the COMP-U-WRITER.
After entering the usual preliminaries,
the date and the drive number, exit the
program with [CPU/RESET]. Then do
an [ESC D] and ‘Run’ LDFCS in the
default drive, not the drive number
selected for COMP-U-WRITER text
files. It will come up with a heading
‘COMP-U-WRITER FILE LOADER’
and the option question whether you
want the C/R’s and extra spaces remov-
ed. This defaults to ‘Yes’ as will usual-
ly be the case to allow COMPU-
COLOR’s internal justification
mechanism to operate. If the file is-an
assembly language source file or other
material where ordered columns are
desired, answer ‘No’.

The program will then prompt you
for the file name and type. If it is an
SRC file, you must so state as the
default is ‘DOC’. If it should be a
‘DOC’ type, the file will be loaded in-
tact and the option rendered inactive.
After typing in the file title, press
[RETURN] and in a second or so,
COMP-U-WRITER’s usual heading
will appear with the file you have
selected. All of the usual functions are
available and the text may be treated as
any other file. Files of either type may
be concatenated and the loading will

take place at the point where the cursor
is located when you exit COMP-U-
WRITER. However, make it a rule to
place the cursor at the end of the
residual text and move the appended file
with the [MOVE/BLOCK] function of
COMPUWRITER after loading. When
L/F’s and other unwanted characters
are removed from the file, the text will
be shortened somewhat. Under certain
conditions, you may find vestiges of the
original text at the end of the file just
loaded. Usually exiting COMP-U-
WRITER with [CPU/RESET] and re-
entering with [ESC] [USER] will
straighten things out. Extraneous gar-
bage may be readily removed with the
[DELETE/BLOCK] facility if necessary.

With a 32K system there will be
something over 17,000 (decimal) bytes
available for text. If the file you are
loading exceeds your RAM capacity, a
message will appear on the screen to that
effect. Pressing [RETURN] will take you
back to COMP-U-WRITER and you
will find a partial loading of the text file.
A file too large for the system will have
to be edited in sections. Again, if the tail
end of the text is garbled, exit with
[CPU/RESET] and re-enter with [ESC]
[USER].

.The source code for LDFCS that
follows is set up for assembly at 4000H
where it may be retained and re-used for
multiple file conversions. If you do not
have a Devlin RAM board at that ad-
dress, you may move it into the normal
RAM area by changing the ORG to
8300H. Then at the very end, change the
line ‘DBSIZ EQU SFOOH-DBUF’ to
‘DBSIZ EQU 8E00OH-DBUF’. LDFCS
will have to be reloaded each time it is
used since COMP-U-WRITER uses that
area for 170 buffers and will overwrite
it. O

I

JAN/FEB 1984 COLORCUE

; LDAD COMP-U-WRITER TEXT FROM FCS SRC and DOC FILES

sRemoves L/F’s and C/R’s and excess spaces from SRC files,

i
ORG

fALL
LHLD
SHLD
Wi
5TA
1
faLL
CALL
CPI
INZ
XRA
51A

START:

QUERY: X1
SPHL
CALL
CALL
X1
CALL
LHLD
XCHG
X1
CALL
X1
WI
CALL
W1
LDA
CcP}
N2
X1
W1
CALL
X1
X1
X1
CALL
JC

X1
W1
NV
CALL
JC

X1
SHLD

by Myron T. Steffy, Sun City, Arizona 3/15/B3

8386H

SETUP ;WHICH BASIC ?

8F4BH ;HAS TEXT START ADDRESS
RAMST

Al ;SET FLAG FOR SPACE RENOVAL
LFLG

H,TITLE

0STR

GETANS ;WANT EXTRA SPACES REMOVED ?
‘N’ ;5AY NO FOR ASSEMBLER SRC FILES
QUERY

A .
LFLG
H,BEFFH
sRESET STACK PTR
9124H ;INIT FOR RE-ENTRY
RESET ;RESET DISK IF ERROR
H,MS681 ;FILE SPECS
0STR
UHLAD
H,NOCUR ;MOVE CURSOR OFF SCREEN
0STR
H,BUFFER;POINT AT BUFFER
B, 28
9F47H
M, ;REQ BY OPEN
91C6H ;LOAD ENTRY

1EH ;UNMDDIFIED SCRIBE ?

9ESIH jNO. CALL SAVE CURSOR
H,FPB

8,38

CLEAR ;CLEAR FPB

H,BUFFER

D,FPB ;INPUT FPB

8,DFDOC ;DEFAULT TYPECDOC)

PFSPC ;PARSE FILE SPEC
EB2 ;I CARRY THEN ERROR
H,FPB ;INPUT FPB

A8 ;0LD FILE

M,A

OPEN ;OPEN FILE

£02

H,DBSIZ ;SE@ DISK BUFFER SIZE
FPB+FXBC

COLORCUE JAN/FEB 1984

DSPEC:

T(T18:

T(T15:

T(T17:

TXT28:

T(T38:

SRCFIL:

X1
SHLD
Lba
tePi

)
X1
fALL
X1
Wi
PUSH
PUSH
X1
fALL
JC
pop
pPOP
NV
INX
DCR
INZ

X1
CALL
INC
INZ
JMP

LHLD
MOV
XCHG
LHLD
fALL
XCHG
JC
fALL
fALL
faLL
JMP

MV
INX
SHLD
JMP

LDA
CP1
J2

faLL
CALL
JMP

X1
i
W1

H,DBUF
FPB4FRUF
FPB#FTYP;FILE TYPE ?

‘§’ iSRC FILE ?

SRCFIL ;LOAD FILE ATTRIBUTES
H,FPB ;DOC FILE SPECS
RWSEQI ;REWIND FILE

H,BFBBH ;PARAMETER AREA

B, 48H
H

B
H,FPB
6TBYT
ERROR
B

H

M,A

;ADDRESS

;CURRENT LDAD LOCATION

sHIGH RAM LIMIT

iNOT FULL YET

jCLEAR SCREEN

;ERROR MS6 - RAM FULL
jRETURN TO SCRIBE
N,B {STORE INPUT BYTE

8F40H
TXT19

CORRECT COUNT

FPB+FTYP
’§’ {SRC FILE ?
5TH1

98D2H
8AS58H
92784

;CLEAR SCREEN
1RE-JUSTIFY TEXT
sRE-ENTER

H,PARA ;PARAMETER LIST
D,8F9BH ;PARAMETER AREA
8,48H

EX1T:

£82:

ERROR:

sTal:

5T82:

10

fALL
1
fALL
JMP

W1
LHLD
DexX
SHLD

JHP

PUSH
fALL
pPOP

fALL
fALL
tALL
JHP

fALL
X1
fALL
fALL
P

MOVDH
H,FPB
RWSEQ]
TXT18

M,8A0H
SAWDR
H
8F48H

T(T38

B
98D2H4
B
EMESS
RESET
WAlT
TXT28

98D2H

$PUT 1T IN PLACE
iNOW GET TEXT

;END OF CORRECTED TEXT

;CLEAR

;EMIT ERROR MESSAGE

;CLEAR

H,MSG82 ;PRINT ERROR MESSAGE

BALEEH
WAIT
TXT28

REMOVE C/R AND EXTRA SPACES FROM TEXT

LHLD
PUSH
XCHG
poP
PUSH
XCHG
SHLD
XCHG
poP
il
0RA
J2
el
3
ANI
STAX
HOV
LDA
ORA
J2
MOV
el
J2
cel
Nz
W1
STRX
INX

RAMST
H

H
D

SAADR

D
AM
A
BXIT
BAH
SK1P
7FH
D
B,A
LFLG
A
NEXT
A,B
204
SPACE
B0H
NEXT
A, BABH
D

D

;START OF TEXT RAM
15AVE IT

16ET 1T BACK

;END OF CORRECTED TEXT

;L/F5 NOT WANTED

;CONVERT TO ASCII
;PUT CHARACTER AT DE ADDRESS

;1F ZERD, SKIP THE REST

SKIP:

NEXT:

NOPAR:

SPACE:

WAIT:

CLEAR:

GETANS:

GETCHA:

INX
LY
Pl
tZ
NIV
Pl
JINZ
DCX
S§TAX
INX
STAX
INX
INX
P

INX
JMP

INX
X
JMP

INX
RET

cei
Nz
INX
MOV
DCX
CPi
JINZ
INX
NIV
JHP

X1
CALL
CALL
RET

XRA
MOV
INX
DCR
JINZ
RET

W1
5TA
CaLL
JINZ
RET

AN
8AH
NOPAR
AN
B80H
5182

o O O o o

5782

5782

51682

204
NEXT
H

AM

H

204
NEXT
i

AM
SPACE

;SECOND C/R ?

;TWD C/Rs FOR A PARAGRAPH

:SECOND C/R

1SPACE ?
sNQ

;TAKE OUT ALL BUT SINGLE SPACES

100 IT AGAIN

H,9E28H 3"HIT RETURN'

BALEEH
89E48H

A
M,A

H

B
CLEARH

A, 50K
READY
B024H
GETCHA

;WAIT FOR CR

JAN/FEB 1984 COLORCUE

SETUP:

MOVE

OLDTAB:

NEWTAB:

LDA 8881H ;VERSION 8/797

CP1 BBAH
R2 iND, 4.78
IXI H,NEWTAB

XI D,OLDTAB

XI B,LENTAB

LaX D

NV MA

N H

N D

X B

NV A,B

Rs €

N MVE

RET

SYSTEM ADDRESSES(4.78)

MP 262DH ;EMESS
MP 3077 ;PFSPC
MP 26ASH RESET
NP 2DABH ;OPEN

P 30C6H RWSEAI
MP 3220H ;GTEYT
MP 33F4H ;0STR

P 34534 ;OMPDH
MP 343BH ;MOVDH

LENTAB EQU $-0LDTAB

SYSTEM ADDRESSES(8.79)

EMESS: \MP 8ADSH
PFSPC: JMP 14ADH
RESET: JMP 8B848H
DPEN: JMP 11EH
RWSERT: JMP 14FCH
GTBYT: JMP 18624
0STR: WP 182/H
(MPDH: JMP 1889H
MOVDH: JMP 18714

NOCUR:
DFDOC:

TITLE:

HsGe1:

M5662:

PARA:

FPB

READY
VHLAD
LFLG:
RAMST:
SAVADR:

EMFN

FTYP
FBUF
FXBC

BUFFER:

DBUF:
DBS1Z

0B
08

DB
DB
08

0B
DB

DB

DB
08
DB
DB

EQu

EQU
EQU
s
Dw
D

EQU

- tFPB OFFSETS

EQU
QU
EQU

Ds
ORG
Ds
EQU

END

3,64,8,239
'DOC

15,13,18,18,17,9,9,COMP-U-WRITER FILE LOADER’
19,13,18,18,'REMOVE L/Fs and EXTRA SPACES ? ’
28, (DEFAULTS TO YES) “,18,239

13,16,10,19,’FILE NAME *,17,’(SRC or DOC)
21,DEFAULTS TO DOC 18,239

72960H
“INPUT ERROR ON DOCUMENT FILE’,8

46,8,40,0,18,8,8,0,128,37,1,8,8,16,24
32,49,48,255,0,0,0,0,0,0,0,0,0,0,8
9,0,8,8,8,0,8,0,0,0,8,6,8,8,0,6,0,6,0,8
8,8,0,0,8,255,0,8,0,8,8,0,80,0

88F7H

81FFH
81024
1
1
|

15H ;MISS FILE NAME ERROR CODE

88
32
K]

20
($4127)/128%128
8

8EBAH-DBUF

START

We note with sadness the passing of Myron Steffy who died shortly after Christmas. Many of you will
remember his steady stream of stimulating articles in Colorcue and Forum, particularly the evolution of
SCRIPT, his word processor. Many others of us have known him as a supportive, knowledgable friend and
helper. Myron was the first to respond to a call of assistance, whether it be help with a personal programming
problem or the need for an article to enrich a not-quite-complete journal edition. Although in his seventies,
Myron was in the front rank of those working to expand the utility of the CCli. As a programmer he was
thorough and articulate. We will yet see more from him as some later projects are brought to completion
by his associates. It has been a fortunate thing to have him in the Colorcue community.

COLORCUE JAN/FEB 1984

11

N oA~ !;' (o
THREE BOOK

REVIEWS |

L) o=

BASIC FROM THE GROUND UP.
David E. Simon.Hayden Book Co.; 219
pp.; pbk

The reader who wants to know a lit-
tle bit about internal operations of the
computer, as well as learn a high level
programming language, would benefit
from this book. It starts on an elemen-
tary level, assuming the reader knows
little about computers or even algebra,
and clearly and concisely develops a
knowledge about BASIC to a great ex-
tent. The book covers many aspects of
the language and gives good sample pro-
grams to follow along with. The ex-
amples and the text will help the reader
develop good structuring techniques for
his/her algorithms and programs. Exer-
cises are included at the end of each
chapter to review key concepts, and
there are appendices providing ASCII
codes, a glossary, and a brief summary
of BASIC statements.

Although each concept does not have
an individual program which illustrates
it, there are several good programs to il-
lustrate many points at once. Most of
these are immediately adaptable for use
on the Intecolor or Compucolor com-
puter. The book does base its applica-
tions on a time-sharing system, and
some programs would require a little
modification (omitting PRINT USING,
random file commands, etc.). The pro-
grams cover such subjects as sorts, list
look-ups, function graphing, and other
mathematical problems.

BASIC FROM THE GROUND UP is
an excellent general work for someone
who is seriously interested in learning
BASIC for practical applications. The
book concentrates on providing the text
information on BASIC syntax and on
descriptions of the BASIC vocabulary.
It does not cover microcomputer-
oriented BASIC as such, but it does pro-
vide enough knowledge of the language

12

David Suits
49 Karenlee Drive
Rochester, NY 14618

to enable the reader to program on
microcomputers. This is not a book for
someone who is simply interested in ob-
taining a list of programs to be copied
and applied; instead, it gives the reader
the tools necessary to be an effective
BASIC programmer. It is an excellent
reference work for BASIC.

(&0

DISCOVERING BASIC. Robert E.
Smith,Hayden Book Co.203 pp,; pbk

This book begins as a brief introduc-
tion to BASIC, using many sample pro-
grams which illustrate points the author
is currently covering. The work deals
with the fundamental BASIC
vocabulary without going into detail
about the statements. It is intended to
allow the reader to begin programming
immediately, experimenting with each
new concept as it is introduced. As the
book progresses, the example
algorithms become more complex but
still presented at the neophyte level.
Also, each chapter is summarized with
a brief quiz which is graded by a cor-
responding BASIC program which the
reader actually types in and runs.

Discovering BASIC contains over 50
programs, many of which could be
entered directly into the Intecolor or
Compucolor without modification. The
last 70 pages are entirely devoted to
algorithmic problems (solutions are
given in the back of the book) that in-
clude computing pi, dice throwing,
amortization scheduling and annuities.
Although originally written with time-
sharing in mind, the programs not
directly applicable to Intecolor or Com-
pucolor computers can be easily
modified with a little scrutiny (ignoring
MAT statements, entering BASIC from
the time-sharing operating system, etc.).

In general, this book tends to stress
algorithms as opposed to devoting much
time to the finer points of BASIC.
Within the text, the author has underlin-
ed key words to stress important points,
increasing conceptual understanding.
The immediate hands-on experience idea
is also a very practical approach to the
subject matter. However, the book is
geared to time-sharing systems—not to
microcomputers—and does not use
many of the features of microcomputer-
oriented BASIC (multiple statement
lines, PEEK, POKE, etc.). Further-
more, the book does not go into com-
puter fundamentals such as memory
configuration, but instead takes a pro-
blem solving approach to learning. This
would probably not be a good book for
the person who wanted to learn BASIC
in depth and to know about microcom-
puter BASIC in particular.

Introduction to 8080/8085Assembly
Language Programming by J. N. Fer-
nandez and R. Ashley. John Wiley and
Sons, 1981. 303 pp. pbk

Here is a most excellent introductory
book for those persons who wish to
begin learning about 8080 assembly
language programming. The book
assumes only a minimum of experience
with computers. (A little BASIC is fine.)
The topics include binary, decimal and
hexadecimal numbers, binary
arithmetic, the ASCII code, the 8080 in-
struction set, pseudo operations, plus
tutorials on writing 8080 programs for
simple number crunching.

The book is a ‘self-teaching guide’; it
has numerous exercises which are to be
done in the spaces provided. (Solutions
are given, too) This is a good approach,
since, after all, learning to write
assembly language programs can be
done only by actually writing them. And
the large format of the book (6-3/4” x
10") provides plenty of space for work-
ing out the frequent exercises and
samples.

JAN/FEB 1984 COLORCUE

The front cover photo is of an In-
tecolor 3600 computer. Alas, there is
nothing in the book which addresses
itself specifically to ISC machines. In
fact, most of the exercises will have to
be altered (in very simple ways) if they
are to be actually entered and run on an
ISC computer, since the RAM addresses
used in the text are not RAM addresses
on an Intecolor or Compucolor.

There is a lot the book does not cover,
but an introductory text such as this is
not meant to anyway. And all those
features specific to ISC machines (such
as ROM routines and color graphics)
are, of course, not covered. The book
is meant to introduce the reader to 8080
assembly language programming, in-
dependently of the particular machine
one uses. And this it does very well. (]

REFRESHER COURSE

You may create and read non-random
files from BASIC. The only restriction
is that the format of the file must be ex-
pressible in terms of the FILE ‘N‘ and
FILE ‘R‘ statements. You may supply
your own extension code.

Example: FILE °N*, "NOTES.P0G*,2,128,1
FILE *N*, "DUACK.SRC®,1,256,1

To recover data from a .SRC file,
created anywhere, you might do this;

188 FILE "R",1,"TEXT.SRC",1;2,64,1
128 GET 1;A8064) ,BS[64)

This feature is very handy for accessing
a data base in .SRC form, updated by
some other program, and passing
parameters to BASIC. You cannot ex-
tract numerical data directly since
BASIC uses a special form for numbers,
but you can retrieve a number in string
form and use A =VAL(AS$) to convert.

A typical example of use might be a
catalog of items with a description,
weight and price. This data is updated
on a screen editor in strict format, but
called by a BASIC program which writes
invoices. (Expanded from a note in
CUWEST, via FORUM.) O

COLORCUE JAN/FEB 1984

GETTING STARTED WITH THE MODEM

Joseph Norris

It’s a whole new world with a modem
connected to your Compucolor II. What
a wonderful way to ‘reach out and touch
someone’ or dispel the ‘Basic blues.’
While the initial cost is significant,
maintaining a modem connection with
others is relatively inexpensive and a
continuing source of entertainment.

With a modem you may communicate
with other computers (not just CCII)
through the telephone lines, or you may
subscribe to a ‘network’ and utilize their
facilities for work and play. A popular
beginning network is CompuServe,
which offers moderate resources at a
low maintenance fee. This summary will
describe the initial steps to establishing
a modem and network connection for
yourself, and define the approximate
costs for putting it in operation.

You will need a modem. This device
accepts output from the ‘printer port’
of the CCII and sends it over an or-
dinary telephone line. It also accepts
signals from the telephone line and puts
them on the CCII input port. (Both
these ports are on the same connector.)
Some lower-priced modems transmit on-
ly at 300 Baud while others add a 1200
Baud capability at a significantly higher
cost. We use the Hayes Smart-
modem(T), a 300 Baud device, which
may be purchased for about $240. (300
Baud is fine for most purposes.) The
modem ‘input’ connects to the
MODEM or RS232 bus connector on
the CCII. Unlike many other peripherals
for the CCII, your modem can be used
with most any computer you may pur-
chase in the future.

The ‘output’ of the modem connects
to a standard telephone outlet, usually
in ‘parallel’” with a telephone handset
which is used to dial numbers in the
usual way. You will need to use the
modem near such an outlet, or run one
to your modem location. We bought an
inexpensive ($9.95) telephone to use with
ours for verbal communications (the
modem does the dialing!).

Modems are available with a large
variety of features, too many to describe
here in detail. Some modems will store
telephone numbers for you, dial
automatically, turn on your computer if
a call is received and you’re not home,
etc. Our recommendation is that you
‘keep things simple.” CCII users have
had geod experiences with the Hayes
and the CAT Novation modems. You
will need to do some homework if you
propose to add a ‘fancy’ device to the
CCII.

You will also need some kind of ‘ter-
minal’ software to enable your CCII to
act like a terminal only. Comtronics has
a nice program for this (TERMII) which
adds some capabilities such as saving in-
coming data to disk for later use, and
transmitting disk contents over the
modem. TERMII costs about $70, and
is available from CCII dealers.

At this point, with the connections
made, you may communicate with
another modem operator directly. The
cost will be the telephone charges for the
connection, just as you would pay for
an ordinary telephone call. Assuming
you had made arrangements with

SUBMITTING ARTICLES

You may submit material to Colorcue in a number of ways. Although we use a
3651, we can usually back up CD disks written with v8.79. If you use
COMPUWRITER make a DOC file from your text and send that. You may submit
SRC files as well. Modem owners may reach us through COMPUSERVE or by direct
connection if a prearrangement is made by mail or telephone. For 3651 users, we
can read MD, FD and DF disks (but not DM). If none of these methods is suitable,
just send your text on paper. If program listings are a part of your material, please
use a fresh ribbon to print them (white typewriter paper preferred) so we won’t
have to copy them and face the possibility of errors.

13

another party to talk at a specific hour,
one of you will dial the other’s
telephone. You may speak to one
another on the phone and by computer.
With your terminal program running,
you speak to him/her by typing on the
keyboard. What they reply is printed on
your screen. Both your message and the
return message can be displayed on the
screen—in different colors— so the en-
tire dialogue is before you. You may
also transfer files of various types. This
means much of your transmission may
be prepared in advance, thus lowering
the expense of the actual connect time.

NETWORK CONNECTION. Possess-
ing the equipment discussed so far, and
using CompuServe as an example, here
are the steps necessary to begin network
communications. If you write a request
letter to CompusServe they will send you
a ‘beginners kit‘ at a small charge. This
kit contains general information about
the network, a CompuServe log-on
number for you to use and a ‘password*
that is exclusively yours. One hour of
connect time is included in the price.
Another easy way to begin is to buy,

data bases in this service, some requir-
ing additional fees. For example, you
may expand your access to Dow Jones
reports, national news wire services and
other more specialized information, in-
cluding news releases by Federal agen-
cies (which can be fascinating). Ac-
cumulated charges will be billed to you
monthly by the network. If they are bill-
ed to Master Card or Visa charge ac-
counts there is no billing charge (*).

CompuServe has installed many
‘local’ telephone access numbers across
the North American Continent so that
‘long distance’ calls are not usually re-
quired, or at least available at reduced
rates. Our CompuServe connection is
only three miles away. A list of access
telephone numbers will come with your
information kit. The charges include a
yearly membership charge, a ‘log-on’
time charge of about $6.00 per hour (if
you use the service between 6PM to
5AM), billed in one minute segments,
and the use of the telephone line from
your local CompuServe exchange to the
CompuServe computer complex (about
$5/hr.) Since actual connect times can

““...a monthly expense of $12 will provide
a goodly amount of entertainment.”’

from RADIO SHACK, a TRS-80
Videotex Universal Sign-up Kit
(#26-2224, $19.95). This kit contains a
CompuServe number, a password, ex-
planatory material, and includes one
free hour of CompuServe time. (This is
often the most inexpensive way to get a
first membership.) Some modems come
from the factory with ‘access’ packages
enclosed, so, if you have the hand set
and line connections, you can begin
right away. Detailed descriptions of pro-
cedures are included. From either
source, instructions are provided for
continuing your membership beyond the
first hour, if you wish. At ‘log-on’ time
your modem will indicate to the network
which Baud rate you are using. The
hourly charge for 1200 Baud is higher
than for 300 Baud.

CompusServe provides a number of in-
teresting services, including a network
mailbox, 128K of memory storage, user
group bulletins, programs and games,
and news items. There are ‘hundreds’ of

14

be very small, these charges are not a
great burden. For example, we access
our mailbox three times each week for
a total log-on time of about 2 minutes.
This includes the time I use sending
messages as well as receiving them. Since
messages can be prepared in advance,
saved on disk, and transmitted from
disk at maximum speed, little actual
connect time is required.

Terminal programs will allow you to
save all incoming data for later examina-
tion at your leisure. If you are playing
a CompuServe game ‘on-line’ in real
time, the 300 Baud rate, billed at one-
fourth the cost of 1200 Baud, is the bet-
ter method. All that time you spend
‘thinking’ on an open line costs money.
Since we do not think faster at 1200
Baud, the 300 Baud rate and costs are
the way to go. The only time 1200 Baud
is cost effective is when long data files
of many pages are being sent. COLOR-
CUE goes to the typesetter by modem
and at 300 Baud it’s a bit costly. But this

....MORE BLUE SKIES

Some primary objections to the CCII
might be a) a limited software base (we
don’t have the rich variety that CPM or
IBM/PC users have); b) only 63
characters per line (we can’t have 120
column screen displays); ¢) ‘poor’
graphic resolution (no spectacular mov-
ing pictures); d) an inadequate disk
storage system (not enough capacity,
non-reliable operation); e) frequent
failures from aging equipment (no ser-
vice facilities, hard-to-get replacement
parts.)

f

only happens once every two months
and represents about 1/50 of total
modem use for COLORCUE.

Colorcue has prepared a small users
manual for connecting and operating
the Hayes SmartModem using TERMII
by Com-tronics. The price is $2.00. This
manual details step-by-step procedures
for those who don’t want to unravel the
puzzle for themselves. To summarize ex-
penses, your initial investment will be
about $350 for modem, handset, cables,
software and CompuServe ‘starter kit.’
After that, a monthly expense ¢f about
$10 will provide a goodly amount of
entertainment. The COLORCUE
editorial office welcomes CompuServe
mailbox communications, so you
already have one place to ‘call.’ Here are
addresses for two popular networks.

COMPUSERVE: 5000 Arlington Cen- ,/

tre Boulevard, PO Box 20212, Colum-
bus, Ohio 43220.

THE SOURCE: 1616 Anderson Road,

McLean, Virginia 22102

* Note: For a defailed survey of net-
works available and the services they
offer, see PERSONAL COMPUTING
magazine, January 1984]

JAN/FEB 1984 COLORCUE

L)

Sounds depressing, doesn’t it! Yet,
the fact is that I use my Intecolor equip-
ment most of every day to work and
play and I am not feeling deprived in
any sense of the word. Sometimes I look
with longing at ALT keys, 600 X 400
screen resolution and feel, frankly, a
desire to escape to something new. It
must be related to all the other feelings
of disenchantment we sometimes feel—
with our jobs, our spouses, our children,
and.... ourselves. Yet, after spending
any amount of time on another system,
I’'m always glad to get back. A closer
look will show the picture isn’t so bleek
after all.

Tom Devlin has given us access to
CPM and, with that, a good disk drive
system. He has made satisfactory resolu-
tions with the 63 character limitation of
the CCII as a monitor for many, many
programs. (CP/M was designed for a 64
character display, by the way.) With
CPM programs and the supurb CCII
utilities available, we have a software
base more rich, and less expensive than
most. (Have you ever added the cost of

your software equivalent on CPM?)
Equipment failures are another mat-
ter. Compucolor (Intecolor) still pro-
vides factory service on the CCII. I have
used it recently, accompanied with a
carefully-worded plea for mercy, with
satisfactory results. There are several
fine service facilities still available from
selected dealers and service stations
across the country. (We’ll provide an
update on this for you very soon.) A
major cause of CCII failure has been
connected with the analog board. Tom
Devlin has a ‘saver’ board for installa-
tion in the CCII which prevents one ma-

-jor failure mode. Write to him for in-

formation. We plan to print a review of
this device in the next issue.

The graphics resolution we can’t do
much about, but if you have been keep-
ing up with the spectacular releases in
CCII game software you're not feeling
too deprived.

Now to the blue skies..... with the cur-
rent access to 4000H, we have a place
to put, in ROM, disk handling routines
for MD and FD standard drives in the

40 track, 128 byte/sector format. What
we need is a System Chip that is
modified to bypass CD disk handlers
and jump to routines in the 4000H space
(in ROM or RAM) for disk handling of
MD (5" standard 92K floppy drives.
4000H might also contain a CD to MD
backup program for transferring ex-
isting files. The keyboard edge connec-
tor is a satisfactory interface for such a
system. If bank selector boards are in
use, Bank 0, under software control, can
be assigned the disk handling function,
with automatic power-up to these
routines. True, some software modifica-
tions might be required for existing pro-
grams, but not much.

Our hardware and software experts
might consider this as a new product
venture. To operate a CCII with MD
reliability and speed would shed a new
light on our ‘old, outdated” machines.
One or two chips and some drives, that
seem fto be reaching very low price
levels, would do it. (8” drives are sell-
ing for as low as $150 each!) Let’s have
some response. Can it be done?!

QT

12
15
40
65
708
8o

100
110
115
120
138
148
150
168
165
178
180
198
300
350
360

COLORCUE JAN/FEB 1984

PLOT 6,3,12,3,20,10 :
PLOT 3,25,15 :
POKE B,195 :

The following program, submitted by Tom Napier, is our first CUTIES in assembly
language and must be entered with precision. It's great in a darkened roomit
Use [COMMAND/RESET] to stop. and reset Basic’s pointers with [ESC] [W] before
calling another program.

PRINT "DYNAMIC ELLIPSE DOODLER"
PRINT "BY TOM NAPIER" : GOSUB 388 : B=33282
POKE B+1,0 : POKE B+2,144 : PLOT 12

A=INT (85535%RND(1))

Z=CALLC(A) :

A=A+] : IF A>65330 THEN A=A-45536

GOTO 78

DATA
DATA
REM

DATA
DATA
DATA
DATA
DATA
REM

DATA
DATA
REM

X=36864 :

READ

POKE X,0

229,33,0,0,66,14,127,83,30,127,205,128,144
205,0,145,124,181,194,18,144,225,2081 ,256

229,122,230,124,111,38,0,41,41,41,41,41,120
230,126,213,95,22,112,25,289,213,120,230, 1
135,135,8,95,122,230,3,131,60,95,151,55,23,29
194,165,144,209,174,119,227,35,124,227,35,230
28,15,15,246,128,119,225,2081, 256

229,120,167,31,47,183,121,31,8,111,35,25,84,93
122,167,31,183,123,31,111,9,468,77,225,201 ,256

GOSUB 358 : X=36992 :
IF =236 THEN RETURN
: X=X+1 : GOTO 350

GOosue 358 : X=37120

Q :

15

HOW BASIC STORES VARIABLES

The Compucolor Programming Manual lists the address
of the pointer to the start of Basic variables. This is a two-
byte address at 32983 and 32983 (80D6H and 80D7H). If
you use a debug program to extract this pointer address,
you can look at the values in the variable storage area after
a Basic program has been run, and while the variable data
is still intact. You will find the variable names and other
important information about them, stored in 6-byte groups.

Like most things having to do with the 8080
microprocessor, these bytes are stored ‘‘basackwards.”” To
find the start of variable storage add 256 * PEEK(32983)
to the value of the byte in 32982.

When you begin to examine the actual variable data you
will need to know how to interpret it. The first two bytes
are the variable name—second byte first. The first byte is
coded to indicate whether the variable is a ‘‘string’” or a
numeric variable. A value greater than 128 indicates a
“string variable’’, and the format in FIG 1. will be used.

UARIABLE NAME STRING DATA NOT
CHARACTERS LENGTH ADDRESS UseD
—L —

2nd¥ Ist Lo Hi

#For 2nd character of variable name (ASCID),
128 = no 2nd character. Subtract 128 to get

ASCII value of character
Fi16 1.

If the value of the first byte is less than 128 then the
variable is numeric. In this case, the value of the number
stored in bytes 3, 4, 5, and 6 is a binary floating-point
representation. Bytes 1 and 2 still represent the second and
first characters of the variable name respectively. If a single
letter variable name is used, then the first byte of the six
bytes is a *“0.”” The last four bytes (32 bits) of numeric value
include a sign bit, 23 bits of floating-point precision, and
8 bits of mantissa. exponet.

Lets take a decimal analogy. The decimal number 132 can
be represented in exponential notation as +1.32 E2. A
binary number can also be represented in exponential form.
In this case it will be +1.00001B E111B. We can interpret
these two versions of the same number position by position.

16

Gary Dinsmore
32695 Daisy Lane
Warren, OH 97053

First, decode the fractional parts of both numbers:
DECIMAL: +1.32 E2 BINARY: +1.000018 E1118

{1840 =1 12249 =1

3 %181 = Y18 8% 2¢-1 = 8/2

2 % 18%-2 = 2/168 B %24-2=0/4
8 % 24-3=0/8
b % 24-4 = 8/16
1 #2°-5=1/32

Next, decode the exponent for each number:
E2 in base 10 = 100 Ei1iB = 27 = 128

Now multiply each number by the exponent:

[% 108 = 108 1 %128= 128
210 % 100 = 39 /2 % 128= 4
2180 % 108 = 2

SN = 132 SIM = 132

To see how this data fits into four bytes, lets draw a pic-
ture. This is how the six bytes for variable ‘“X7”* would look
with the value 132 stored:

Brte 1 2 3 4 b é
Ginary | 08118111 01611860 80886008 90083000 36390i8R 19881888
Hex 37 o8 (1] 1] 84 44
ASCII 7 Y

Lets rearrange the bytes in a more logical order:

Byte 2 [Bytel |Byte5 |Byted |[Byte3 [Brteé

61611086 96118111 09068189 00696909 £800D860 18881988
IXI 17!
Sign bit + 23 bits of fract- Add 127 to
ional precision for value of this byte to

variable., get the power

1 A EEHEEEEFEE 41 E 484444 of 2 for the

(The ‘1 is implied.) fractional
part, = a
number fron
127 to -128.

The following Basic program segment can be typed into
the last few lines of any program and used to list the
variables and dump their values. Remember, only variables

JAN/FEB 1984 COLORCUE

that have been assigned are listed. The variable ‘A’ is
assigned first and then used to transfer the values of the
other variables into a form that can be interpreted and
reported by Basic—without resorting to an elaborate
decoding scheme. (I let Basic do it!) [If ““A”’ is used as a
variable in your program, substitute an unused variable for
““A’". Ed.]

8 CLEAR : A=8
1 REM This assigns A first so we can find it.

99999 END : REM Protective end statement.

64080 Q3=PEEK(32982) + 256 * PEEK(32983)
64881 REM List out all variables except arrays

648168 FOR Qi=Q3 TO PEEK(32984) + 254 * PEEK(32985) - 1 STEP &
64828 1IF PEEK(Q1) > 127 GOTO 44288 : REM Handle strings.
64030 PRINT CHR$(PEEK(Q1+1))>; CHR$(PEEK(Q1)>);" ";

64848 POKE @3+2, PEEK(Q1+2) : POKE Q3+3, PEEK(@1+3)

64841 POKE Q@3+4, PEEK(G1+4)> : POKE Q3+5, PEEK(Q1+3)

64842 REM Transfer value to A.

640850 PRINT A
64868 NEXT : RETURN

64288 PRINT CHR$(PEEK(Q1+1)>;

64218 A= PEEK(Q1)> : IF A>127 THEN A=A—-128

64228 PRINT CHR$(A);"¢ "3

64238 FOR G2=86 TO PEEK(Q1+2)-1

64231 PRINT CHR$(PEEK(PEEK(Q1+4)+ 254%PEEK(Q1+5)+Q2));
64231 NEXT Q2 : PRINT : NEXT Q1 : RETURN

The SOURCEBOOK is coming.....

Colorcue’s SOURCEBOOK will be printed in Vol VI, No. 3, May/June 1984. It is designed to be a compendium
of all materials available for the CCIl and 3651 computers. If you have any material available for these machines,
here is your opportunity to let Colorcue readers know who and where you are. It is particularly important that
dealers who have not advertised for a few months or more make their continued presence known. Please con-
tact our office promptly if you wish to contribute materials. There is no charge in the SOURCEBOOK for adver-
tisements or copy of any kind. Editorial discretion will be used and space allocated as it is available.

The planned contents includes in part: an index of Colorcue. Forum, Data Chip and as many other publica-
tions that are made available to us; a complete documentation of ASCII; a cross reference of printer commands
among Epson, IDS, Okidata, and C. Itoh (Apple and NEC); comparative ROM listings for v6.78, v8.79 and v9.80:
a descriptive catalog of currently available ““commercial” software; user group disk holdings; RS232 definitions
and “standards’’; list of current hardware available for CCII and 3651; up to date dealer list and repair center
list; bibliography of tutorial books applicable to the CCll and 3651; a directory of current Colorcue subscribers
with network access numbers (you may have this information withheld upon written request.)

COLORCUE JAN/FEB 1984

17

ASSEMBLY LANGUAGE PROGRAMMING

PART XIll

Printing the File / Finishing Up!

[This article makes reference to Listings published in Colorcue, Jun/Jul 1983.]

If you have been constructing
SOURCE.SRC with these articles, you
know by now that the text format is not
particularly elegant. Words at the end
of the first text line ‘wrap-around’ to the
second - sometimes with inglorious divi-
sion of syllables. Well, it’s up to you to
deal with that problem. My point is that
the print routine won’t be any better.
What you see on the CRT is what you’ll
get. The important topic for our con-
sideration is how to get those bytes to
the RS232 port.

THE PRINT ROUTINE (See Listing
V.) It is only appropriate to print text
from an open file, so we begin by veri-
fying an ‘open’ file status. Sending our
text characters to the outside world re-
quires a setting of the BAUD rate (rate
of character bit transmission per
second)(1], setting the number of stop
bits, and feeding the characters to be
sent to the operating system subroutine.

BAUD RATE GENERATOR. The
Baud Rate is set by addressing Output
Port #5 in the CCII and 3600 series com-
puters. It expects to see a number bet-
ween 01H and 40H (see BAUDTB,
Listing V) corresponding to baud rates
between 100 and 9600. In the fifth
through tenth lines of module PRINT
(Listing V) we get the ASCII number
entered at the keyboard representing the
selected Baud Rate, and subtract 30H to
convert it to the correct decimal num-
ber, 1-7. What happens next may be new
to some readers; we will change our
decimal number (1-7) to the proper code
number for setting Baud Rate using a
table of equivalents we have installed in
memory at address BAUDTB (‘baud
table’).

We will use the system routine ADHLA
to add the contents of the accumulator
(our selected baud number code) to the
HL register pair. This has the effect of
indexing the HL. memory pointer to the
correct corresponding conversion
number in BAUDTB. [In Fig. 1, ex-
amination of the binary equivalents
mabkes it clear that we are setting one of

18

seven bit switches, one for each Baud
Rate available.] We move the converted
number into the accumulator and send
it to Port #5, which is internally wired
to the baud rate generator in the com-
puter. [2]

STOP BITS. In BAUDTRB, bit 8 is
shown as ‘0.’ This bit sets the number
of stop bits; ‘O’ = one stop bit, ‘1’ =
two stop bits. We can ‘set’ this bit by
adding 80H to our number code in A
(the same as adding 10000000B, thus set-
ting bit 8.) Before addressing BAUDTB,
our program is already set at two stop
bits because we executed a PLOT 15 in
string CLR. Since the data in BAUDTB
will have been transmitted to the printer
just before printing, it will supercede
any previous settings.

THE PRINTER SETUP STRING. A
‘setup string’, here, means a string of
characters you may want to send to your
printer to set characters/inch, margins,
paper positioning, etc. The actual
characters used vary from printer to
printer but are usually Escape se-
quences. Here is a string I might use
with my C. Itoh ‘Prowriter’ to set 12 cpi
and 6 lines/inch index spacing -

SETPR: DB 27,69,27,45,; ESC E, ESC A

The ‘0’ has been added as an ‘end-of-
line’ code so I may send these bytes us-
ing $10UT, with ‘CPI 0’ to detect the
end of the string. However, if I replace
the ‘0’ in the string with ‘239, and set
LOFL to ‘OEH’ (output to serial port), I
can use OSTR to send the bytes (see
COLORCUE, FEB/MAR pl3 and be
sure to change LOFL back to O0H after-
ward.) It is helpful to keep GTCHA in
the routine, even if a setup string is us-
ed, to allow for aligning paper, etc.
before printing commences.

$40UT, the Send Routine. The label
means ‘send one out’ and the second
character is the numeral one, not the let-
ter ‘I’. This routine requires that the E
register contain the character to be sent,
before CALLing. $10UT will obey the
‘clear to send’ line (the ‘handshake’ line)

Joseph Norris
19 West Second Street
Moorestown, NJ 08057

on the RS232 port, waiting patiently
(forever, if necessary) for the printer to
OK the send (digital ‘0’). If there is no
printer connected, the byte will be ‘sent’
into thin air and the routine will
RETurn.

Different printers may require some
modification of the send routine with
respect to carriage returns (cr) and line
feeds (If). My printer may be programm-
ed to do a cr-If both when either
character is received (in non-graphics
mode.) Technically, a carriage return
only moves the carriage to the left side
of the paper. Only a line feed indexes
the paper up one line. In lines 19 and
20 of module PRINT, I send a line feed
(and cr, because of my printer
characteristic) to print a space between
printouts of the text.

The C register, in the print routine,
counts the number of characters printed
per line and the B register counts the
total characters to be printed. We point
to INBUF with HL, move each char-
acter into the E register, send it, and
then adjust the counters and pointer un-
til we are finished. At the end of the first
line (when C=0) we branch to
subroutine XX8 which indexes the paper
for a new line. Here, the cr and If are
sent separately - as an example.

We said in Article XI, footnote [1],
that printers interpret the ASCII char-
acters between 1 and 31 differently than
the Intecolor or Compucolor CRT. Fig.
2 is a table of the printer’s interpreta-
tion with a brief explanation. While this
chart shows the expected function of
each code you must check your printer
instruction manual for possible
exceptions.

We have only three more modules to
enter in SOURCE - those that provide
the exit from our program to FSC,
BASIC, and CRT mode. The BASIC
exit is a routine I have used in these
pages before, by M.A.E. Linden. With
a ‘D’ in the H register, the operating
system routine ESC4 takes us back to

JAN/FEB 1984 COLORCUE

FIG 1. BAUDTB CONVERSION
===== POINTER ===== == ADDRESS == ======= (CONTENTS ====s===
Hex Decimal Binary

HL + {A=88H) -2 8567 BAUDTB: @8H o aap0B000
HL + (A=81H) =2 8568 | a1H 1 aaeo0e01
HL + (A=82H) -2 8589 a2H 2 gbpevole
HL + (A=83H) -2 856A a4H 4 goaa01ee
HL + (A=84H) -2 g5eB 88H 8 poge1000
HL + (A=83H) =2 856ecC 816H 16 a@o100a0
HL + (A=@8éH) -2 a85aDb 828H 32 6elo0008
HL + (A=87H) -2 836E 848H é4 p1p0enna

FCS (notice we are simulating the key
presses ‘ESC’ and ‘D’)[3] if we have sav-
ed and restored the FCS stack pointer
(which we have!) The CRT jump is not
so elegant and may give unpredictable
results. It should result in a blank screen
- without the ‘CRT mode’ label, but,
depending on what has taken place in
the computer beforehand, may display
a few extraneous characters. You WILL
be in CRT mode, however. It would
probably be best to restore the FCS
stack before making this jump. You can
add those program lines yourself, using
FCSIJMP as an example.

INITIAL ROUTINES. We begin by
saving the FCS stack pointer for later
use in exiting SOURCE.PRG. We also
assign the beginning of our own stack
[4]. This location is not to be left to
chance, and if you have been lucky ‘till
now, your days are probably numbered.
From its starting location, the stack
works backwards toward 0000H, so
adequate room must be provided for it.
Normally numbers that go on the stack
come off in equal quantity. A major ex-
ception occurs when a subroutine is ter-
minated by a JMP instruction and not

a RET. While provision for this kind of
error is not an elegant justification for
ample stack space, there are very clever
ways of using the stack for storage of
constants (as used in the FORTH
language, for example) which sometimes
justify the allocation of ‘unusual’ stack
space,

We now initialize our data space.
When the computer is turned on, the
contents of memory, outside the control
of the operating system initialization
routines, is unpredictable. If the con-
tents of buffer spaces and other data
spaces is critical (control characters
could cause program failure) it is best
to clear them. We, therefore, clear our
data spaces with ‘0’s (SETUP) but our
file buffer with ‘spaces’ (CLBF), which
seems more appropriate for a text
buffer.

There is one provision not made in
this program which I consider essential.
You might want to add it yourself. A
good programmer will always provide
some means of terminating an operation
in progress if it may be done so with
safety. Operations which do not lend

themselves to this auto-termmation must
certainly include disk I/0, for directory
damage can, indeed - will, result. But
suppose you began a print cycle and
found you had green paper in the printer
and wanted violet paper? Unless the
system interrupts are disabled, the
keyboard will continue to be sampled
many times each second, and could in-
tercept your keypress. As a minimum
feature, I like to provide each instance
of required keyboard input with an
‘escape’ feature, not necessarily includ-
ed in the option line. The HOME key
could be used for this purpose. As an
example, when the Baud Rate option
line appears and one wishes to abort the
print mode, the HOME key could return
the operator to OPTION. The presence
and functioning of such a procedure
must be mentioned in your instruction
manual.

An instructive modification to
SOURCE.SRC is the redesign of the file
name entry box to allow space for a full
file specification. MCHAR will now be
set to 15 so the following specification
could be entered - 8:00000C.YYY ;NN
but keep the final cr in case the version
number is not entered.

How’s your subscription?

Past issues of Colorcue have been delayed in part because
subscription renewals came in too late. We are few in number
and each renewal is critical to our existance. Keep a close watch
on your shipping label and when it reads ‘0"’ (or before it reads
“0") send your renewal check promptly. Since we plan one full
Volume at atime, send $3.00 for each issue of the current Volume
due you. (There are six issues per Volume.) We are continuing
our guarantee of six full issues or a refund for each unpublished
issue. Those of you who were ““oversubscribed’” at the $2.00/issue
rate will have that lower rate honored for VOL VI.

COLORCUE JAN/FEB 1984

COMPUTER SHOPPER: FASCINATING ADVERTISING CIRCULAR WITH
INTERESTING ARTICLES AND NEWS UPDATES. SAVINGS YOU WON’T
BELIEVE! ANNUAL SUBSCRIPTION FOR 12 ISSUES IS $15, SENT 3RD CLASS
MaAn. EACH ISSUE IS APPROXIMATELY 160 PAGES LONG AND CONTAINS
EQUIPMENT, SOFTWARE AND BOOK REVIEWS, APPLICATIONS AND CON-
STRUCTION ARTICLES ("’HOW TO BUILD YOUR OWN ROBOT’’), USER
GROUP INFORMATION, AND CLASSIFIED AND COMMERCIAL ADVER-
TISEMENTS FOR EVERY POSSIBLE COMPUTER-RELATED ITEM. HIGHLY
RECOMMENDED! [COLORCUE HAS NO CONNECTION OF ANY KIND WITH
CoMPUTER SHOPPER.] COMPUTER SHOPPER. PO Box F.
TiTusvilLE, FL 32781.

19

Another modification (which I highly
recommend) might be to reformat the
display of the 128 bytes so they make
labelled fields appropriate to a data
base. This was suggested in the last ar-
ticle and some of you have already done
so. One reader changed his file extension
default to ’ADR’ for ‘address book.‘
His field assignments were as follows:

NAME FIELD: 48 Characters
STREET ADDR: 48 Characters
CITY FIELD: 28 Characters
STATE & 21P: 8 Characters

TELEPHONE: 12 Characters

TOTAL = 128

It is only a short step from this point
in SOURCE.SRC to a working data
base program that can search fields for
specific ranges of data and display only
targeted items.

This completes construction of
SOURCE.SRC. Add the modules of
Listing V. and test the PRINT and EX-
IT routines. If you have run into space
limitations on your screen editor because
you do not have a 32K memory, you
may omit the comment fields. The pro-
ject is hardly over because there is am-
ple room for both the suggested
modifications and those you create
yourself (the most important ones!) It
is true that 90% of your file re-
quirements are contained in this simple
program. As with most everything else
in this life, success with it will be,
primarily, the result of risk.

OTHER DISK ROUTINES. Here is a
brief overview of some additional disk
routines you can experiment with. There
is a provision for ‘getting’ and ‘putting’
strings of bytes—or records—in disk
files. A record, in this case, is defined
as a string of bytes terminated by a line
feed or form feed character, and the
records are ‘stacked’ sequentially, one
after the other, in the file. You are, of
course, not limited to only 128 bytes.

PTREC (16BBH-v9.80,v8.79)(3285H-
v6.78) will write such a string to disk.
You must follow our previous procedure
through CALL OPEN and then set
these parameters:

a) Place record buffer address in BC; b)
place the record length in DE, and c)
place the FPB pointer in HL. d) Call
PTREC.

Upon completion, A will be gone, BC
will point just pass the last byte written,

20

DE will be 0000H if no errors occurred,
and the FPB pointer will still be in HL.
If Carry and Zero flags are both set, the
end of the file was reached before all
bytes were transferred.

Another routine, PVREC (16B1H-
v9.80,v8.79)(327B-v6.78) will behave in
the same way as PTREC except that it will
write the byte count of the DE registers
into the file as the first two bytes, low
byte first. These bytes may be retrieved
when ‘GETting’ to simplify local
storage or printing.

To ‘get’ bytes from either record
routine above, use GAREC (168DH-
v9.80,v8.79)(3257H-v6.78). The OPEN
and RWSEQI routines must be per-
formed before the first call only, as
described in these articles. Then place a)
the record buffer address in BC, b) the
record buffer length in DE, and c) the
FPB pointer in HL. At completion the
registers will be as PYREC except that the
DE register will show how many bytes
were read. If both Carry and Parity
flags are set a valid terminator was not
seen. In this case, the specified number
of bytes will be read, but the next call
to GAREC will start reading at the next
byte (and end at the first terminator it
sees.)

Beyond the scope of this series are
routines for reading and writing ‘image’
files to and from memory, and routines
for reading and writing complete blocks
(128 bytes) to disk file. (See Dale
Dewey’s publication, referenced in the
FEB/MAR issue, or the ICS System
Listing for details)(]

[1] Each character transmission consists of a
single ‘start’ pulse which fells the printer a

T

character is to follow, an seight-bit ‘burst’ of
pulses, representing the ASCll character (with
the MSB unused - that is, set to '0") followed
by one or two *high’ levels representing the
‘stop’ bits. These stop bits signal the end of a single
character. The detection circuitry in some
peripherals is ‘fast’ enough to be satisfied with one
stop bit. Others require a longer pulse. If in doubt,
two stop bits should be used. Theoretically, the
faster the bits are transmitted, the faster they will
print, but once baud rates become higher than
1200, there is usually no significant increase in
printing speed with today’s printers because the
printing mechanism cannot respond that fast.
‘BAUD’ is an honorary unit of transmission rate,
named after Baudot, inventor of an early character
set for teletype transmission.

[2] Alert programmers will recognize another way
to set baud rate and stop bits. Remembering the
sequence ‘PLOT 14,27,8,B’, where PLOT 14 sets
one stop bit and B is a number from 1 to 7, we
may place such a sequence in a byte string, LXI
H,BAUD and use OSTR fo send it. If you ar-
range the byte string as shown here, the '7*
(a default value for B) may be replaced by
the selected number with an LXI H.BR and
MOV M,A. However, conversion tables are
important to assembly programming and
great fun! If you're new to conversion tables,
I suggest staying with the procedure in the
listing.

BAUDTB: DB 88H,B1H,B2H,84H 88K
DB 98H, 8AH, OCH

If you want two stop bits, change BAUDTB
as follows:
BAUD: DB 14,27,18 ;prepare ESC sequence
8R: D08 7,239 ;add rate and ‘end

[3] This method of re-entering FCS has
engendered some controversy. It will work

== =M= =FINCTIIN==========—=====F1§ 2, ASCI] PRINTER CODES
i Null No operation ‘Variable’ functions provide
2-7 Variable selection of type face, un-
8 BS Back space print head derline, boldface, elongated
9 HT Horizontal tab/next stop characters, graphics and all
i@ LF Line Feed special functions. This group
1) Vertical tab/next set tine of codes will vry from print-
12 FF Form Feed/top of form er to printer. Check your own
13 R Carriage Return manual for specific instruct-
14-23 Variable ions,

24 CAN ~ Cancel prior text/this line

23-24 Variable

2?7 ESC Escape Command

28-31 Variable

JAN/FEB 1984 COLORCUE

the first time it's tried. But if you re-enter
SOURCE with ESC T and attempt to exit o FCS
a second time, it will fail.

[4] The stack provided is excessively
generous! As a rule of thumb, for a program
of this size, 80 bytes would be more than
enough. The FCS stack, by the way, begins
at 8044H in the 3651 computer, and at 8042H
in the CCIl. it works its way back toward
screen memory which ends at 7FFF. It is in-
teresting fo observe the stack, which may be
done with the MLDP (ICS), DBUG (Comtronics),
or IDA (Bill Greene). The procedure is to in-
sert a 'break point’ at an appropriate place
in the program running under the debugg-
ing software, and then make a ‘dump’ of the
stack area for examination.. If the stack area
is one designated by the user, it may be
cleared with '0’s before program execution
to make tracing easier. O

PRINTER MATERIALS

Here are some sources you may want
to tap for printer supplies such as con-
tinuous paper, labels, stationery, rib-
bons, and mailers. Catalogs are
available, usually at no charge. If you
suscribe to ‘Computer Shopper’ (see in-
sert in this issue) you will find frequent
‘specials’ in this same category that can
be real money-savers.

QUILL CORPORATION. 100 S.
Schelter Road, Lincolnshire, IL 60069.
Ribbons, bond papers, printwheels,
continuous labels and paper, floppy
disks, general stationery supplies.

NEBS COMPUTER FORMS. 12 South
Street, Townsend, Massachusetts 01469.
Continuous printed stationery,
envelopes, file cards, labels (you name
it!); computer furniture, disks, disk file
devices, copystands, ribbons, computer
hardware and furniture, business forms.

DELUXE COMPUTER FORMS. 530
North Wheeler Street, PO Box 43046,
St. Paul, Minnesota 55164-0046. All
kinds of custom forms, including
checks, stationery, business utilities,
labels, envelopes, mailers. They also sell
disks. Somewhat more expensive.

VULCAN BINDER AND COVER. PO
Box 29, Vincent, Alabama 35178. This
is a great source for looseleaf binders in

COLORCUE JAN/FEB 1984

any variety you might want. They supp- ¢

ly plastic sheets for holding disks in a
3-ring binder, disk carrying cases and
files, and many other stationery items
you’re paying a lot more for now.

OBSCO. 11 Dalewood Lane, King
Park, New York 11754. Labels and
paper at extraordinary savings. Catalog
may not be available, but you can
telephone them at 516-360-1750. Sam-
ple of prices: 5000 labels 3-1/2 X 15/16,
one across, continuous form, for
$12.95; 1000 sheets continuous ‘easy
perf* 20- stock printer paper for $17.95.

BCCOMPCO. 800 South 17, Box 246,
Summersville, MO 65571. I don’t know
the extent of their line, but printer rib-
bon sales are frequently advertised.
Sample of recent prices; C. Itoh Pro-
writer and Epson: (new for C. Itoh) 12
for $96, (new for Epson) 12 for $66,
(reloads—you send old cartridges for
refill) $6 each for 2 or more, ‘off-
brand‘—12 for $54. They advertise in
COMPUTER SHOPPER.

A magazine dedicated to ‘‘real world"”
applications of computers. THE COM-
PUTER JOURNAL discusses measurement
and control, interfacing, hardware con-
struction, robotics and EPROMS, accor-
ding to the literature. $24/year for 12
issues. Send inquiries to THE COMPUTER
JOURNAL: PO Box 1697C, Kallspell, MT
59903.

MORROW USERS GROUP: A GROUP EXPLORING THE POTENTIAL OF THE MORROW MICRO
DECISION HAS FORMED IN ORANGE, CoNNEcTICUT. CMDUG (CONNECTICUT MicroO DECISION
USERS GROUP) MEETS ONCE EACH MONTH. A QUARTERLY, ‘“CMDUG NEWSLETTER’’ COMES
WITH THE MEMBERSHIP FEE OF $12 PER YEAR. FOR MEMBERSHIP AND DETAILS OF MEETINGS,
WRITE DAVE MINTIE. CMDUG, 226 BostoN Post RoAD , ORANGE, CT 06477.

COLORCUE BOOK SERVICE: Several major bookstores carry
a line of computer books. Among these are Walton, 8.
Dalton, Doubleday, and Computerland stores. If you are’

having trouble gettings books and have exhausted your local
resources, Colorcue will try to get them for you. We charge
the price of the book plus a handling and mailing fee that
runs between $2.00 and $5.00. You will be billed after the

book(s) are sent. Just write to us with the author, title,

publisher and number of copies.

NETWORK SUBSCRIBERS! Here's a beginning]]

COLORCUE: CompuServe 71106, 1302

Frepost Computers: Source TC1251, Micronet* 70210, 374

Intelligent Computer Systems: Source TCB610

David Suits, Ben Barlow: CompuServe 70045, 1062

Christopher Zerr: CompuServe 71445, 1240

*MicroNET is a part of CompuServe dedicated to personal computer user func-
tions and activities. There is a surcharge for use of this service.

21

BASIC’S FILE STRUCTURE; A Review

Basic creates new files with the FILE “N’’ statement. The
function of this statement is to define and reserve the disk space
parameters for the file and to enter the file in the disk direc-
tory. This statement may be used to create any type of file.
Those files with reserved type extensions, such as LDA, PRG,
MAC, COM and so forth may be ‘‘created’’ but are not readi-
ly usable by Basic and should be avoided. Basic can create SRC,
TXT, and DOC files and read and write to them. Any unreserv-
ed file extension type may be used including ones you specify
yourself, but in cases other than the use of RND, the file will
be a sequential file, best containing only ASCII characters.
Non-ASCII characters read by Basic can cause disruption of
Basic and should therefore be avoided. As a “‘reserved’’ file
type, RND files will be recognized and treated in a special way
by Basic.

The file to be created must not already exist on the disk in
the addressed drive. By ‘‘exist’’ we mean that at least one
parameter among file name, type and version number must be
unique. If the file name and type already exist on the disk, Basic
will create another like file with a higher version number.

The FILE ‘“N’’ Statement has this general form -
FILE “N”,F$,R,N,B
where F$ is the file name—a group of quoted ASCII characters,
R is the number of records in the file, N is the number of bytes
in eachrecord, and B is the number of records that will be read
into computer memory at one time.

The file name may have from one to six characters drawn
from the alphabet ““A’’ to “‘Z”’ and the numerals ‘‘0’’ through
“9°°, The file name may not contain spaces or any other ASCII
character not in the list above. Valid characters may be arranged
in any order; for example, these are all valid file names —
12GOT.RND 4.RND IF56K.TRP IITU.NOW 0.HAB

The file name may end with a specific version number if you
wish to specify it. You may also preceed the file name with a
disk drive specification, contained in the F$ string. For exam-
ple —

F$ =‘‘0:SAMPLE.FRK;09”’ or
F$=““CD1:FROTH.CLD;1A”’

Note that version numbers are in hexadecimal. The maximum
number of versions varies with the system software. You may
determine your maximum number through trial and error.

The number of records, R, to be contained in the file is a
decimal number between 1 and 32767. For random files (RND),
a “‘record”’ implies that you will construct a sequence of bytes
which have meaning as a group, and that this same meaning
is reflected in each and every record in your file. For example,
a record might consist of a name, address and telephone
number, meaning that every record will have these same data
groups (and in the same sequence and each of the same field
length). If you wish to store no more than 100 sets of names-
addresses-telephones then you will assign the value 100 to R.
For non-random files, a record may be anything you wish, with
the requirement that each record will have the same defined
maximum length. whether this entire length is used or not.

22

Creating the Flle: The FILE ““N’’ Statement.

The number of bytes to be held in each record, N, is a decimal
number between 1 and 32767. This number will be made large
enough to contain the longest record you expect to store. If
the ‘“‘name”’ field can be no longer than 30 characters, the ‘‘ad-
dress”’ field 40 characters, the ‘‘telephone number’’ field 12
characters, then the value assigned to N will be at least 82—all
these fields in the same record.

When choosing the value of N, consider that Basic creates
file space in integer multiples of the standard disk block of 128
bytes. If you assign a value of 1 to R, and 125 bytes to N, one
entire disk block of 128 bytes will be assigned to your file, the
last 3 bytes being ‘‘wasted.”” With the same single record, and
a value of 129 bytes for N, two entire disk blocks will be assign-
ed to your file with 127 bytes ‘‘wasted.”” A ‘‘wasted’’ byte can-
not be used by another file. ’

When the value of R is greater than 1 however, bytes within
a single disk block or several disk blocks may be shared among
the records. Suppose R = 3 records and N = 85 bytes per
record. The total number of bytes for three records is 3 * 85
= 255. This file will fit into two disk blocks (2 * 128 = 256
) with one ‘‘wasted’’ byte. You can see how many “’wasted’’
bytes exist in a disk block by examining the LBC (last block
count) hexadeciaml number in the file directory. LBC tells you
how many bytes are used in the last block of a file. If the
number is 80H (= 128) then every byte has been used. In this
example, nothing would be gained by making N =84, because
then three more bytes would be ’wasted’’ in the disk blocks
assigned to this file.

The blocking factor for the file, B, is a decimal number bet-
ween 1 and 255 that infers how many blocks of file data you
wish to be read into computer memory at one time, and,
therefore, how much computer memory you wish dedicated to
holding your file data. The maximum number 255 means that
no more than 255 * 128, or 30640, data bytes may be read into
computer memory at one time. Just as Basic allocates file space
in integer multiples of the 128-byte disk block, so does it read
blocks in multiples of 128 bytes. You cannot read only 67 bytes
of data from disk into computer memory, nor can you read
only 129 bytes of data into computer memory. Any bytes unus-
ed (not subject to GET) will still be in computer memory if
they lie within a partially-specified 128-byte block.

When assigning the blocking factor it is customary to
choose a number that will coincide with an integer number
of records, and, at the same time, an integer number of disk
blocks. If N =128 bytes, then each integer value for B will
bring that number of records into computer memory. If
N =64, then a value of 2 for B will bring two records into
computer memory at one time. If N =64 you cannot have
a blocking factor of 1 (=64 bytes—an error message will
result) since disk blocks can only be read in integer multiples
of 128. For N=64, B must be in multiples of 2 (2 * 64 =
128 bytes).

As the value for B determines the amount of user com-
puter memory you want dedicated to file data storage (B
* N) it also defines an additional memory space which will
hold the file access parameters required by Basic. The Com-

JAN/FEB 1984 COLORCUE

pucolor Manual cites a formula for computing the exact
memory space requirement. If there is sufficient room in
user memory for many files, then the only penalty for
reading a large number of records into computer memory
is the disk access time. If all the records will not be needed
(as they might be for procedures such as sorting) the needed
record may be accessed without bringing all previous records

into memory. (See FILE ‘‘R’’ next issue.) In summary, the .

smallest disk access time will be achieved by assigning a value
to B that brings only the required number of records into
computer memory.

All parameters in FILE statements may be expressed as
variables. You may assign numbers to R, N, and B and a
string to F$ and state FILE ‘““N”’,F$,R,N,B to open a
file.The string file name, F$, may be a concatenation of
strings, and R,N, and B may be members of numeric ar-
rays as in these examples:

FILE “N”’,N$ + T$,L(3), K(2),MW(20), or
FILE “N’’,STR$(D)+ T$,J(X),YM(A,B),BY(R,T,U)

Remember that the FILE *‘N’’ statement is only concern-
ed with the file name and the file disk space requirement.
If N * B permits the reserving of sufficient file space then
you are free to distribute this space later in another way when
the file is opened by FILE “‘R”’. For example, I can create
TEST.RND withR = 1, N = 512, B = 1, but actually use
it in a FILE “R’’ statement with R = 64, N = 8, and B
= 16. In both cases, the reserved disk space is the same.

It is helpful to experiment creating files in ‘‘immediate
mode’’, using different parameters, to see which Basic will
accept. Apart from the specifics of parameters discussed
here, you must only observe that all parameters, F$,R,N,
and L are specified. As a further example, if you wished
to create a SRC file 5120 bytes long, and access it all at once,
then the create statement might read—

FILE “N’’,”TEST.SRC”,1,5120,1.

Next time we will continue with a discussion of the FILE
‘‘R’’ statement. O

NEXT ISSUE:Using Morrow MicroDecision with the CCll; An inexpensive pen \\’//
. . AN .
plotter you can use; ASCll, Masks and BCD; Review of Basic’s file structure; —;/T\-\\—-

Simple encryption in assembly language; Peter Hiner’'s FASBAS and more!

Back issues of COLORCUE contain a wealth of practical information for
the beginner as well as the more advanced programmer, and an historical
perspective on the CCII computer. Issues are available from October 1978
to current.

DISCOUNT: For orders of 10 or more items, subtract 25 % from total after
postage has been added. POSTAGE: for U.S., Canada and Mexico First
Class postage is included; Europe and South America add $1.00 per item
for Air Mail, or $ 0.40 per item for surface; Asia, Africa, and the Middle
East add $ 1.40 per item for Air Mail, or $ 0.60 per item for surface. SEND
ORDER to Ben Barlow, 161 Brookside Drive, Rochester. NY 14618 for
VOL | through VOL V; and to Colorcue, 19 West Second Street,
Moorestown, NJ 08057 for VOL VI and beyond.

1978 VOL 1 $3.50 each No. 3: MAR No. 6: JUN/JUL
No. §: MAY
1979 voL $3.50 each Ng 6: JUN/JUL No. 1. AUG/SEP
No. 1-3: APR/MAY/JUN o No. 2: OCT/NOV
No. 4-5: JAN/FEB/MAR 1981 VOL | $2.50 each 1983 No. 3: DEC/JAN
No. 6-7: AUG/SEP/OCT No. 0: DEC/JAN No. 4: FEB/MAR
No. 8: NOV Xerox Cory, $2.00 No. I: AUG/SEP No. §: APR/MAY
No. 2: OCT/NOV No. 6: JUN/JUL
1980 VOL HI $1.50 each 1982 No. 3: DEC/JAN
No. 1 DEC/JAN No. 4 FEB/MAR 1984 VOL VI $3.50 each
No.2: FEB No.5: APR/MAY No. 1. JAN/FEB

COLORCUE JANJ/FEB 1984

23

UNCLASSIFIED ADVERTISEMENTS

FOR SALE: Compucolor Il, v6.78, 32K, extended keyboard,
manuals including Programming, Maintenance, ‘‘Color
Graphics”” and “‘Basic Training.”” 15 disks included. Ex-
cellant condition. Asking $1000. Art Tack. 1127 Kaiser Road,
SW, Olympia, WA 98502.

FOR SALE: Compucolor Il computer, v8.79. Basic keyboard
only, 32K memory, switchable lower case character set,
CRT filter, handshake option installed. Very good condition.
$800. Joseph Norris c/o The David Hafler Company, 5910
Crescent Blvd, Pennsauken, NJ 08109. 609-662-6355. (No,
I’'m not abandoning ship—I still have three more!)

The following items are from the estate of Myron T. Steffy.

| FOR SALE: Two Compucolor Il computer systems, v6.78.
| Each computer has full keyboard, 32K memory, dual disk
drives, Devlin Analog Protector, 2 Devlin Ram Cards with
software switch, lower case character set, and character
generator for FREDI. One of the above units has the Com-
tronics updated ROM. Excellant condition. $1200 each.

Morrow MicroDecision CP/M computer with dual disk
drives, 64K memory and software package. No monitor.
$900.

Novation CAT, 300 Baud modem, Votrax unit, Tl SR52
calculator and Tl programmer’s calculator, 2 MFT transfer
switches for RS$232 outputs. All in good condition. Make
offer.

Diablo Model 630 letter quality printer. Cost $1850 wher
new. Excellant condition. Make offer.

Address inquiries to Bill Shanks. 1345 West Escarpa, Mesa
AZ 85201. 602-962-0130.

COLORCUE 19 West Second Street o Moorestown, NJ 08057

Whence did the wond rous mystic art arise,
O_f }oainting S}veecﬁ, and S}aeakinﬂ to the eyes ?
That we B_lj tracing magic [ines are taught,
How to emﬁoa[_q, and to colour thought ?

olorcue

VOLUME VI, NUMBER 3 MAY/JUNE 1984

CONTENTS

A Pascal forthe CCIl, Part 2. 2
DOUG VAN PUTTE

Rom Tables e 5
Product Reviews 12

IDA, COLORWORD

Using Basic Subroutines

in Assembly Language. 14
PETER HINER

One Dimensional Cellular Automata 16
DAVID SUITS

Kvhgrxrwrd Kiltiznnrmt oo 19
D. H. DSROOB

Software Catalog 26

Intelligent Computer Systems

EDITORIAL. 2 BACKISSUES 31
SOFTWARE REVIEW 30 USER GROUPS 31

COVER: Text set by Carl Remley in pen and ink. Unknown source, quoted
from CompUKolour.

EDITOR: JOSEPH NORRIS COMPUSERVE: 71106, 1302

COLORCUE is published bi-monthly. Subscription rates are US$18/year in the U.S,,
Canada, and Mexico (via First Class mail), and US$30 elsewhere (via Air Mail). All
editorial and subscription correspondence should be addressed to COLORCUE, 19
West Second Street, Moorestown, NJ 08057, USA. (609-234-8117) Every article in
COLORCUE is checked for accuracy to the best of our ability but is not guaranteed
to be error free.

“Welcome to the Sourcebook...

You will find we couldn’t deliver all we
promised for this issue of Colorcue. In
spite of written requests for informa-
tion, ‘mailed in January, many
respondents sent materials at press
time—too late. Others replied in such a
vague way that nothing less than a divin-
ing rod could have decyphered the
meaning. Still others used a handwriting
(with faint pencil) that could only defeat
any mortal interpretation. The fault is
not to be entirely externalized, however.
We simply bit off more than we (and
our bank account) could chew. Not to
worry. The promise will be fulfilled in
time. Meanwhile, I hope this issue is as
interesting to you as it has been to me.

Welcome to those of you who have
rejoined us, and to those who are new
to the CCII by virtue of purchasing us-
ed computers. You are discovering that
we have a lot to offer (at a reasonable
price) in the Compucolor community.
There are at least 200 of us at work with
the CCII, and an unknown number of
others with the 3651 and 8000 series who
are just now finding us. I have been
working with a few 8000 users in an at-
tempt to adapt CCII software to their
machines. They use FCS, but the
memory mapping is very different. As
of this writing, things look promising.
This might mean a somewhat revitaliz-
ed software market for Com-tronics,
Bill Greene and anyone else still willing
to try.

The highlight of my Compucolor ex-
periences since the last issue was a visit
to Rochester and the user group there.
Imagine, if you can, eleven or so
owners, all gathered together in the
same place. They’ve been doing it
steadily for years, and I imagine they
have an inadequate appreciation for the
comradeship and mutual support CHIP
gives them. The topic for the evening
was FORTH, one in a series of talks by

COLORCUE MAY/JUN 1984

s

........ ah...that Is....Part 1,”

Jim Minor on the FORTH language. 1
delighted in putting a *’face’’ on Gene
Bailey, Doug Van Putte, Rick Taubold,
Joseph Charles, Jim Minor, David
Suits, and all the other names I've
known only in print, Dr, and Mrs. Suits
were my gracious hosts for a night.
David and his wife have started a new
magazine for the NEC APC computer,
called NEXUS. It has a familiar format,
and the contents remind one of early
CCII days—starting all over again. It is
an appropriate computer for David—
spectacular graphics, rather complicated
operating system, and a challenge for
him for a few years, I imagine. My
thanks to the CHIP group for letting me
sit in, and I hope to see you all again
soon. Wouldn't it be wonderful if CHIP
could arrange a grand reunion for all of
us? How about an International CCII
Conference for a weekend in Rochester,
open to all Compucolor and Intecolor
users? Now that's entertainment!

There are some new authors coming on
the scene. I guess rightly that our group
has hidden talents. Witness the beautiful
cover on this issue by subscriber Carl
Remley of Mississippi. His subscription
renewal came written in calligraphic
form and I was prompt to enlist his ser-
vices. (It is appropriate that we express
more than our computer interest in these
pages.) The text is reprinted from the
first issue of COMPUKOLOR, of the
user group in the United Kingdom. (I do
not have the source of this quotation.
Does anyone know it?

So, on to the first part of the
SOURCEBOOK. Rest assured that all
submitted materials will be published,
and all promises fulfilled. We look for-
ward to your new materials as we con-
tinue our sixth year of publication.
Thanks to the many of you who have
sent notes of appreciation, and... keep
the cards and letters coming.

Jho

COLORCUE MAY/JUN 1984

A Pascal for the CCII
Part 11,

In Part I, a subset of Pascal, called
Tiny-Pascal, was introduced through
the fig-Forth language. Since Tiny-
Pascal uses the facilities of Forth, such
as editing, compiling and disk handling,
Part I told how to obtain and implement
both Forth and Tiny-Pascal on the
CCII. In addition, Part I presented the
Forth editor commands required to
enter, edit, store, compile, and run Tiny-
Pascal programs.

We will proceed by introducing some
programming techniques that relate to
the structure of a Pascal program.
Pascal is designed as a ‘‘block-
structured’’ language. The blocks are
the basic building units of the program,
so it is important to have a good con-
ception of them. Think of blocks as
logical subdivisions of program func-
tions. Writing a program to bake a
cake? Then design blocks to handle each
part of the job: read the recipe, measure
the ingredients, mix the ingredients, and
perform the baking. The effectiveness of
this block structure might not seem ap-
parent in a short program, but in very
complex programs it provides a clear ad-
vantage over Basic command structures.

A block structure enables the distribu-
tion of a complex program task into
simple, smaller program tasks, which
may be tested and debugged in
themselves as they are created. Then, as
the blocks are connected together,
debugging will be limited to problems in
the interaction among the blocks, great-
ly reducing debugging time. This pro-
cedure may be followed in Basic as well,
if you exercise self-discipline, but the
structure of Pascal syntax dictates these
good programming practices naturally.
A properly-written Pascal program is
more readily accessible by other readers,
and years from now it will reveal itself
with the same clarity it had at its con-
ception. A typical block-structured

Doug Van Putte
18 Cross Bow Drive
Rochester, NY 14624

outline of a program is shown in Listing
1. The middle column contains the ac-
tual program code. The first and third
columns are comments.

As the listing begins, we see a pro-
gram name (PROGRAM DUMP-
CAKE). We see a declaration nf a con-
stant OVENTEMP, and a declaration
of the variables CUP which is to be an
integer number, and TEASPOON
which is also to be an integer. In Pascal,
constants and variables must be declared
(identified) before they can be referenc-
ed by the program. This treatment is
distinctly different from many versions
of Basic, where one can assign-a non-
dimensioned numeric or string variable
anywhere in the body of a program
without regard to its type (real or
integer).

Next we see a procedure, PROC
RECIPE (procedure ‘‘recipe’’), and a
function, FUNC PROPORTION (func-
tion ‘‘proportion”’) specified. RECIPE
might tell how to mix the ingredients;
PROPORTION might describe how to
proportion the mixture for various sizes
of cake. These are ‘‘subroutines’’ which
can be ‘‘called’’ by the main program.
The declaration of variables and the
specifying of procedures and functions
are placed at the head of the program
so they may be ‘‘seen’’ by the program
before it begins execution. (This is much
like reading data statements in Basic,
before using the data.) You will notice
that both the procedure and function
portions may be ‘‘sub-programs’’, of
several lines, each marked with a
“BEGIN"' and “‘END”’ to define the
scope of each.

Now we approach the main body of
the program which schematically
represents several groups of coded in-
structions. Some elements of the group
are ‘‘nested’’ (like FOR....NEXT

statements in Basic) and others are se-
quential. We use indentation in the
listing to help the eye separate the
groupings according to the sequence in
which they perform.

Notice the punctuation after the END

statements. Those END statements that
are within the body of the program are

followed by a semi-colon to indicate that
the program continues. The final END
statement is followed by a period (.) to
indicate the conclusion of the program.
Of course a program may have a wide
variety of these BEGIN...END sections
in all combinations.

The listing also contains statements

LISTING 1. Schematic outline of a Pascal Program.

\PASCAL PROGRAM\ PROGRAM DUMPCAKE; \MAIN BLOCK HEADING\
\DECLARATIONS\ CONST OVENTEMP = 358; \BEGIN DECLARATION BLOCK\
VAR CUP: INTEGER;
TEASPOON: INTEGER; \END DECLARATION BLOCK\
\PROCEDURES\ PROC RECIPE; \BEGIN PROCEDURE BLOCK\
BEGIN
END; \END PROCEDURE BLOCK\
\FUNCTIONS\ FUNC PROPORTION; \BEGIN FUNCTION BLOCK\
BEGIN
END; \END FUNCTION BLOCK\
\MAIN PROGRAM\ BEGIN \BEGIN MAIN BLOCK 1\
BESIN \START BLK 2\
BND; \END BLK 2\
BEGIN \START BLK 3\
BEGIN \START BLK 4\
END; \END BLK 4\
END; \END BLK 3\

\END OF PROGRAM\ END.

\END MAIN BLOCK 1\

set within the reverse backslash marks,
which are comment sections (like REM
statements in Basic.) Pascal differs from
Basic in that comments may be placed
both before and after a code statement.
The compiler will find the code state-
ment and extract it.

Let’s see how to specifically design a
Tiny-Pascal program through the
FORTH language. We will do this by
writing a program to compute the area
in a 2 by 4 rectangle (Listing 2). The
spaces and punctuation are required, as
shown, both for FORTH and Pascal
syntax. Since we must first proceed from
FORTH, we will follow a FORTH con-
vention by placing the name of our pro-
gram in parentheses on the first line.
Parentheses are ‘‘delimiters’’ (comment
markers) in FORTH. This will be
followed by the FORTH words
“PASCAL”’, which invokes the Tiny-
Pascal interpreter, and ‘‘DECIMAL”’,
which tells FORTH that our numerical
data will be entered in decimal format.
(We could have said ‘“‘HEX"’ instead, if
we meant to use hexadecimal numbers.)
This is all we need to do to satisfy
FORTH’s requirements.

Now we write line 2 for Pascal, the
Pascal word PROGRAM followed by
our program name RECTANGLE
AREA. Observe the terminating semi
colon. Next we can see that two con
stants are declared (LENGTH and
WIDTH) and values assigned to them.
In choosing the names of these con-
stants, and the names of all the elements
of our program, such as the program
name, variables, procedures and func-
tions, Pascal allows us to use both let-
ters and digits to a length of 31
characters. This permits the names to be
precisely descriptive.

A variable is declared next (AREA)
and it is declared as an integer value.
Notice the colon following the declara-
tion of a variable. Now the ‘‘main’’ pro-
gram begins and we equate AREA to the
product of LENGTH and WIDTH.
NEWLINE advances control to the
beginning of a new line, and WRITE,
with its printed prompt, prints the pro-
duct on the CRT. A BEGIN statement
and END statement bracket this main

- program block.

While this program could be
duplicated with a single statement in
Basic, it serves as an example of Pascal.

COLORCUE MAY/JUN 1984

As the program becomes more com-
plicated, Basic soon loses it’s advantage
of brevity, and the clarity of Pascal
emerges. Among the peculiarities of
punctuation, notice the semicolon that
terminates each statement line, the
‘="’ used to establish an equate, the
use of ‘... > to delimit text in the
WRITE statement, and ‘‘-’’ to
designate printing the value of AREA.
NEWLINE is the only ‘‘cursor position
ing’’ statement in Tiny-Pascal, and gives
direction to commence subsequent prin-
ting on the next line.

You may enter the program in Listing
2 on a blank FORTH screen using the
editor. Check it carefully for spaces and
punctuation. FLUSH the screen to disk.
To compile the program, type [n]
LOAD, where [n] is the number of the
screen containing this program. From
this point, you may ‘‘run’’ the program
by typing RECTANGLEAREA.

Our program would be more func-
tional and more interesting if we could
enter new parameters for LENGTH and
WIDTH from the keyboard. The
READ statement in Pascal makes this
possible, and operates like the ‘“‘IN-
PUT”’ statement in Basic. To prompt an
input, the WRITE statement is used,
followed by READ. We will have to
change LENGTH and WIDTH from
constants to integer variables, and insert
a few statement lines just after the
BEGIN in Listing 2. The changes are
shown in Listing 3. Add them to the
FORTH screen with the editor, and pro-
ceed as before to compile and run the
amended program. Press RETURN
after entering ‘‘length’’, and again after
entering ‘‘width.”

If you want to try some more adven-
turous programing, here are some other
arithmetic operations available in Tiny-
Pascal. ““+°, ‘-, and ““*’* are used as
in Basic. ““DIV”’ is used in Tiny-Pascal
for integer division. The >’/*’ symbol is
reserved for real number division, and
is not supported by Tiny-Pascal. We will
be looking at other Pascal constructs,
such as 1F...THEN, WHILE...DO,
FOR...DOWNTO, CASE...OF, and
REPEAT...UNTIL. These operators,
along with some exploration into PROC
and FUNC organization will provide
many possibilities for practical, in-
teresting programs. Good luck, and
good learning! [

COLORCUE MAY/JUN 1984

Listing 2. A working program to calculate and print area.

(RECTANGLEAREA) PASCAL DECIMAL \FORTH commands)

PROGRAM RECTANGLEAREA; \computes and prints)
\arez=1#4
- CONST \Declare constants\
LENGTH = 4;
WIDTH = 2
VAR \Declare variable\

AREA: INTEGER;
BEGIN \Main program\
AREA := LENGTH * WIDTH;
NEWLINE;
WRITE ¢ ‘The area is ', BAREA);

END. \End of program\

Listing 3. Changes to RECTANGLEAREA to permit Keyboard entry.
\Change declaration of these labeis to variables\

LENGTH, WIDTH: INTEGER;
\Add these lines after BEGIN\

NEUL INE ; \Print crlf\

WRITE (‘Enter the rectangle length & width *);

NEWLINE;

READ (BLENGTH,BdIDTH); \Read two variables\
\from Keyboard \

Errata: In Part |, the screen editor com-
mand to copy one screen to another
was incorrect. "COPY [num1] [num2]”
should be corrected to read “"[num1]
[num2] COPY"

ROM TABLES FROM THE SYSTEM LISTINGS v6.78, v8.79, v9.80-3

This table is compiled from the system listing of three software versions of FCS. (- - -) = NA (not
applicable); (® ® o) indicates that the address is the same as in the preceeding column. Frequently
used labels appear in boldface.

LABEL v6.78 v8.79 v9.80

BREAK 003B eee oo CHDEL OOOE e ee o oo

A70N 38E8 0331 0300 BRTR ___ ——— 0010 CHDLR JEFC 1332 e e
ACRTSP 0036 ese oo BRTRY 80EO eee - -- CHPLO 39FD 0446 0415
ADDU 2144 1AEQ 1B7¢6 BRTX/ - ——- 049D CHTIM 001C eee oo
ADHLA 3518 194E - BSO1 356D 1A23 1E4E CKEND 26E7 OBBA e e
ADJTKS --- --- 1C43 BS02 35F1 1A27 1E52 CLOSE 2F26 135C oo
AESCTB ~ O00B see oo BSO3 ——- --- 1EB2 CLSEQO 3136 156C oo
ANHD 351D 1953 e e e BSO4 365F 1A95 1EFA CLX 2850 OCFC oo
ASCPL 3DFB 0859 O7FB BS10 237E 1DO4 - - - CMASK 81EQ ese oo
AUCNT 81B3 ese - -- BS11 2389 1DOC - - - CMDTMP - -- --- 8181
AUTOX 0058 1F3E e e« BS12 239D 1D20 - - - CMPDH 3453 1889 e+
B2HEX 33AA 17EQ e e o BS13 236B 1CEE - -- CMPHD 344D 1883 e e o
B7ON 3A19 0462 0431 BSBO1 35C7 19D 1E26 CMTA 2AB4 QOF57 OF54
BA7OF 3946 038F 035E BSBO2 —— = === 1E92 CMT2 2ABF OF62 OF5F
BARTX 3D5F 07BD 075F BSBO3 - == —-=-- 1E98 CMTAB 257A QA58 08D4
BARTY 3D57 0785 0757 BSBO4 -—-- --- 184 CODE 39096 03DF O03AE
BARTZ 3D51 O07AF 0751 BSBOS --- —--- 1EBD CODE2 390A2 03EB O03BA
BARXM 3C13 066A 060C BSBO6 --=- --- 1EC9 COLFL 81E6 e oe¢ o o0
BARYM 3C42 0699 0638 BSBO7 -== —-=-= 1ED1 COLOR 3907 0350 O031F
BARYM1 --- -—--- 063E BSBO8 3652 1A88 1EED COLW 392C 0375 0344
BARYM?2 - - = -- - 064A BSDHU - - - - - - 19DE COMND 0004 X oo 0
BASEX 0055 1F3B e e BSTR 33EQ 181F e e o COMOF 393B 0384 0353
BASFL 81F1 e e o o e BUCNT 81B4 e e e - COMON 393A 0383 0352
BASICE 0046 1F2C o o o BUFP 8047 e e e oo COPO0 2B20 OFC3 e e e
BASICI 0052 1F38 e e BXLOP 3C30 0687 0629 COPO1 2B38 OFDB e e e
- BASICW 0040 1F26 e e e BYLOP 3C67 06BE 0660 CPLOX 3E03 0861 0803
BASORG 0040 1F26 e e e BYLOP1 CPYDV 2C77 10AD e e e
BASOUT 0033 oo oo - - - - - - 066F CR 3872 02BB 028C
BAUD 0005 eoe oo C3C9 . ___ oM CRA 2483 1E36 - --
BCOA 3582 19EB s e C3005 - —— _——_ 012A CR2 2488 1338 - --
BC2BK 35A8 19DE ees CARET 000D see oo CR3 24BF ME42 - - -
BCCIX 3A05 044E 041D CARR 3BAE 05A5 056C CR4 24C3 1E46 - - -
BCHK 3292 16C8 e e e CBC 30F5 152B e e e CRATE 81E2 e oo oo
BCHK 32BB 16F1 e e CBC1 3108 153F e e e CRC 247D 1800 - - -
BCRSX 3A2A 0473 0442 CBC?2 3127 155D e e CRCA 8043 eee —— -
BCRSY 3A37 0480 044F CCl 3A09 0452 0421 CRC2 8044 oo 0 - -
BEGEX 0038 e oo CCIX 3A01 044A 0419 CRCX 249F 1E22 - --
BEGIN 3768 01B6 e CDO3 2215 1BCA - - CRET 3856 05AD 0574
BEGOT 3A59 04BO 047F CDO4 22190 1BC5 - - - CRLF 3388 17C1 e e
BEL 3AC3 O051A 04E9 CDHD 211C 1AC1 - - - CRSLT 38F0 0339 0308
BEL —-- ——- O4EE CDK 3605 004A - - - CRSRT 3885 O02FE 02CD
BFILL 81D0 eee oo CDMK Q02E eee oo CRSUP 38F6 033F 030E
BFSX --- --- Q001F CDNM 3691 0046 - - - CRSUP1 - -- --- 0316
BHLAD 81D4 oo oo CDNU 3603 0048 - - - CRSXY 3809 0452 0421
BK2BC ~ 35BA 19F0 e e CDMK Sl - C 002 CRSY 388D 0206 02A7
BKCOL 3928 0371 0340 CDRSET CRTO 0060 e oo LI
BLIND 3A09 0452 0421 218B 1B30 - - - CRT1 0061 eee oo
BLINK 393F 0388 0357 CDSEC 3694 0049 - - - CRT2 0062 eee oo
BRAKE 3AB6 050D 04DC CENO/ 2AA5 OF48 OF45 CRT3 0063 eee oo
BRATX 3A6F 04C6 0495 CHAIN 3A00 0452 0421 CRT5 0065 eee eee

6 MAY/JUN 1984 COLORCUE

LABEL v6.78

CRT6 0066
CRTCHIP 0060

CRTMO 2587
CRTMSG 25C6
CRTR 0003
CRTRAM 81AF
| CRTRY 80E2
y CRTSET 37C0
CRTST4 - -
| CRTUBE 3968
L CRXDA 004C
CRYDA 006D
CTRKO 8181
CTRKA 8182
CTWO 2C69
CTYP S

l

{ CUCNTO 81B5
| CUCNT4 81B6
t CURSO 3A0B

D1 358A
D2 359F
DSCNT ---
D8CNT -—-
DATAM 005A
DBF 811D
DBFE 819D
DBLK 811D
DDFHD ---
DDFHV ---
DDFNM ---
DDFNU ---
DDFFC ---
DDFTK ---
DDMHD -- -
DDMHV ---
DDMNM ---
DDMNU ---
DDMRT ---
DDMSC ---
DDMSF ---
DDMTK ---
DELOO 29BS
DELOA 29D6
DELO6 2A28
DELO7 2A3C
DELO8 2A44
DELO9 2A6F
DEL10 2A8A
DELER 2A9B
DELTA 000F
DEVOO 2996
DFDHD ---
DFDHV -
DFDNM ---
DFDNU -=-
DFDSC ---
DFDSF ---
DFDTK ---

v8.79

e o0
L N 4
01A7
0123

020F
03B4
007C
007D

109F

0454

19C0O
19D5

MAY/JUN 1984 COLORCUE

v9.80

0040

81AE
O1EB
01F0
0383

e 0 0
109A

0423

6F84
6F83

o o0
L N
1BAB
1B0S
1B08
1BOA
1BOB
1BOC
1B23
1AED
1AFO
1AF2
1AFS
1AF3
1AF6
1AF4

OF3B

L B]
1BDD
1B11
1B14
1B16
1817
1B1A
1B18

LABEL

DFDV
DFH
DFUN
DIG
DIP
DIPS
DIROO
DIRO
DIR0O2
DIRO3
DIRO4
DIROS
DISPCK
DIVHD
DMDHD
DMDHV
DMDNM
DMDNU
DMDRT
DMDSC
DMDSF
DMDTK
DOWN
DSBUF
DSBUFS
DSEC
DUPOO
DUPO2
DUPLX
DX01
DX02
DX03
DX04
DX05
DX10
DX11
DX12
DX13
DX13A
DX14
DX14A
DX15
DX16
DX17
DX18
DXCM1
DXCM2
DXX
Dz01
Dz02
DZ03
D704
DZ05
Dz10
DZ20

EARLN
EARLNA
EARS

v9.80
e 00

1B03

LABEL

EARSO
EARS1
EBLF
EBLK
ECFB
ECOP
EDCS
EDEL
EDEN
EDFN
EDIR
EDRF
EDFY
EDUP
EFCS
EFNF
EFRD
EFWR
EHCS
EIVC
EIVD
EIVF
EIVP
EIVT
EIVU
ELIN
ELINE
EMDV
ENEM
EMESS
EMEN
EMVN
EMVR
ENSA
ENVE
EOFOK
EPRM
ERALP
ERAS
ERASE
ERS
ERS2
ERSYN
ERSZ
ESO1
ESQ2
ESO3
ESO4
ESOS
ESCAP
ESCAX
ESCCRT
ESCD
ESCDG
ESCG
ESCTB
ESEC
ESIZ
ESKF

4000
0268
0250
0A3D
OAF3
OB8E
0039
1D2F
1083
1DSA
1D6D
1D76
0421
04D0

1D22

0018

LABEL v6.78 v8.79 v9.80 LABEL v6.78 v8.79 v9.80 LABEL v6.78 v8.79 v9.80

ESYN 0009 eee e FNEW 0001 eee oo IDM 0055 eee ———
ETYP ~ - --- 005A FPB 807F eece cee INCXY 3D2C 078A 072C
EVEN ~-- --- 1DE6 FPBE 811D eee oo INCXYO ——- --- 072A
EVFY 001B ees oo FPBP BOF3 eee e INIOO 2721 OBC4 e e
EVOV 0027 eees oo FPROM 0080 --- --- INIO 2761 0C04 oo
EWRF ——- --- OO0 FPTR 811B oee e INIO2 2766 0C09 eee
EWSZ 0036 ese oo FREE 3A0A 0453 0422 INIO3 2768 OCOB eee
EXDHV ——- --—- B1ID FREEX 3A0A 0453 0422 INIBAS 37BD 01EB O1E5
EXEQO --- --- 1030 FSAD 810A e oo oo INITAD 0003 eee oo
EXEO5 ——- --- 1A30 FSBK 8103 ocoe oo INPCRT 81C5 oeee oo
EXE10 S - v-Y FSIZ 8105 ecoe oo INPFL B1E3 eee oo
EXE100 ——- --- 1ABA FTYP 80FF oee oo INPTB 3728 00DD e e
EXE20 I Yo FULL 3A4E 04A5 0474 INSEQO 30E7 154D oo
EXE30 —- - ——- 1A6C FVER 8102 ecce e INVEC 3BC4 061B 05BA
EXE40 —-- ——- 1A76 FXBC 8119 oo oo INVY 3BES 061B 05DE
EXE50 —-- —-- 1A8A o1 3504 193A eee INVYQ --- --- 05DC
EXE6O --- --- 1A97 GAR1 3258 468E e e INVY1 --- --- 08E2
EXE7O -~ - —-=-- 1AA3 GAR?2 3272 16A8 e e IRBK 318E 15C4 e e o
EXE80 - -~ --- 1AA8 GAREC 3257 468D e o IRBKI 3205 163B e e
EXEQO --- --- 1AB8 GB1 3224 165A e e IROLL 38C1 030A 0209
EXH --- --- 1B1B GCMA 3488 18BE e e e 1S1 2240 1BE6 - --
EXTBF 81D6 e ee oo GCTRK 256A 1EEB - - - 182 224D 1BF3 - --
EXTIN 0001 eee oo GCUCNT 2570 1EF1 - -- 1S3 2265 1COB - - -
EXTOT 0007 eee oo GDATAM 24C8 1E4B - - - 1S4 2267 1COD - - -
GDRET 271E OBC1 e e e ISEC 2235 1BE5 1CES
F 25EF OAQB e e GETRC 37FC 024A 0226 ISERL 3974 038D 038C
F2 25F2 OAGB e e GETBCO - - - - - - 0222 ISERX 3991 03DA 03A9
F3 25F9 0AA2 e e GETTO 2C0C 1042 e« IUNT 368D 0042 O0A8A
k4 2607 OABO oo o GH1 22DB 1C5E - - - IVC 2604 0AAD - - -
F5 --- --- 0AB4 GH2 222 AC65 - - - IWBK 3188 15C1 e e e
FATR 80F8 e co GH3 2260 1C6C - - - IWBKI 3202 1638 ese
FAUX 810F oo coe GH4 20F3 1C76 - - - JMPD 2F01 1337 e e
FBLK 8115 eee o GMO1 2CCD 1103 e e JMPHL 3FDD 0A3B OF63
FBUF 8117 oo oo GM02 2CDO 1106 e JUMP BIE7 osos eoe
FCS 25EC 0A95 =+ GM0O3 2CBD 0F3 eee
FCSEM 262A 0AD3 - - CMPRM 2CA4 10DA oo e KAPO T 0se e
FCSEX 2622 OACB e oo ; KAP1 --- 0079 e
GN1D 34E7 191D e e
FCSFL 81E1) s oo KAP2 - ——- 003B e
FCSORG 9587 - - - - GNA1Z 34E4 191A e e KAP3 o O09F ees
FCSOUT 3379 17AF o+« G2 34F9 1928 e we KAP4 ——- 0021 ees
GN2Z 34F6 192C e e e
FCSX 3301 1737 eee KAPS --- 000C e
FDBK 810D ceo o c e (ENDE 2D86 11BC o0 KBCHA 81FE PRIPRIS PRIPRIS
FDEN 810E D) oo o GNDED o T 013E KBDFL 81DF LA 4 L
FDH Tt e GODBK 2FB5 13EB e e KBRA o ___ 0378
FDRY 8114)) GTBYT 322¢ 1662 e KBRDY - - - - 81FF
FEED 383D 0504 0558 GXOUT 2564 1MEES --- KBREP 304F 0398 0367
FERS 2648 OAF1 e e HALF 3AAC 04A3 0472 KCHAR O03E ecee¢ oo
FERS2 265A O0OBO3 e ee HANADD --- --- B80E3 KEDEL 001D e e o O
FECN 8113 ees ses HANER 35FC 1A32 1E5D KERDY 001E ees oo
FGO 226C 1C12 - - - HDCNT —- - —-- F85 KEYBD 3EB3 0911 eee
FG 1 226E 1CA4 - - - HDVCT 368E 0043 1AEB KEYCO 002B ees oo
FGD 2979 1C18 - - - HERA 22A5 1C4B - - - KEYOT 3A53 04AA 0479
FG3 227F 1C25 - - - HERR --- --- 1DDE KEYOT1 --- --- 047D
FG4 2286 1C2C - - - HEX 81B8 eee oo KEYTST S~ -~ 0024
FHAN 8111 osoe oo HOLD --- --- D002A KEYTEST 0024 eee oo
FILL OOFF eee —— - HOME 386E 02B7 0288 KTAB 3FDE OA3C 0888
FLAD 8108 osoo oo HOMEX - -- --- 1CCB L0 2094 11CA e e
FLBC 8107 ecoc oo HRTR O01E eee --- L002 2082 11D8 e e e
FNAM 80F9 oo oo IDEV 3688 0040 0A88 LO05 2DC9 11FF e e

8 COLORCUE MAY/JUN 1984

LABEL

LOO6
LOO7
LOO08
LOO?
LO10
LO11
L0412
LO13
L014
L0417
L023
L025
L1

L106
L2

LOTO10
LOTDUP
LPJMPO
LPJMPA

COLORCUE MAY/JUN 1984

v6.78

2E16
2E30
2E3D
2E40
2E4A
2E5C
2E75
2E82
2F14
2F60
2E7E
2FAA
32E9
2E15
32F7
332A
3334
3349
2F03
3398
204E
2952
346A
388D
33A4
8046

3B45
81E4
3E41
3EA4
3E4D
3ES9
3E6S
3E66
3E7D
3E80
3E8C
3E8D
28CD
3897
389E
3392
2869
3A4F
3472
81F9
28C9
28E6
28EA
291F
2936
293D
288F

v8.79 v9.80
124C e e e
1266 o oo
1273 e e
1276 e oo
1280 e oo
12902 e oo
12AB e o o
12B8 o e o
134A e e e
1396 e e e
12B4 e o o
13EQ0 e oo
171F e e e
124B e e o
172D o e o
1760 e oo
176A oo e
177F e e e
1339 e e
17D1 e e o
ODF1 e e
ODFS e e e
18A0 e e e
0306 02D5
17DA e e o
L 2N BN] L 2 BN J
059C 0563
-—-- 0565
[N N] [I BN)
089F 0841
0902 08A4
08AB 084D
08B7 0859
08C3 0865
08C4 0866
08DB 087D
08DE 0880
O8EA 088C
O8EB 088D
OD70 e e
02E0 02B1
02E7 02B8
17C8 o o o
ODOC e e
04A6 0475
18A8 18A8
[BN J L N BN)
OD6C e e e
OD89 e e e
OD8D e e e
ODC2 e oo
ODDGQ e e
ODEQ e e e
OD32 e e
--- 0138
--- 0130
- -~ 4803
-—-- 4806

LABEL

LPJMP2
LPJMP3
LPJMP4
LPJMP5
LPJMP7
LS4

LS2
LS3
LS4
LSS
LS6
LS7
LS8
LTIM
LTNOR
LTPEN
LTYP

M1

M2
M8002
MASK
MCHO1
MCHO02
MCHNK
MDBLK
MDDX10
MDDX11
MDDX12
MDH
MFIOA
MMEMO
MODE
MOVDH
MOVHD
MOVXY
MS1
MS150
MS2
MS3
MS4
MSTO4
MSTO02
MSTO3
MSTO4
MSTR
MULHD

NEGH
NIBL
NKC
NOCHA
NOLIN
NOROL
NOTH
NROLL
NROLLO
NSEC
NTRK
NTYP

v6.78

v9.80

4809
480C
480F
4812
4818
0589
058A
0595
0596
05A1
05A2
05B0
05B1

0530

1074

o 00
1B3F
1B93
1BA3
1AF7
L I BN)
0175
o 00
o 00

0748

027E
L N
07A3
07A2

LABEL

OBC
OCODE
ODDFL
OFFPB
OPDIR
OPEN
OPENX
OPENY
OPOX
OPX01
ORAM
ORCHA
ORHD
OSEC
OSERL
OSTR
OSTR1
OSTR2
OSTR3
OSTR4
OSTRS
OUTBL
OUTCRT
OUTFL
OUTHL
OVERS

P2SNUM
PAGE
PAGE1
PARTMP
PEA
PBINX
PBINX1
PBINY
PBINY1
PBYT
PCFSP
PCOLN
PCRAD
PDV
PDVO1
PDVO2
PDVO03
PDVO4
PDV0OS
PDVO6
PDVO7
PDV08
PFS0O1
PFS02
PFSO3
PFS04
PFSPC
PLINC
PLOFL
PLOKB
PLOTX
PLOTXA

v6.78

80E3
80F5
81EE
26E5
2D60
2DAB
2C86
2C89
2C00
2CA2
80F0
3021
3562C
80ED
3A61
33F4
3404
340A
340C
3410
3418
3718
81C2
81F8
81FB
80F6

34D2
3A86

3237
3C05

3C8B
34CD
3087
34B8
81D8
2FDE
2FF3
3002
300F
3016
3019
3026
3055
3062
30A5
30AB
30BB
30C1
3077
3C7C
81DA
3DEQ
3CB2

v8.79

e o0
[
oo oo
0B88
1196
11E1
10BC
10BF
1036
10DB
LI
077F
1962
LN]
04B8
182A
183A
1840
1842
1846
184E
00CD

1908
04DD

166D
065C

06E2
1903
14BD
18EE
1414
1429
1438
1445

144C

144F
145C
1488
1498
14DB
14E1
14F1
14F7
14AD
06D3
o 00
0847
0709

v9.80

8044

L B
L
011D
o o0
L I
oo 0
[2N J
o o0
10D8
0721
1962
0487
L I J

e c 0

04AC
O4AF
8185
o o0
OSFE
060A
0684
0690

= > 90 @ o o 0 o o o

.....ggo.........
e o 0o 06 0 U0 @ ¢ 0o ¢ 0 0 o o

0675
LN N
07E9
06AB
06BD

LABEL v6.78 v8.79 v9.80 LABEL v6.78 v8.79 v9.80 LABEL v6.78 v8.79 v9.80

PLPTY 3BFD 0654 05F6 Q11 3F43 09A1 09A3 RUNO1 206D O0E10 e ee
PLTAB 3D6F 07CD O076F Q12 3F54 09B2 (09B4 RUNO2 207C OEIF e e e
PNFSP 306E 14A4 oo o Q13 3F81 (09DF 09E1 RUNCO ——- —-- 1ACE
PNUM 34D8 190E e e Q14 3F85 09E3 (09E5 RUNC1I0 --- --- 1A1D
POTON 3aD99 07F7 0799 Q15 3F9E Q9FC OQO9FE RUNC20 --- =--- 1A29
POUND 2511 1E8E - -- Q16 3FAC O0AOA O0AOC RWB1 31EC 1622 e e
PPFSP 3074 14AA e o o Q20 3FC2 0A20 0A22 RWB2 31EF 1625 e e
PRCFPB -——- --- B81AF Q21 3FCB 0A29 0A2B RWBCM 318F 15C5 e e e
PRDEV 2CD4 110A e e e QLDA 2AAB OF4E OF4B RWE 2EC5 12FB e e e
PRINT 3A96 04ED 04BC QTYP 2AAE OF51 OF4E RWICM 3206 163C e e
PRM1 0080 --- --- RWSEQI 30C6 414FC e e o
PRM2 0081 --- --- RACM --- =--- 00C4 RXBUF 0000 eee oo
PRM3 0082 --- --- RAMIMP ~ --- --- 6F80 RXSER 0020 eee oo
PRM4 0084 --—- —-- RATE --- --- 0002
PRM5 0085 --- --- RATEA 0016 e e oo S10UT 33C3 17F9 e e e
PRMé& 0086 --- --- RATEB O02F eee oo SAVO0 2833 0OCD6 e e
PRMPT 3382 17B8 17BB RBLK 3182 15B8 oo e SAVE 3FD0 O0A2E 0A30
PROCES 398C 03D5 03A4 RBLKI 31F9 162F e e SBC 8042 eee -
PROLL 0007 eee oo RBYTE 246A 1DED - -- SBCHA 39BC 0405 03D4
PSBYT 34CA 1900 e e RBYTEC 2474 1DF7 --- SCMN 3554 198A e e
PSFSP 3068 149E o e o RCMD --- =--- 0088 SEC B0EE eee eece
PSNUM 34D5 190B e e e RCOMD 0017 eoe oo SEC15 81D7 eee oo
PSPAC 34B3 18E9 e RD 2EFB 1331 e e SEEK 2222 1BCE 1C8B
PSSTR 34BD 18F3 e e RDOO 2411 1D94 1DC7 SEEKF 22AA 1C50 - - -
PSTAT 81DB eee oo e RDO4 241C 1D9F 1DF3 SETOO — -~ —=- 0A76
PSTR 34C0 18F6 e e e RDO2 2429 1DAC 1DFA SETC9 ——- ——- 04144
PTBYT 324A 1680 oo RDO3 2435 1DB8 1EQ4 SETEXE ——— ——- O0A7M
PTREC 3285 416BB e e o RDO4 2438 1DBB 1EQD SFR 2F96 13CC e e
PTYP 2D57 118D e e o RDOS --= --- A1 SHIFF 3B85 05DC 057B
RDAT --- --- 0023 SHLHD 353A 1970 eee
PUP 81B7 eee oo REAQQ 26F1 0B94 e e SHRHD 3544 197A eee
PUTEZ 3DE6 0844 07E6 READ 2EA3 12D9 e e e SIZBIT ——— - ——- B8OE2
PUTEZO -—-- —-—-- (07E4 READY 81FF ee¢ ¢ - SLA 353E 1974 eee
PUTXD 3C9B 06F2 0694 RENOO 2A0C1 OF64 e e e SLDSD e e ——— 1C50
PUTXD1 --- --- 06%E RERR 2453 1DD6 - - - SOK 0000 eee oo
PUTXZ 3DC6 0824 0Q7Cé6 RESET 26A5 0B48 oo 0 SP&AC 39B4 03FD 03CC
PUTYD 3CEB 0749 O06EB RF1 2880 0D23 eee SPNOR 3460 1896 oo
PUTYDO --- --- 06ES RF2 2883 (D26 eee SR 3548 197E e e e
PUTYDA1 -—= -—-=-=—06F5 RFLG 80E1 eoee SRTR O01E e e 0004
PUTYD2 --=- --- 06E6 RGAPS 0003 eee — - SSIDA 0008 eee eee
PUTYD3 - T I O6E8 RINT -—— -—- 0029 SSOBE 0010 e e e ee e
PUTZZ 3DAD 0803 07AD RNFIL —_— - - — - OABB START 0000 e e e e e o
PVREC 327B 16B1 e e ROLDA 0066 0076 esee STARTIT 00KE eses oee
PWRUP 37B1 04DF 0OA48E ROLFL 8IDC eee oo STARX 376C O1BA e e e
PWRUP4 --- --- 01DF ROLL 3A85 04DC 04AB STATS 0003 eee eee
PXYCH 3D'13 0771 0713 ROLLN 81CD oo e e e o STEP1 - 1BD3 —_—
PXYCHO ~ --- --- 0712 ROT 3EFE 095C 095E STEPCD 0027 eee ——-—
PXZER 3BF3 064A O05EC RRTR 000A eee — - STEPS 2525 4E9D - - -
Qo1 3EBS 0916 e e e RSO 26AB 0OB4E 0B4B STIM O03F eee ooe
Q02 3EBC 091A e e RSO2 26CE 0OB71 e e SPOPIT 006A ese oo
Q03 3ECO 0927 0929 RSO3 -——- -—-- 0B78 STORO -~ ——_ 0400
Qo4 3ECB 0929 (0928 RSCM --- -—-- 0004 STOR1 39EB 0434 0403
Qo5 3EE7 0945 0947 RSEC -—- -—-- 0022 STOR2 39F1 043A 0409
Q06 3EEF 094D 094F RST1J 81C8 eee oo STP1 2529 1E9E - - -
Q07 3EF7 0955 (0957 RSTBF 0002 eee oo STP2 2536 1EBO0 - - -
Qo8 3F07 0965 0967 RTST 33D5 180B e STP3 2558 1EB7 - - -
Q09 3F2C 098A 098C RTST2 33D8 180E e e e STP4 --- 1ED8 ---
Q10 3F3F 099D Q99F RUNOO 2956 ODF9 e e STPIN 253D 1EBA - --

10 COLORCUE MAY/JUN 1984

LABEL

STPITN
STPITO
STPOUT
STPTIM
STPWAT
STRTMP
STWO
STX
STYP
SUBHD
SUBU
SULD
SVCHA
SVCRS
SVCRS1
SVCRS2
SXO
SXO1
SYSORG

TAB
TAU
TBADDR
TBC
TBLOO
TBL24
TBLK
TDRV
TEMPO
TEMPA
TEMP2
TEMP3
TEMP4
TEMP5
TEMPHL
TESHI
TEST
TESTB
TESTBO
TESTB1
TESTC
TESTCA
TESTX
TFCN
TFILE
TFREE
THRUFL
TIM3X
TIM4X
TIM4X4
TIM4Y
TiM4z
TIMEA
TIMEZ2
TIME3
TIME4
TIMES
TIMXA1

TIMX2

COLORCUE MAY/JUN 1984

vé.78

254D
0014
255E

2C67
2DsD
3459
214D
2986
390C
3873

2502
250C
211C

3881
0005
368B
80EB
36A8
36C8
80E7
80E6
81F2
81F3
81F4
81F5
81F6
81F7
80DE
39CE
3A09
3A45

3A2D
3831
80E5
0002
0001
81DE
3EAL
3AD1
3AEQ
3AE6
0009
0O00A
00oB
0ooC
000D
0000
00u8

v8.79

1ECO
1ECE
1ECS8

1EDF

109D
1193
188F
1AF2
OE29
0425
02BC

1E7F
1E89
0120

02FA

005D
007D

0417
0452
049C

02C9

e 606 06 06 06 06 0 0 0 0 0
© 6 06 0606 0606 0 0 0 o
® 0606 0606 06 0 0 0 0 o

03E6
0421
0468
0469
046C
0445
0448
0248

o0 0
o0 0
08A6
04F7
0501
0506
050C

LABEL

TIMX3
TIMX4
TIMX5
TMEM
TMODE
TMP1
TOFF
TPROG
TPROT
TRAM
TRK
TWOUT
TXBUF
TXCONT
TXOUT
TXOUTA
TXPEN
TXSER

UPDATE
UPTIM

VCRAD
VCRSY
VEQO
VEO1
VEO2
VEO3
VEO4
VECTO
VECTO1
VECTY
VERR
VFILL
VHLAD
VISIB
VRTR
VTP
VTPA
VTP2

WATL
WATS
WBA1
WBLK
WBLKI
WBYTE
WCMD
WCMN
WDAT
WDSL
WF2
WIG1
WiG2
WIG3
WL
WL2
WR
WR0OO
WRO1
WR02

v6.78

0018
0030
0038
80EQ
39FE
81AB
2164
0018
0001
80DE
80EF
3B25
0006
3B1D
3B30
3B&D
0028

3805
0640

81CB
3A1F
2305
2322
232A
2336
233D
3E2D
3BBE
2308
841CE
81D2
3A0A
0002
24DD
24EC
24F4

3429
341C
245F
317F
31F6
245E

284F
22BA
22C4
22D2
342A
342D

2EF8
23A6
23BF
23C4

v8.79

0447

oo 0
1AFQ
o 00
L N]
057C
L BN]
0573
0587

05B4

0253

® 00
0468
1C88
1CAS
1CAD
1CB9
1CCO
088B
0615
1C8E

0453

1E60

1E71

185F
1852
1DE2
1585
162C
1DEA1

0CF2
1C53

1860
1863
132E
1D29
1D42
1D47

0024
00A8
0027
0028

csoe
e
coe
1D7F
1DA1
1DA7

LABEL

WRO3
WR04
WR05
WR0O6
WRDIR
WRIOO
WRITE
WRTR
WS
WSEC
WTRK
WXYZ

X80
XDATA
XFBLK
XFBUF
XFDRV
XFER
XFFCN
XFHAN
XFXBC
XINTR
XORHD
XOUTO
XOUT1
XTWO
XYMIT
XYTAB
XZERG

YDATA
YTWO
YZERO

ZERFL
ZFATR
ZFAUX
ZFBLK
ZFBUF
ZFDBK
ZFDEN
ZFDRV
ZFFCN
ZFHAN
ZFLAD
ZFLBC
ZFNAM
ZFPB
ZFPBE
ZFPTR
ZFSAD
ZFSBK
ZFSIZ
ZFTYP
ZFVER
ZFXBC

‘ZH

ZPTR
ZRAM
277777

v6.78

23D0
23D4
23E6
23F0
2F75
26EE
2ECC
0004
341F

2573

7000
81EC
81A1
81A3
81A0
219A
819F
819D
81A5
0010
3533
81AF
81B0
81EA
3B13
3D67
81EF

81ED
81EB
81F0

39A9
8083
809A
80A0
80A2
8098
8099
809F
809E
809C
8093
8092
8084
8082
80A8
80A6
8095
808E
8090
808A
808D
80A4
355E
3009
8082
3FFA

v8.79

1D53
1D57
1D69
1D73
13AB
0891
1302
LI
1855

1EF4

LN N
o 00
oo 0
oo 0
o o0
1B3F
o o0
o o0
o 00
LN)
1969

0569
07C5

03F2

o e 0
o e 0
o e 0
LN
L BN
LK N]
LN
[2 BN
L
e e 9
o0 0
o 00
o0 0
L N J
o0 0
oo 0
L N]
o0 0
L BN
L]
L N 4
1994
150F

v9.80

1DAB
1DB9
1DC4

0026
0025

0530
0767

03C1

1
1
1

11

PRODUCT REVIEWS

IDA, software debugger

Joseph Norris

COLORWORD, word processor, screen editor

These two software packages have been
long overdue for review by a Com-
pucolor publication. Part of the delay
has been caused by revisional activity by
the authors, but the real delay has been
the lack of adequate marketing efforts
for US buyers. Colorcue hopes both
these programs will receive the attention
they deserve as the latest products
directed to the Compucolor/Intecolor
owner.

IDA, BY Birr GREENE. $49.50
(INTELLIGENT COMPUTER SYSTEMS)

IDA is a software debugging program
by Bill Greene. Bill is also the author of
Super Monitor, Super Monitor Plus,
Compucalc, and an edition of FORTH,
as well a a few games. He has been a fre-
quent contributor to Colorcue since its
very beginning.

It’s difficult to give a straightforward
review of IDA, because after using it
daily for several months, I can’t think
of anything but superlatives. IDA is the
topic of the tutorial in this issue by W.S.
Whilly, who begins a fascinating ex-
ploration of IDA’s possibilities. He has
only scratched the surface. To be
straightforward, it is my opinion that
should I lose all my other software, 1
would hope to keep IDA. It is brilliant-
ly written. It is a flawless performer. It
is the greatest timesaver imaginable.
IDA i: usually the first software I call
upon at power-up, and the last I use
before dragging my mortal remains to
bed. Had I owned it three-years ago, I
might actually know something about
the CCII at this point. It is certain I
would have spent much less time head
scratching and reconstructing lost disks.

IDA is an (I)nterpreter, (D)isassembler,
and (A)ssembler, monitor, calculator
and debugger all wrapped within 8K
bytes of magic. It is available for loading
at 4000H, 8200H, AOOOH, and E0OOH.
IDA.REL is also available for
macroassembler users for loading at any
address in user memory. It will operate

12

with v6.78, v8.79 and v9.80 software,
and there is work in progress to make
it available to 8000 computer users as
well.

IDA does all of the following, and then
some: a) makes an ASCII dump of
memory, b) sets printer .Baud rate, ¢)
sets checkpoints, d) disassembles
memory, €) prints SRC files, f) fills
specified memory ‘with a constant, g)
runs assembly programs, h) makes a hex
dump of memory, i) interprets assembly
programs with a register dump, j) allows
addiion of user-defined jump table
parameters, k) compares designated
memory locations, 1) prints any screen
display to printer, including displays you
type there (in simulated CRT mode) for
clarification of screen data, m) moves
designated memory, n) makes decimal
dump of memory, o) sets origins for
pseudo-assembly of mnemonics from
keyboard directly to memory, p) peeks,
with an option to poke, at any memory
location, q) exits to FCS, s) searches
memory for byte string, with option to
disassemble, replace with designated
string, or present a peek/poke mode, t)
types keyboard lines to printer, v)
displays directory with usual display
plus file length in hex and decimal, x)
executes any FCS command without ex-
iting IDA, z) sets lines/page and blank
line format for printouts.

While IDA has more capability that any
previously-issued program of its type, it
isn’t what it does that is so impressive;
it’s how it does it! This is difficult to
describe in text (you’ll do better if you
follow W.S. Whilly’s article). The large
figure on the next page is a ‘‘snapshot’’
of an IDA screen following a
disassembly from address 8200. Follow-
ing the IDA prompt is my instruction to
disassemble 10 (hex) program lines
beginning at 8200. IDA displays, in
order of column, the memory address,
a grouping of hex digits associated with
that address, a translation of those digits
to mnemonics, and, in the last column,
an interpretation of the hex digits as
though they were not program code.

Notice the lables ‘“IPCRT”’, “ICRT1”,
and “KBDFL”’ in the last column. IDA
has recognized these addresses from the
disassembly and printed the system
names for them —for my convenience.
This is a colorful display column, each
number being colorcoded to establish its
ranking in the 256 possible characters
available in the CCII. You can readily
identify a printable ASCII character, a
control code, or a special character.

Is this particular instance, when the
display reached the line of address 8226,
I pressed the [UP/ARROW]. A blue bar
cursor appeared on the screen. I held the
[UP/ARROW] key until the bar cursor
moved up to the line it is shown on in
the figure, address 820A. IDA now lets
me do a number of things at this ad-
dress: I may use a Peek/Poke option to
enter new hex digits at this address, 1
may set this address as an origin for
assembly and actually type in
mnemonics at the keyboard, which will
be instantly assembled and inserted,
beginning at address 820A.

The ease with which this kind of pro-
cedure is carried out is not adequately
expressed with words. Similarly, all of
IDA’s functions act with ‘‘forethought’’
which is to say — the program ‘‘knows”’
what you are likely to want next, and
presents itself for your service accor-
dingly. It is clearly the work of a master.

The simple feature of making FCS com-
mands available from IDA without a
program exit is a remarkable time-saver.
No perpetual reentries to IDA, no lost
jump vectors from ESC USER. IDA
reveals, with ease, any mystery the disk
drives hold. All sectors are there to be
read with a simple command. All sec-
tors may be rewritten with a simple
command.

Calculate with any combination of
binary, hex or decimal numbers, using
arithmetic operators, or the MOD,
AND, OR and EXOR functions. Save
yourself from tedious calculations with
IDA’s display of disk file size. Convert
an LDA to a PRG in seconds. Repair
bad Basic program lines in a jiffy. Cor-
rect a bad disk directory. Do anything
you ever wanted to do but couldn’t.

Selectively run an assembly language
program, one instruction at a time, and

MAY/JUN 1984 COLORCUE

FCS>LOAD PNTLOW.PRG

FCSHPRUN_1DAE

10A>082088 10+

8208 2100808 LX1 H,0008H
8283 39 SP

8284 22E£188 88E1H

CSH

217582 LX1 H,8275H
22C481 SHLD 81C4&H
3E1F MV R,irn
32DF81 STA 81DFH
21188C LX!t H,8C18H
821D 3401 MU M,01H
821F AF XRA A
8228 321289 STA 8912H
2223 321389 STA 8913H
8226 321489 STA 8914H

>
=

A SAMPLE IDA SCREEN

watch the registers change...or run six-
teen lines at a time, or stop at preselected
places of your choosing and examine the
registers and memory to see what hap-
pened. Look at the stack and watch it
change.

All these things are not only routine with
IDA, but so logically executed and
displayed, it’s difficult to remain ig-
norant about anything for very long.

There must be a catch somewhere!
There is. IDA’s manual is painfully
skimpy. Trying to find out how to make
these provisions come to Jife reminds me
of my early days with the Compucolor
manual from ICS. The first IDA
manual was a skeleton. Subsequent revi-
sions have been improving, but you will
be blind to IDA’S power without articles
like Mr. Whilly’s or a few daring ses-
sions at your own keyboard, exploring.

There are plans at Colorcue to produce
a manual for IDA worthy of its content.
But, for goodness sake, don’t let a poor
manual stop you! Get IDA quick, and
join us. IDA will be everywhere in the
pages of Colorcue. It does for the en-
tire computer what ‘THE’ Basic Editor
and FASBAS have done for Basic. The
price is a sinfully modest $49.95. Order
from Intelligent Computer Systems in
Huntsville, Alabama. (See their catalog,
this issue.) If you want a version for
3651 or 8000, write to me at Colorcue.
This is a program you’ll cherish.

MAY/JUN 1984 COLORCUE

COLORWORD, BY CHRIs TEo. $50.
(PROGRAM PACKAGE INSTALLERS)

CCII users have used Comp-U-Writer
for years. It’s a very respectable word
processor at a very high price. One ma-
jor drawback of Comp-U-Writer is its
inability to process control and escape
commands to take advantage of the
various facilities of modern printers.

COLORWORD removes the price and
printer support deficiencies of Comp-U-
Writer in one $50 stroke. COLOR-
WORD does not have Comp-U-Writer’s
“polish’’, and COLORWORD has its
idiosyncracies, but it works, and if you
court it appropriately it will serve you
well.

The latest revision is v4.5 which contains
a new sign-on display (I liked the old one
better—Iless cluttered), keyboard buffer-
ing, and a capacity to reformat
paragraphs. Current COLORWORD
users might want to make the $15 invest-
ment to get these improvements if they
were out-typing the software and were
constantly losing lines of text from the
screen.

COLORWORD offers the following,
more or less standard, word processing
facilities:

Line editing —delete character, delete
line, delete all text, insert character, text,
page markers and.control characters.

Block editing —delete, move, copy,
save, and print block.

File commands —save, load, initialize
disk, print directory, delete file, rename
file, change device.

Cursor control —up down, left right,
down/up single or multiple lines, single
page.

Printing —Screen preview of printout,
print text, set printer parameters (in-
cluding control and escape codes
anywhere in text).

Special functions —string search with
optional replace, operate with or
without lower case character set (but
print either to printer), HELP facility,
typematic keys, compact file storage,
generates SRC-type files, will process
any SRC files, 21K or 27K text area, can
be used with any CCII keyboard,
available for loading from disk at
4000H.

COLORWORD’s manual is thorough
and clearly written (18 pages). The only
difficulty with this program is learning
to live with it’s peculiarities. A double
RETURN is required to establish a
paragraph boundary. When editing (ad-
ding) words in the midst of a paragraph
you will frequently encounter the
“‘vanishing line’’ syndrome—entire lines
of text disappear from the screen
forever. They are in memory, and they
print out, but they are invisable. There
is a way out of this dilemma, faintly
referred to in the manuals of earlier ver-
sions, more carefully annotated in v4.5,
but one must be on one’s toes to keep
the demon away. COLORWORD is

- sometimes erratic in other ways, par-

ticularly if you have unusual margins
set, or use tabs too much. I haven’t
found a problem I couldn’t circumvent,
but I have resented the time I had to
spend courting the software when [had
pressing work to do. I admit, I have fre-
quently abandoned COLORWORD for
Comp-U-Writer. At the same time, the
price is right, and it works as advertis-
ed. If you’ve not been able to use a word
processor because of a limited budget,
COLORWORD is for you. It will be a
good friend. COLORWORD works
with v6.78, v8.79 and v9.80 computers.
It is available from Program Package
Installers in Australia. (See their adver-
tisement in this issue.) Don’t let their ad-
dress deter you. PPI is prompt and sup-
ports its products conscientiously.

13

This article has originated from my experiences with the
compiler, FASBAS, following the notion that some of the
subroutines contained in the Basic interpreter in ROM might
be of value in Assembly Language programs. It might be
useful to access subroutines for square root, COS, TAN,
etc, or the random number generator. The procedure for
achieving this is somewhat complicated, but it can be done.

The Basic subroutines all operate on floating point
numbers, to handle a wide range of values with accuracy
to 5 or 6 decimal places. I assume that Assembly Language
programs are going to treat all numbers as integers, express-
ed as 8 bit or 16 bit binary values. So we must establish a
convention, and I propose that any number which is to be
operated on by a Basic subroutine must be loaded as a 16
bit value in the DE register pair. Similarly the result of the
operation will appear as a 16 bit value in the DE register
pair. To accommodate negative values, the most significant
tit will be a sign indicator (1 for negative) and thus a range
of integers from -32768 to + 32767 can be expressed. This
is the normal convention for signed 16 bit binary, in which
positive values are counted upward from 0 to 7FFFH, and
negative values are counted downward (FFFFH = -1,
FFFEH = -2, etc).

So far the strategy is simple and can be described in the
following list of steps:

1) Load 16 bit signed value into DE register pair, 2) Call
subroutine to convert to floating point, 3) Call required
Basic subroutine, and 4) Call subroutine to convert back
to 16 bit signed value in DE register pair.

The primary problem is that the value returned by the

Basic subroutine will, in many cases, lie between 0 and 1,
and will appear as a value of 0 when converted from floating
point to binary integer. We can circumvent this by multiply-
ing the floating point number by some scaling factor (such
as 100 or 1000) before converting back to integer form, but
this is not as straightforward as it seems.

The Basic subroutine for floating point multiplication is
not wholly self-contained in ROM. In order to use it we must
first call another subroutine which loads instructions into
the memory area 8200H to 8298H. Therefore, your program
must, at an early point, include (just once) the following
instructions (in this and subsequent listings, the Basic
subroutine address is given for v6.78, followed by v8.79 in
brackets):

CALL 17DEH [372DH] ; Load 8200H to 8298H

Your program cannot itself be loaded at any address lower
than 8299H, as it would be overwritten by these Basic
instructions.

We need a clear understanding of the order in which Basic
carries out a series of mathematical operations, and where
it stores intermediate results. Basic uses the memory area
80DEH to 80E1H as a 4 byte accumulator for floating point
numbers, and results of all operations are stored here. If
the expression COS(X)*100 is to be evaluated, the sequence
of operations is as follows:

1. Put the floating point value of X in the accumulator,
2. Call the COS subroutine (result in the accumulator),

14

3. PUSH the contents of the accumulator onto the stack,
4. Put the floating point value 100 in the accumulator,
5. POP 4 bytes [=COS(X)] from the stack to registers
BCDE,

6. Call the multiplication subroutine (result in the
accumulator).

This example could be extended to divide the result by
Y, in which case Steps 7 and 10 would be very similar to
Steps 3 and 6:

7. PUSH the contents of the accumulator onto the stack,
8. Put the floating point value of Y in the accumulator,
9. POP 4 bytes (= COS(X)*100) from the stack to registers
BCDE,

10. Call the division subroutine (result in the accumulator).

Two points are worth noting. If X is to be divided by Y,
then X must be in registers BCDE and Y must be in the ac-
cumulator (and similarly for X-Y). The second point is that
all the registers are used during these operations, which may
help to explain why Basic moves values from the ac-
cumulator to stack and thence to registers BCDE, to keep
them safe during Steps 4 and 8. It should also warn you that
if you want to retain the contents of any registers, you must
PUSH them onto the stack before calling any Basic
subroutines.

Using Basic Subroutines in
Assembly Language Programming

Peter Hiner 11 Pennycroft

Harpenden

Herts, AL5 2PD
ENGLAND

We are now ready to consider the full sequence for ac-
cessing a Basic subroutine from an Assembly Language pro-
gram. I will use as an example a routine to evaluate the Basic
expression INT(RND(1)*100) + 1, which generates a random
integer value between 1 and 100. I assume that you have
previously carried out the instruction CALL 17DEH
[372DH] to load Basic routines into the 8200H-8298H
memory field. (See Listing 1.)

Note that the subroutine at 134FH [329EH] should always
precede CALL 114AH [3099H], even when you are sure the
result will be positive.

Listing 2. is a sample of simple subroutines which could
be used in the example of Listing 1. where RND was used.
For the arithmetic functions, remember that X must be in
registers BCDE and Y must be in the accumulator. (See
Listing 3. for arithmetic functions.)

A routine to evaluate 3 to the power of 5 is shown in
Listing 4. This routine returns a value of 729, so there is
no problem, but 3 raised to the 10th power would yield
59049. The hexadecimal value in registers DE would be

MAY/JUN 1984 COLORCUE

Listing 1.

LX1 D,1 ; Load 1 for RND(1)
CALL 1A5AH [393ah] ; Convert 1 to floating point
3 - value in accumulator
CALL 14D8H [341FH] ; RND subroutine generates
; RND(1) in accumulator
CALL 1386H [32CFH] ; Put RND(1) on stack Listing 2.
LX1 D,168 ; Load scaling factor = 1080
CALL 1A5AH [393AH] ; Convert to fp in accumulator Function..vé.78..v8.79
POP B ; Pop RND{(1) from stack to BCDE
POP D H SQR 15F8H 3547H
CALL 12A3H [31F2H] ;s Multiply RND(1) by 108 RND 16DBH 361FH
CALL 134FH [329EH] ; Test for positive/negative result LOG 12643H 31B2H
CALL 114AH [3899H] ; Convert result to integer in DE EXP 163FH 3S8EH
MOV A,E ; D=8, E=8 to 99 cos 1784H 3453H
INN A ; Now A=1 to 108 SIN 178AH 3659H
TAN 176BH 340AH
ATN 1788H 364CFH

E6A9H, which, according to our convention for signed 16
bit binary integers, we should evaluate as -6487. Clearly you
can, in practice, treat results between 8000H and FFFFH
as positive numbers in the range 32768 to 65535, provided
that you know what range of result to expect from the Basic
subroutines. This does not apply to values at entry to Basic
subroutines, which will always evaluate FFFFH as -1, etc.
If you try to evaluate an expression which gives a result out-
side the range -32768 to + 65535, then you will find that
the program jumps into a Basic error subroutine which gives

you a CF ERROR message. Intermediate floating point results

outside this range are acceptable provided that you divide
by a scaling factor (or add/subtract a suitable value) to bring
the result back into range before converting to a binary
integer.

A final point to remember is that the conversion from
floating point to integer values always gives as a result the
lower of the two adjacent integers, and does not round the
result to the nearest integer (e.g. 5.9999 becomes 5 rather
than 6). You probably expected this, but you may be sur-
prised to learn that -5.001 becomes -6, which is at least con-
sistent if not entirely logical. [

Listing 3.

Function..vé.78..v8.79

X+Y 1147H
X =Y 1144H
X*#Y 12A3H
X/7Y 12E5H
X*Y 1603H

E7D

38B4H
38B3H
31F2H
3234H
3552H

MAY/JUN 1984 COLORCUE

Listing 4.
X1 b,3
CALL 1A5AH
CALL 1388H
LX1 D,S
CALL 1ASAH
POP B

POP D
CALL 1663H
CALL 134FH
CALL 114AH

[393AH] ; Convert to floating point
[32CFH] 3 Put 3 on stack
[393AH] ; Convert to floating point
; POP value 3 to BCDE
[3552H] ; Subroutine for 4
[329EH] ; Test for positive/negative result
[38699H) 3 Integer in registers DE

15

+

one dimensional cellular automata

David Suits

49 Karenlee Drive

Rochester, NY 14618

By now almost everyone who has work-
ed with computers has learned of the
game of LIFE, in which the screen is
conceptually divided into hundreds of
squares (cells), and each cell is treated
as containing a living organism
(represented, say, by an asterisk) or else
treated as dead or empty (represented by
a blank)..On the Compucolor/Intecolor
it would be appropriate to set up the
screen as a two-dimensional array of
cells, 64 wide and 32 high. Given an in-
itial number of live cells, placed hither
and yon on the screen (usually at the
discretion of the user), it is interesting
to watch what happens when certain
rules of transition are applied to each
cell in the array and the new result
displayed. In the original LIFE there
were three rules (or four, depending on

how you expressed them) for determin-
ing when a live cell ‘‘dies’’, when an
empty cell ‘‘gives birth’’ and when live
cells stay alive. For example, if a live cell
is touching less than two other live cells,
the cell dies; when an empty cell has ex-
actly three live cells as neighbors, it gives
birth to a new live organism.

A program to run the game of LIFE
would set up the initial two dimensional
array, then check each cell, counting the
number of its live neighboring cells and
applying the appropriate transition rule.
When the entire array has been check-
ed, the program would display the
results and then start the transition pro-
cess over. This would continue ‘ad
libitum.” It is fascinating to watch
cellular patterns emerge and dissolve,
especially if the program is implemented

in assembly language.

There is nothing sacred, however,
about using any particular transition
rules which specify when a cell dies or
when it stays alive, etc. You can make
up your own rules for experimentation.
You can also expand upon the concept
of a ’live”’ cell: you could have different
‘‘species’’ of orgamisms which interact;
each species might have slightly different
transition rules.

The game of LIFE is an instance of
“‘two dimensional cellular automata.”’
Could there be one dimensional cellular
automata? Sure. Instead of n lines of ¢
cells each, you would deal with only 1
line of ¢ cells, and the transition rules
would have to deal with a cell’s
neighbors to the left and right. (A cell

" " n

% 8K RAM board.

PP

» Compucolor Hardware Options 4

* LOWER CASE Character set. (Switchable) MSCI2
W MULTI-CHARACTER sets. (Lowercase, Electronic, Music etc.)
X REMOTE DEVICE CONTROLLER. Switch ON/OFF 8 devices. PSCl

X 16K RAM Upgrade. (Increase from 16K to 32K.)

W 24K EPROM board (3x8K) with bank switch selection:

with keyboard/software selection:

% 8K ROMPACK for external EPROM exchange:
Cable and socket for ROMPACK. Cable connects to EPROM board:$25
Blank EPROMS (Type 2732)

1"

(Also includes sockets for extra 8K EPROM):
4000H Scoftware: COLORWORD, SCREEN EDITOR, ASSEMBLER,

GEN. LEDGER, THE EDITOR V3, DRIVER, WISE-II, GAMES etc. $10-50
(FCS update chips: V6.78 $12. V8.79 $28 if required.)

PROGRAM PACKAGE INSTALLERS,
P 0 Box 37,

DARLINGTON,
WESTERN AUSTRALIA 6070

$29
$39
$65
$99

$60
$85
$15 each
For each 8K: $10
$65

All prices
incl. airmail.

MAY/JUN 1984 COLORCUE

@ GOTO &42@8@@ : REM POKE IN NO-ECHO PATCH
. . 10 REM S#%%XAXXXARERRXAEFAEREFLELER AR AR ERARA XXX AR LR HHAN
would have no neighboring cells 11 REM * %
above it, because the line above 12 REM = CELLID -~ One dimensional cellular automata pro- #
would represent the previous gen- 13 REM % gram. *
P ; 14 REM = *
eration; and it would have no {5 gEM % D, B. Suits, March, 16 a.l. *
neighboring cells below it, because 14 REM = ! ! *
that would be the next generation 17 REM % See Brian Hayes Cc-mﬁ'uter' Recreations" in *
which would not yet exist.) In the %g F;En # SCIENTIFIC AMERTCAN arch, 1984 *
. e : * %
March, 1984.155% of Sf:lem’flc 20 REM #¥ERX¥XXXXXREREXXFAXRNARARRERFRRFRX XXX ARRARARLARARR
American, Brian Hayes discussed 3@ REM
one dimensional cellular auto- 4@ RGT=127 : REM_ Width of line (@--RGT).
mata, —a sort of game of L/FE 98 T8FZAZZ. ¢ BOIIOER. | cey add for Keyboard readi
1 i 2 H =3 H recsec for Keyboara readin
plased on only one rowataime 5 AFYOEZ T | BeADS ot (ALuE) o
. L 98 COLBR=2 : REM PLOT 6,COLBR for plotting live cells,
esting aspect of this is that each 180 DIM LINE(RGT) ,TEMP&RG
new generation can be displayed 1180 REM
on each line of the screen, so that 128 REM —=---———-—mmmmemme s e oo oo e o s T
o e “) 130 REM Define the transition function for each cell. In the
ghe’(’)ngmal line is seen as ““grow 146 REM resent version, a cell becomes {or stays) alive if
ing” from the top of the screen 158 REM ghe total number of live cells 2 positions on either
down (or, if you wish, from the 148 REM side of the present cell is either 2 or 4
bottom up.) 178 REM
. . 188 REM Count live cells ir 2 spotes leftt of cell X,
Implementation of aone dimen- 198 DEF FNL2¢X)=-{LINE{X-1)=ALIVE)-{LINE{X-2)=ALIVE)
sion cellular automaton on the 268 REM
Compucolor or Intecolor com- 218 REM Count live cells in ot: rnght of cell X.
putersis easyusing p]ot graphics, %%g BErF FNRZ('(”""'LI"‘]E"Q"’)=ALIU "'LI"‘] /+2)—ALI E)

where each plot block represents
one cell ("’alive’ if the block is on, %‘%g 32340 1eoe

“dead”’ if not). Thus, a one 2468 REM This is the actual, called subroutine. It makes use

dimensional cellular automaton %gg sgn of fumitl(cmdeQ aag R2 ?EOU& l‘fh osscblet (B!S ghe
precen index; is ¢ Nei wor Coun ocundary

could be 128 cells long, and you 394 REM checks must be included. ¢

could display 128 lines or genera- 388 REM

tions on your screen. (If you have 318 IF X=8 THEN NC=FNR2{X) : GOTO 346

a printer with dot addressable Q%g }I:_ §=iIQG'_lr'HfiZNTrdERFHEZE;Sl)_Z(%.(IN!;:E,_?&EAE%%JE)ACISETD ngTD o

graphics, you can get even larger 3 = NL= (X2)=t) 2 b &

automata and print thousands of %gg PIQE-}I%—'JE%-{XIEEHR@%X';NLZ(X) : GOTO 340

generations.) 340 ’

Various transition rules for 378 REM The result is either a live cell or & dead cell,
determining when a live cell dies, ggg EE‘A based upon the Neighbor Count.
when a‘dead cell gives b1rth,§3§c., 488 IF {NC=2) OR (NC=4) THEN TEMP(X)=ALIVE
can be invented. Some transition 418 TEMP{X)=DEAD

rules will result in an uninteresting ggg EE;URN

growth (or decay) of cells; others 440 REM
will generate unexpected, plant- 988 REM
like (or crystal-like) structures, 918 REM ========== ===
often with surprising symmetries. ; .

Listing 1 is a BASIC program gsg EEP, Main program
which implements a one dimen- 950 REM =

: GOTC 424

— o ————— ———— - T — - —— A - A — - - S " e S = e = e e e e

sional cellular automaton which ?SEBRE?ISUB 2888 REM Set q ¢ i
begins at the top of the screen. > : et up and_ instructions.
Each new generation is displayed }g{g ggaUB 3088 : REM Get initial line.
on the next line down. The transi- 1828 PLOT ,64 6,COLOR : REM Hide cursor; set coler.
tion rule used is simple: for each 1638 PLOT 2 : liEM Plot mode
cell in the line, count the number iggg gEm Dicol tial 1 t ot

; isplay initia ine a o
?f llveﬁeltlstv;o qel}l]s toft.he lef(; agg 1658 FOR X=8 To ReT p.
wo cells to the rignt of It, anc a 1855 IF LINECO=ALIVE THEN PLOT X,T@P
1 if the cell itself is alive. If the 10408 NEXT
total is either 2 or 4, then the cell %ggg EE&! M :
itself becomes (or remains) alive. ain_1oop.

o . 1878 FOR LINE=T@P-1 TO BOTT@8M STEP -1

Otherwise, it becomes (or remains) 1880 GOSUB 4688 : REM Calculate and display next line.
dead. 1098 NEXT

MAY/JUN 1984 COLORCUE

17

The program is rather slow, so
have patience. You can insert
some speed-up tricks, but
translating the program into
assembly language would repre-
sent a major speed improvement.
(It might be interesting to try a ver-
sion in FORTH.)

In the BASIC program, the in-
itial line of live/dead cells is
entered from the keyboard. The
echo is turned off, and a two-high
by one-wide plot block ‘‘cursor’
is drawn. Pressing the space bar
enters a ‘‘dead”’ cell and advances
the cursor. Pressing any key other
than the space bar and RETURN
enters a “‘live’” cell and advances
the cursor. Pressing RETURN
signals the end of input, the rest
of the line is filled with ‘‘dead”
cells, and the automaton begins its
slow growth downward. i

COMP—U—WRITER

The popular word processor is still
being sold. It was written by a
company called INTERSELL for
use on the Compucolor and In-
tecolor series of computers.
Several readers have written to
Colorcue with questions about the
support for this software. We can
only give you the names and ad-
dress of the originators of the pro-
gram and suggest that you contact
them for further information.

INTERSELL

465 Fairchild Drive

Suite 214

Mountain View, CA 94043

Software: Thomas Crispin
Manual: Robert Moody

18

D
S

RN BRI] T~ AR i N

) O D et et 0 D R TR D T D COI D e e et)
2D I D D @D B D IR R

[T ST RTINS TS TSRS N e 1 i

LIP30 G0

00 O LA D) R = 500 00 O LT LB L g = IR0 L0 N
D DD D D G T G R TR S D) SR T O O R Ry

5 a0 a0 043 0 £ £ 0 a0 £ £ £ L0 000 T 030 641 £ £ €3 L L0 60
T R P P R P 0 R PR PR b b bt i b b o 0 1 R0

T ON O O\ OR8N D O8O B B
[RTATIRYIAIAAEI LN T SV T
LT B G Py = 0) e 1T IR O

o Taclas BB o R~ Dol Lol o~ R
D Bacia T Sl ol i i~ Rt

REM
PLOT 255 : REM Exit plot mode,)
INPUT "";A% : REM Wait without destroyving display.

END

REM

REM ===
REM .
REM Set up and instructions,
REM
PLOT 6,6,29,14,12

PRINT ,, 1-0 CELLULAR AUTOMATA"

PRINT :

PLOT 15 : .))

FPRINT "Enter initial line. & cpace will rearegent a “dead’"”
FRINT "cell, and any other key (except RETURN) will signal"
PRINT "a “live’ cell., Press RETURN when done."”

RETURN

REM

o o e
REM

REM Get intial line.

REM

FLOT 2,44,8 : REM Hide cursor.

POKE KF,3{ : REM No-echo. ‘ S .

Cx=a@ : CY=%@8 : REM PLOGT X,Y for inputting initial line,
PLOT 38 : REM Flag on so 2nd PLOT erases previous block.
PLOT &,COLBR,2

GOSUB 3278 : REM Display "cursor"”.

POKE KE,Q .

A=PEEK(KE) : IF A=@ THEN 3128 : REM Wait for Key.

1F A=13 THEN 3188 :; REM “RETURN" for end of entry.

GOSUR 2278 : REM PLQOT “curscr® a 2nd time to turn it off.
IF A{PASCL" ") THEN PLOT CX,CY : LINE(CX)>=ALIVE : GOTOD 3178
LINE (X =DEAD

CH=Cx+1 : IF CX<=127 THEN 3108

POKE KF,12 : REM Turn on echo.

REM Fill out initial line if necessary.

IF CX{RGT THEN FOR I=CX TQ RGT : LINECI)=DEAD : NEXT

PLOT 255,29 : REM Exit plot mode; reset flag.

FLOT 12

RETURN

REM

REM —— e e e e e e mmm e
REM Plot the "cursor'.

FLOT CX,CY,CX,Cv+1 ¢ RETURN

REM

REM mromm o o e oS
REM Calculate next generation.

REM

FOR =@ TO RGT
GOSUR 216 : REM Get new generation in TEMP().
IF TEMP{XO=ALIVE THEN PLOT X,LINE

REM Trancfer TEMP{) to LINE().
FOR ¥=LFT TO RGT : LINECGO=TEMP{X> : NEXT

RETURN
REM
REM —m—mmmmmmme—mmmmm oo e e e e e
REM
ggj Ren EBarlow’s No-echo patch.
RESTORE 43088 : DATA 245,175,58,255,129,241,281
TH=254*PEEK ¢ 32941)+PEEK{ 32948 -
FOR %=1 TQ 7 & READ D : POKE TM+X,D : NEXT
BR=INT({TM 254> : POKE 33221,195 : POKE 33222,TM-BR#256+1
POKE 337223.BR : POKE 32941,BR : POKE 32948 ,TM-BR%254
CLEAR 5@ : 6OTA {8

MAY/JUN 1984 COLORCUE

-

S

|,]
‘v o'
42N

I am aware of the patronizing attitude taken by some in-
dividuals, who learn something of value, perhaps print a
few silly articles, and then retire with their wisdom forever.
They reach some kind of summit from which they can no
longer share, and decide all further questions are stupid.
Have you, for example, ever seen an article that tells how
to perform routine system debugging? Now you know why
I have emerged from obscurity.

The idea of ‘“bugs’ in a computer system derives, so
legend has it, from early experiences with vacuum tube
computers at the Department ot Defense, which were known
to fail because of nests of moths and other little creatures.
From this, we speak of our failures as being the responsibili-
ty of “‘bugs’’ in almost anything. So a ‘‘debugger’’ is meant
to remove the human errors from software and hardware
systems. We are discussing software debuggers.

There are five software debugging tools currently available
for the CCII and 3651 computers; MLDP by ISC, DEBUG
and NEWBUG by Com-tronics, Super Monitor Plus and
IDA by Bill Greene. These are listed in increasing order of
versatility, in my opinion, although each has its own special,
useful features. MLDP differs from the others by its lack
of printing facilities and is frustrating in this regard for
serious programming. MLDP does, however, have a uni-
que monitor which we shall examine next time. Most of the
others are somewhat similar in their capabilities, but IDA
stands out far above the rest. If you don’t have IDA you
are missing the companionship of a true friend, for it is the
best there is, and an invaluable working and teaching aid.

These articles will tend to focus on IDA , but if you have
one of the others and don’t want to purchase IDA, I will
include for you those commands which are somewhat com-
parable in MLDP and DEBUG, as far as they go. Super
Monitor Plus is a “‘subset’’ of IDA, so many of IDA’s com-
mands will work with it as well. In addition to one or more
of these debugging programs, you will need an assembled
version of CYPHER (at 8200H) from the MAR/APR Col-
orcue, on a disk by itself, and another disk side with no
valuable material on it. Any directory on this second disk
will be obliterated in the course of this article. Your work
will be facilitated by a printout of the assembly of CYPHER
(see Colorcue Mar/Apr 84), showing addresses and
mnemonic code.

A ‘““‘debugging’’ software tool is a program that allows
you to manipulate the contents of an FCS file, whether it
be a PRG, BAS, SRC, LDA, or any other kind of file. The
debugger is most often used with PRG files, to “‘run’’ them
in selected portions and to examine what is taking place as
they run. This kind of activity exercises the ‘‘monitoring”’
capability of a debugger. The debugger permits changing
program code, in a limited fashion, without the necessity
for reassembly, and it permits disassembling PRG files in-

MAY/JUN 1984 (OLORCUE

8 KVHGRxRWRO KILTIZnNrmT

‘‘...NLERMT RMGL GSY FKKVI IGMP.”’

Dqriie HIN DsrooB

to their source code. A good debugger will permit you to
correct faulty BASIC code lines that are making a program
unexecutable. You may print a file in hex number form, or
ASCII form. You may move code from one set of addresses
to another. The list of possible uses is truly endless. I will
introduce you to the power of debugging in a logical and
disciplined way, using the program CYPHER.PRG.

A debugger is usually loaded into high memory, above
the area used by most FCS files. This permits two programs
to exist simultaneously in memory. In these articles the
debugger is called the ‘‘instrument’” and the program be-
ing worked on is called the “‘subject.” If the subject code
occupies some of the memory required by the instrument
then debugging in the normal way is made impossible. If
the subject only uses instrument memory to store data files,
then debugging is still sometimes possible, even with this
conflict. (IDA is available for loading at 4000H which keeps
it out of the way, and therefore usable with any program
that will fit into 32K CCII memory.)

To set up the instrument, the usual procedure is to load
or run the subject program first from FCS. The LOAD in-
struction defaults to LDA, so if your program has a dif-
ferent file type, the load instruction must contain the file
extension; example: LOAD CYPHER.PRG. With this com-
mand, CYPHER will be loaded into memory but will not
“run.” If the RUN command is used, the default type
becomes PRG, so the command will read: RUN CYPHER.
In this case, CYPHER will load and run both. To stop pro-
gram execution, press [CPU/RESET] to exit, and [ESC] [D]
to return to the file control system.

Debuggers will generally load at several of the addresses
4000H, 8200H, AO0OH, and EOOOH (look at the available
loading addresses of your instrument on its disk directory,
then pick a version that will load safely out of the way of
your subject program). The last letter of the IDA name is
the first letter of the loading address. (Some IDA versions
are just named “‘8.PRG”’, “E.PRG”’, etc.) IDAE loads and
runs at EOOOH. IDAS loads and runs at 8200H, and so forth.
If you have 16K memory and a subject at 8200H, then you
must satisfy yourself with MLDP16 or DBUG16, or IDAA
at AOOOH. If the subject program loads at EOOOH, then your
debugger will have to be loaded below that, say at 8200H,
so it does not conflict with the subject. To invoke the debug-
ger, type from FCS a run command with the debugger name;
example: RUN IDAE, or RUN DBUG32, or whatever.

Now it’s time to get your feet wet. ‘‘LOAD”
CYPHER.PRG, and when the FCS prompt reappears, RUN
IDAE or some other instrument (into high memory).
CYPHER begins at 8200H and ends at 847DH, so any of
AO000H, EOOOH or 4000H will do for the instrument. Since

19

we’re loading into high memory, version ;02 of MLDP and
DEBUG will be used, so a version need not be specified
(unless you have ;03 for some reason):

[(Note: Later versions of 1DA use [ESC) for exits from all
1DA functions. [ESC) #ill replace [DOWMN/ARROW] where it

is specified in these articles.)

DBUG32:

FCS>RUN CYPHER
[CPU/RESET] [ESC) (D)

1DA (SUPER MONITOR): FCS>RUN DBUG32

COMMAND >
FCS>RUN CYPHER
[CPU/RESET] [ESC) (D] MLOP:
FCSYRUN 1DAE
104> FCS>RUN CYPHER

(CPU/RESET] [ESC) (D)
FCS>RUN MLDP32
DBG>

The last lines above illustrate the instruments’ prompts,
ready to receive a command. It is expected that when a com-
mand line is keyed in, you will follow with a [RET]. On
DEBUG there are some commands that will result in an
automatic RETURN. DEBUG also performs some
automatic ‘‘space-overs’’ on command lines with multiple
parameters. It will take a little ‘‘getting used to.”” We may
now begin work. Let us look first at the elementary process
of disassembly, in which the machine code is translated in-
to the more readable mnemonics of the source code from
which it was derived. The display will differ from original
source code in that all labels will be replaced by their actual
assembled addresses. The disassembler feature generally re-
quires a disassembly command; a starting address, and a
length of addresses to be disassembled. This length may take
the form of an ending address or a number of addresses
following the starting address. We will look at the first few
complete code lines of CYPHER on the CRT.

1DA>D 8208 18+ COMMAND)>S 8288 B21F

[DOWN/ARROW] or [ESC]
DBG)DS 8288 ,28

What is seen with disassembly varies among the in-
struments. IDA will give the most spectacular readout (see
LIST A), however, in this disassembly mode, most programs
are very much alike. In List A, column 1 displays the
memory addresses, column 2 shows the hexadecimal bytes
located in those addresses (clustered in IDA, separated in
other instruments), columns 3 and 4 show the disassembled
mnemonic form of the code (columns 4 and 5 for MLDP),
and column § prints a translation of column 2 which inter-
prets memory as an array of characters and not mnemonic
code. (In MLDP, this display appears as column 3, which
“strips’’ lower case to upper case. The only way to tell if
you’re looking at a lower case character is to examine the
hex code.) Look at address 820CH. The first byte represents
the op-code for ’CALL”’ (CD). The next two bytes are the
low and high bytes of the address of the CALL (2A, 18 for
v8.79 and v9.80, F4, 33 for v6.78). This line is calling OSTR
in ROM. If you have IDA, in column 5 you will see
“OSTR”’ printed. IDA translates all frequently used ROM
addresses into their source code name (very helpful if you

20

are modifying a PRG file for another version of system soft-
ware). To find what OSTR is about to print, look at ad-
dress 8209H and you will find the HL registers loaded with
address 82D7H, which just happens to begin the printable
string—6,2,3,0,10,’NORMAL TEXT ’—etc. All the lines in
Listing A are instructional lines of code, including the three
NOPs at the beginning which give the instruction to do

Now let’s move into the ‘‘high weeds’’ (as Myron used
to say). Repeat the last disassembly but start at 8204H. You
should get something like List B, and it looks nothing like
List A at all until it reaches address 8206H, even though
it has all but one byte of List A (not counting NOPs) in its
disassembly. How come? The disassembfer began to decode
the memory contents at address 8204H, where it saw 25H,
which happens to be the op-code for’DCR H.” The
disassembler will try to interpret the first byte it sees as an
op-code. That isn’t what we intend the 25H to mean. We
mean it to be the low byte of the address of string CLR (at

IDAYD 6208 15+ List A

8268 08 NOP
8201 0@ NOP
8262 60 NOP
8203 212583 LXI
8286 CDzA18 CALL 182AR
8209 210782 X1 H,8207H
B28C CD2A18 CALL 182AH
820F 212083 XI H,83204
8212 36468 M1 M, 804 LY [}
8214 23 INX H #

H'
i
i
i
i
j
i
j
i
i
8215 346C M1 M,8CH 6L 12
i
i
i
i
H
i
i
H
i
i

(]

[
A
0STR
B
0STR
'c

H,8325H

8217 oEed Wi C,0eH N 8
8219 212383 X1 H,83234 e

821C 3482 Wi M,82H 6B 2
821 3EC3 Wi #,C3K w195
8220 320381 STA B1CSH IPCRT
8223 21A782 IX] H,82874 1

8226 220681 SHLD 81C4H 1CRTY
8229 3EIF w1 Ay 1FH o3
8228 320F81 STA 81DFH KBDFL
B2zE C35E82 QP 825EH c*B

8325H). If the computer is going to see it that way, we must
begin disassembly in such a way that the computer will
recognize 25H as a low byte address of a preceeding op-code,
specifically here, 21H, the op-code for *‘LXI, H*’, which
is at address 8203. To satisfy this requirement, we must
always begin disassembly at some single byte instruction or
single byte of independent data, such as a DB byte. Other-
wise, we’ll be ““in the high weeds’’ and working against the
wind. If you’re in a program unknown to you, then you
must “‘feel’” your way from the starting address, writing
down legitimate starting places as you disassemble your way
through the program. If this isn’t clear, try disassembling
at each address in turn, from 8200H to 820BH and see when
the disassembly is congruent to List A and when it isn’t.

MAY/JUN 1984 COLORCUE

W~

The procedure for controlling the number of disassembly
lines varies among instruments. In our examples, IDA is
given the number of lines to decode (in hex), DEBUG is
given the last line to decode, and MLDP is given the number
of bytes to decode (hex). If the end specification falls at the
beginning or in the midst of a two or three-byte instruction,
the entire instruction will be decoded.

Now, using the same technique used to generate List A,
disassemble the code beginning at 8340H. IDA will accept
a number of different disassembly specifications, but I like
specifying the number of lines the best. DEBUG wants the
start and end address. MLDP wants the number of bytes
to decode:

IDA>D 8348 18+ COMMAND)>S 8348 8351

This will look very much the same for all the instruments,
and is shown in List C. What you see iri the mnemonic col-
umns is interesting but only garbage. The ‘‘real’’ meaning

1DAYD 8284 15+ List B

8204 25 DCR H

8285 83 ADD E

8286 CD2A18 CALL 182AH
8289 210782 X1 H,8207H
826C CD2A18 CALL 184H
820F 212883 LXI H,8328H
8212 3408 Wi N,88H
8214 23 INX H i

8215 346C Wi N,8CH i 12

YA

H
H
i
H
H
i
i
)

8217 OE68 W1 C,80H ; N3 8
i
i
H
H
H
)
H
H
i

c

OSTR

W

OSTR

'C

83]

8219 212383 X1 H,8323H4 '8

B21C 3682 W1 N,82H 4B 2
821 3EC3 Wi A,CH)19
8226 320581 STA 81C3H IPCRT
8223 21A782 LXI H,82A74 '8

8226 220681 SHLD B1CéH ICRT1
8229 3EIF W1 A, 1FH) IR |
8228 320F81 STA 81DFH KBDFL
822 C35E82 JMP 825EH £8

of these memory contents is in column 5 (column 3 for
MLDP)—a translation of a string of ASCII characters. How
do we know? For one thing, the disassembled mnemonics
don’t make sense. For another, the ASCII translation does.
Furthermore, using the hard copy of the assembled version
of CYPHER, we can trace this location back to address
8203, where the LXI H,CLR (8325H) instruction appears.
OSTR will begin printing at 8325H and continue until it
reaches a ‘“239’. (We are viewing a mid-section of this long
string.) The first subsequent ‘239’ occurs at address 8429H
(EF). This won’t just come to you, you have to study the
printout of CYPHER to see it.

The subsequent area of memory contains the misspelled
words, and we are going to correct them without reassembl-
ing CYPHER. Instruments allow you to change memory
contents. Disassemble from 8352H and observe the word

MAY/JUN 1984 COLORCUE

“prmgram’’. We will first replace the bad ‘“m’’ in
‘“‘prmgram’’ with a good ““0”’. (If you don’t have lower case,

just use capitals.)

IDAYD 8352 16+
Press [UP/ARROW]

COMMAND)S 8352 83642
COMMAND>E 8358

DBG>DS 8348,12

(Bar cursor appears) B35B: 4D- .
Hold [UP/ARROW} (Enter &F) ﬂ

until it is on "m". LRET)] 4
Press [P] (peek/poke) 835C: &7- '
ASCII representation [DOWN/ARROW]

will appear on bottom COMMAND)

of screen. Cursor is

under the *m.*
Now press [INSERT/CHARI] DBG>DS 8352,12

and lower case "0". DBG> 98358

Code will appear in 8358 4D ‘M’ MOV L,L

hex, but ASCII will MEM)>=4F

not change. 835C &7 ‘G’ MOV H,A
Press [RET] to exit the MEM>/

Peek/Poke mode. DBG>

To see the wonderous results of your work, disassemble
again from 8352H. We can get more practice at this by cor-
recting misspelling at addresses 83B0 and 83DD. So do that
Nnow On your own.

Reference: ““i”’ (69H), ““I”’ (49H), ‘‘a’’ (61H), *“A”’ (41H)

Instruments allow you to ‘‘run’’ a program in memory.
Now ‘‘run’’ the program and observe the corrected spelling.

IDA>G 8268 COMMAND)>G 8208 DBG>R 82088

After admiring your new spelling, note that the first “‘a’’
of ““according” is at the end of a line, with the rest of the
word on the following line. We can correct that easily with
IDA.

10A)D 8348 15+ List €

8348 54 NV D,H HE |
8341 ¢F NV LA j o
8342 20 -- H
8343 45 LY B,L ; E
8344 4E NV LM i n
8345 43 LY H,E HS
8346 4F LY LA i 0
8347 44 NV H,H i d
8348 &5 MV H,l ;e
8347 28 -- ;
8344 04 NV DH i T
8348 45 MOV H,L i e
834 78 MOV AB H
8340 74 MOV M,H H
834E 2E83 W1 L,03H HE 3
8356 o8 NOP ;3
8351 82 STRX B i B
8352 8402 M1 B,824 ; FB 2
8354 o4 LY D,H i T
8355 48 NV L,B i h
8356 &9 NV L,C i

21

Press [CPU/RESET] to exit CYPHER. Reenter any of
the instruments by pressing [ESC] [user]. Now disassemble
beginning at 8390 (List D). If we could place a carriage
return and line feed after ¢‘it’’, then ‘‘according’’ would be
altogether on the next line. The space (20H) between ‘‘it”’
and ‘“‘according” can be used for the carriage return (we
don’t need the space at the end of the line anymore), but
we need another memory location for the line feed. If we
read the entire string given to OSTR, beginning at address
82D7, we find that there is unused memory following the
12239”" at address 842AH. Therefore, if we moved all the
code, extending from 8393 to 8429, down one address, we
would free a memory location at 8393 for the line feed.

1DAYD 8398 18+ List D (Before changes)

8378 49 NV L,C P i
831 A MOV M H i t
8392 20 - - ;
8393 4 MOV H,C HE
8394 43 MV H,E i C
8395 43 NV H,E HEY
8396 4F MOV LA H |
8397 72 MV H,D i
8398 44 MOV H,H ; d
8399 49 LY L,C |
8394 4k MOV LM ;N
8398 67 MV H,A H|
839C 20 - - H
8390 X MV M,H HIS
839 6F MOV LA HE)
1

B39F 28 --

Instruments allow you to move blocks of memory. The
MOVE instruction has a starting and ending address of the
block to be moved, and the new starting address of the block
after the move. The ‘““‘move”’ is really a ‘‘copy’’, since the
original contents will not be altered unless it is written over.
IDA will move from anywhere to anywhere, but DEBUG
and MLDP will not. For these last two, you must move the
memory area completely outside the working area in which
it currently resides, and then move it back in again with a
one-byte displacement. If you have DEBUG or MLDP, fill
the area from A000 to BO0O with 00 (to unclutter it and make
examination easier). Move the string into that area, then
move it back where we want it ..and think about saving
money to purchase IDA. (My MLDP manual has an error
for MOVE instructions. It is shown correctly here):

IDAYM 8393 8429 8394 COMMAND>Z AB980 BO8o 88

COMMAND)M 8393 842A AB68
COMMAND)M AB88 AB97 8394

DBG>F A8806:B80808:88
DBGYM 8393:842A TO AB88
DBGYM AB88:A897 TO 8394

(Move the range 8292-8429 to the range beginning at 83%94.)

Disassemble from 8390 and notice two ‘“a’’s at 8393 and
8394. The first ‘“a’’ can be replaced by a line feed.

22

1DAXD 8398 16+ COMMAND>E 8392 DBG> 38392
[UP/ARROW] to 8392 8392: 26- 8392 28 © ’
Press [P] (Enter 8D) MEM)>=08D
Enter 8D C(at 8392) 8393: 41- 8393 41 ‘A’
Enter 8A (at 8393) (Enter 8A) MEM)>=8A
[RET] to exit [DOWN/ARROW) 8394 41 ‘A’
MEM)Y/

Now check it out. (See ‘after’ List E.) Run the program with ‘G
8200’ (or ‘R 8200’ for MLDP.)

Isn’t that better! IDA is unique in that it can move bytes
around in a very tight space. Try this with DEBUG or
MLDP and you’ll have an interesting experience.

We don’t want to have to do these corrections twice, so let’s
save a new CYPHER on disk. Note we haven’t increased
the length of CYPHER, only changed its contents. You may
use FCS commands to save a ‘‘memory image’’ (a picture
of memory) on disk. This memory image just happens to
be a working PRG program. Most instruments will make
this SAVE from FCS, but if you have IDA, you can return
to the instrument and do it from there.

I1DAYXSAVE CYPHER.PRG 8200-847D

MLDP AND DBUG: FCS)>SAVE CYPHER.PRG 8288-847D
FCS>[ESC] [~}

We will now erase all the memory used by CYPHER plus
a little more. Instruments allow you to fill a range of
memory with any byte you may choose. The FILL instruc-

tion usually has a starting address, an ending address, and
the bvte with which you wish to fill:

IDA>F 82688 8500 86 COMMAND)Z 8286 8588 88

DBG>FB82088:8500:88

(Fill the memory range 8200-8500 with byte ‘‘00.””) Verify
the fill by disassembling from 8200H. All NOPs.

IDAXD 8398 18+ List E (After changes)

8398 4y LLY L,L HE|

8391 74 LY M, H 7t

8392 8D DCR C M CCIRLM=cr
8393 8A LpAX B 1d (CIRLJ=1f
gavd 4 hiLY i,C HE

8395 &3 LY H,E i c

8396 43 HW K,E NS

8397 &F MV LA H]

gagg 72 MOV M,D pr

8397 44 M HH HE|

§39n 49 MOV L,C i

8398 4 MOV LM H

R39C &7 LY H,A HE]

3190 28 - - ;

839 M4 hiEY MK H

BIFF 4F HV LA ;0

MAY/JUN 1984 COLORCUE

There is another way to load CYPHER into memory for
further work. We know it isn’t there now. Call up your disk
directory and write down the starting block (SBLK) of the
newest CYPHER (the corrected version.) My starting block
is 207. (I have an 8’” drive. See List H.) You will use your
own appropriate block number where I have written <207’
in the instructions:

IDAXXDIR

DEBUG AND MLDP: {CPU/RESET] [ESC) [D)

FCS)DIR

We will use the FCS ““REAd”’ command to get CYPHER
this time. Most instruments will require that you do this from
FCS, but IDA can do it from the IDA prompt. The REAd
command contains the starting disk block number, the start
address in memory and the end address in memory where
the code will be placed. We can get the start and end ad-
dresses from the assembler printout of CYPHER:

IDAYXREA 287 8208-847D

DEBUG AND MLDP: FCS)>REA 287 8208-847D

FCS>TLESC) (~)

{Read from disk beginning at block 207, into memory
beginning at 8200, until memory is filled to 847D.)

This loads CYPHER directly. Notice how fast this load
is. Speed is increased because the operating system doesn’t
have to work with the directory. Disassemble from 8200H
to verify this load. Now we are going to write a new
subroutine into memory and use it. Notice the instruction,
at 8206H, CALL 182A (CALL OSTR). (Your address will
be 33F4 for v6.78.) This is the famous output string
subroutine in ROM. Let’s not use it from ROM, but write
our own version of OSTR inside CYPHER. When OSTR
is called, the HL registers hold the address of the first byte
to be printed. The last byte is followed by ¢“239.”’ This
routine (which we shall call OMSG) will do:

Label Mnemonics Operation........ovviurvenneennas Address Hex Code
OMSG: MOV A,M ; Move memory byte to accummulator 842D 7E
CP1 239 ; Is it the end? (239=EFH) 842E FE EF
RZ ; Yes, return to caller 8436 ce
CALL LO ; No, print this byte 8431 Cb c8 17
INX H ; Point to next memory location 8434 23
JMP OMSG; and get next byte 8435 C3 2D 84

* "CD F4 33" for vé.78.

There is room for this routine at 842D (leaving a few bytes
free beyond the ASCII string). We cannot use it as shown
above. for we must replace all the labels with actual ad-
dresses. Instruments allow you to insert oo codes and their

accompanying addresses in memory in the form of hex
numbers. IDA will let you enter the mnemonics directly, the
rest of you will have to poke in the hex numbers, one at
a time from the table above:

1DAXD 842A 15+ COMMAND>E 842D DBG)>3842D
{UP/ARROW] to 842D 842D0: FF- 842D FF ’_7 RST 7
Press [0] to set (Enter 7E MEM)>=7E
origin for IDA’s FE MEM)>=FE
assembler. EF MEM)>=EF
ASMIMOV A,M cs8 MEM)>=C8
ASM>CP1 239 cD MEM)>=CD
ASM)>RZ C8 (%) MEM)>=C8 (%)
ASMICALL 17C8 (%) 17 (%) MEM)=17 (%)
ASM) INX H 23 MEM)>=23
ASM>JMP 842D c3 MEM)>=C3
[RET] 20 MEM)>=2D

84 MEM)>=84

{DOWN/ARROW] MEM)>/

* Use 33F4 for vé.78 (F4, 33)

Disassemble from 842A to verify that the subroutine has
been entered (List F). Now we have to call 842D every time
we formerly called 182A. IDA makes it easy to find all the
references to OSTR in our program. We will conduct a >’sim-
ple search” for the code string ‘‘CD 2A 18’ (or CD F4 33),
placing the low byte first for the OSTR address. While these
address bytes ‘‘read right’’ in the disassembly, you know
by now that they are reversed in memory:

1DA>SS 8286 8568 CD 2A 18

MAY/JUN 1984 COLORCUE

COMMAND)F 8288 847D CD 28 1A (Sorry. MLDP can’t

do this.)

IDA and DEBUG locate this code at four places: 8206,
820C, 827D, 8290. With MLDP, you would have to
disassemble the entire file, and watch for OSTR’s address,
making note of its occurrances. IDA will also replace the
code at these addresses if we ask it to. We perform a ‘‘search
and replace.’”” When using this function IDA asks for your
““replace’” string (RPL):

23

IDAYSR 8206 8508 CD 2A 18 COMMANDIE 8266 DBG> 98206
RPLYCD 2D 84 8206: CD- 8206 CD 2A 18
[RET] MEM)>=CD
While they’re doing their 8287: 2A- MEM)>=2D
thing (to the right), (Enter 2D MEM)>=84
let’s check it out by 8208: 18- MEM)=/
disassembling at least (Enter 84 DBG)2827D
one address, using [DOWN/ARROW] MEM>=CD
1DAYG 82688, to watch our COMMAND)E 827D MEM)>=2D
new OMSG at work' By that 827D: CD- MEM)>=84
time maybe the others will [RET] MEM)/
be ready to go on' 827E: 2A- (etc.)
[CPU/RESET] [ESC] [*] to (Enter 2D
return to IDA). (etc.)

(Be sure you change all four addresses.)

1DAYD 8448 10+
[UP/ARROW] to 8448.

Press [Pl for Peek/Poke

COMMAND>H 8448 847E

COMMAND)E 8449

option. 8449: S5A-

[RIGHT/ARROW] to 8449 (Enter 41

Press [INSERT/CHAR] [A) [RET] [RET]

[RIGHT/ARROW] to 844B (Enter 42

Press [INSERT/CHAR] (Bl [RET] [RET]

Continue until all (Enter 43
letters are changed. (etc.)

At the end of the first
line of ASCII display, (Enter 5A
the next line will be [RET]
displayed automatically. [DOWN/ARROW 1

Press [RET] to return
to 1DA)>.

DBG)D 8448:847E

We can now save this new version of CYPHER, but rather
than create still another new disk file, we will write new ver-
sion 2 over new version 1. We can do this easily with the
FCS WRIte instruction. Using the same SBLK as before we
will transfer new version 2 to disk. Substitute your own disk
block number for my ‘207"’ again:

IDAYXWRI 267 8288-847D

DEBUG AND MLDP: [CPU/RESET] [ESC] [D]
FCS)WRI 287 8280-847D
Now let’s write another copy of CYPHER to a clean disk.
Remove the first disk and put a clean disk in the drive. We
don’t really need a directory, you know, so let’s write
CYPHER beginning at block 00. Do not use a disk for this
procedure that contains anything you want to keep. Any

directory on this disk will be destroyed:

IDAYXWRI 80 8286-847D
DEBUG AND MLDP: FCS)WRI 287 82088-847D

Now look (or try to look) at this disk directory. You will
get an ENVE error because there is no directory. But
CYPHER is there, my friends. Fill 8200-8500 with 00 again
and verify that this memory is cleared. Now read CYPHER
back into memory from the same no-longer-clean disk:

I1DA>XREA 88 8208-847D

(Error in MLDP manual
for this command. It
is shown correctly here.

Verify the new encoding table with
a dump from 8448 to 847D. You

should see pairs of hex numbers DBG) 28449
from 41 to SA. You can also try the :g;z :\ ‘2’
program by running it again. [RET] ERET
. . MEM)>=42

We are going to save this new en- [RET] {RET)
coding table as a separate disk file. MEM)>=43
We will put it on the disk with no (etc.)
directory. In order to dO'thIS, we MEH)=5A b
need to know how much disk space 847C: 20
CYPHER occupies, so we won’t MEM)/

overwrite CYPHER accidently.
CYPHER begins at 8200 and ends at 847D. Let’s calculate the
number of bytes. (There is a mistake in my MLDP manual regar-

ding calculations. The />’ symbol is not to be used at all. Numbers
entered directly will be assumed as hexadecimal numbers. Numbers

preceeded by a “‘#’ will be taken as decimal.)

10A>847D-82088=
827D 637 00666016 01111161

DBG)>=847D-8208
=0827D #4637

Calculations say the program is 027DH or 637 decimal bytes
long, but we must also add the end byte, which makes 638.
Wait a minute! With IDA we don’t have to calculate this.

If we enter a ““‘V’’ at the IDA prompt, IDA prints the usual

DEBUG AND MLDP: FCS)REA 66 8288-847D
FCS>LESCY [*]

Disassemble from 8200H. There it is! Isn’t this great fun!

directory but adds the file size in hex and decimal for us
(List H). Well, anyway, how many blocks is this (at 128
bytes/block)?

You <an “run’’ the program with ‘G 8200’ if you are
skeptical.

For our last act this time, we are going to change the en-
coding used by CYPHER. We will be original and let “‘A”
= A, “B” ="B", and so on. This is an easy change to
make. The encoding table begins at 8448. The first letter
("A”’) is the ““normal”’ letter of your keyboard input. It is
followed by the letter to which the first letter will be encod-
ed ("’Z"). This correspondence between pairs of letters con-
tinues to 847E. The last two entries, at 847C and 847D ‘‘con-
vert”’ spaces to spaces, to allow them as legal entries into
the code. (Any character not represented in the table is not
recognized. Does that give you any ideas for the space begin-
ning at 847E?) List G is IDA’s printout of this memory range
in ASCII. The other instruments will make a hex dump of
this table to use for reference as you poke in the new data.
Be careful you get the right address for data entry:

24

1DAY827D/7128= DBG>827D/#128

The calculators say 4 blocks, but they are performing in-
teger arithmetic. It’s actually 4.98 blocks long. We’ll say
5 blocks because we must write with integer values of block
numbers. FCS begins numbering its blocks with 00, so the
sixth block, where we might plan to put our new table, is
actually referred to as block ‘“5’’. For some reasons that
might become apparent later on, let’s store it beginning at
block OA. The code table begins at 8448 and ends at 847B:

IDAYXWRI BA 8448-847D

DEBUG AND MLDP: ([CPU/RESET] [ESC] [D]
FCS>WR1 8A 8448-847D

Now we can use either code table. If we REAd CYPHER
to memory from block 00 we will have the original table:

COLORCUE MAY/JUN 1984

IDAYXREA 88 8288-847D

DEBUG AND MLDP: FCS)>REA 86 8280-847D

If we “‘overlay’’ the code table from block 0A we will have
the amended code table:

IDAYXREA 8A 8448-847D

There is no directory to give tell-tale clues about the disk
contents. We have a rather well-protected encryption pro-
cedure as long as we don’t forget which block is which.

Well, let’s try one more act. Load CYPHER.PRG back
into memory from block 00. Now initialize the ‘““clean’’ disk
we have just been using, but only allow “‘five’’ directory
blocks:

IDAYXINI CDB:FREE 3

DEBUG AND MLDP: FCS)>INI CD@:FREE 5

Call up the directory and find the first available unused
block (SBLK for ‘‘Free Space.’’) WRIte CYPHER to that
start block (my SBLK is 05):

IDAYXWRI 85 82080-847D

DEBUG AND MLDP: FCS>WRI 85 8208-847D

If you look at the directory again, you’ll notice CYPHER
isn’t listed even though we just ‘“‘wrote’’ it there. Now go
into BASIC by pressing in sequence [CPU/RESET] [ESC]
[E]l. We are going to create a directory entry for
CYPHER.PRG from BASIC! Since CYPHER takes near-
ly five blocks, we can reserve 5 * 128 bytes/block for it
(=640 bytes total). Type the following in ‘‘immediate’’

mode:
FILE *N*, CYPHER.PRG, 1,448,1

Call up the directory from FCS. We have a record of
CYPHER’s presence. Type ‘“‘RUN CYPHER.”’ Honestly
now, did you really think it was going to work? Well, it can
if we put in the correct loading and starting addresses......
next time. Meanwhile, you can WRIte it into memory and
“run”’ it from your instrument; no one else is going to RUN
your secret encoder! If you wrote CYPHER to disk begin-
ning at block 05, then the ‘‘overlay’’ is still intact -at block
0A. You can load it just as we did before. For homework,
why not create a directory entry for the overlay? More fun
to come!] W. S. Whilly

Note: All listings and their comments were printed directly
from IDA's screen. A “"CRT mode” facility permits writing
comments anywhere on the screen for inclusion in printouts.
Virtually any IDA screen display may be sent 1o the printer
during the course of work.

b =
S ‘h
-

Y e e
N LU VOIS
13,653 g oS

1DAID 8424 15+ List F(OMS6)
8424 EF RST 5 i o
8428 FF RST 7 ;
B4 FF RST 7 ;
8420 7E NV AN ;- ¢
842E FEEF CP1 EFH ;0 239 <
8438 (8 RZ i K ¢
8431 CDC8I17 CALL 17CBH 3 LD {
843¢ 23 INX H HE | {
8435 (32084 JMP 842DH ; C-D {
8438 FF RST 7 ;
8439 FF RST 7 H
8438 FF RST 7 H
8438 FF RST 7 :
843C FF RST 7 ;

|IDAP 8448 List 6 (The encoding tabie)

8448 49 4A 4B 4C 4D 4E 4F
AZ2ZBYCXDW
41 5A 42 59 43 58 44 57

8458 59 54 5B 5C 5D SE SF
L' RJGKPLOD
49 52 44 51 4B 58 AC 4F

8448 69 6A 6B 6C 6D 4E 4F
@ JRI SHTE
31 4A 52 49 53 48 34 47

8476 79 74 7B 7C 7D 7E 7F

38 51 52 53 54 55 56 57
EVFUGBGTHS
43 56 46 55 47 54 48 53

68 &1 62 63 64 45 46 67

717273747576 77
UFVEWDXTC
33 46 56 45 57 44 58 43

86 81 82 83 84 85 86 87

Y B Z A 13
39 42 54 41 26 26 31 33

DIRECTORY DF8: CYPHER 85 List H

ATR NAME TYPE UR 5BLK SIZE LBC LADR SADR HEX
8208 B8i88
8248 70684
8209 B266
Eoee tees
8200 8208
E6e8 Ede8
EBOS EBBS
8260 8200
ADBB ADBS
ED88 EDBE
8600 8ees
8200 8208
8200 8288

1168
14C3
2600
2008
1F8e
1F8e
1848
1368
1368
1380
8DD4
827t
827t

83 CTE .PRG;81 6085 8622 88
83 CTA .PRG;81 8827 982E 43
83 1DAB .PRG;B1 8855 0846 80
83 IDAE .PRG;81 6895 0848 88
83 MLDP .PRG;81 88DS 883F 88
83 MLDP .PRG;82 8114 883F 88
83 DBUG32.PRG;81 8153 0021 48
83 SMP798.PRG;61 8174 0826 88
83 SMP79A.PRG;81 8194 8626 88
83 SMP79E.PRG;81 81Ce 8624 80
83 CYPHER.SRC;81 B1ES 881C 54
83 CYPHER.PRG;81 9202 0883 7E
83 CYPHER.PRG;62 8287 0885 7E

81 (FREE SPACE> 628C 1888 L1

COLORCUE MAY/JUN 1984

BYTE COUNT

DEC

4352
5827
8192
8192
8864
8864
4192
4864
4844
4864
3542
438
438 (K
8

25

SOFTWARE CATALOG

the following significance:

SEPARATOR (* +° indicates
PART NUMBER | ROM version available.)

The following information is reproduced by courtesy of Intelligent Computer Systems, 12117 Com-
anche Trail, Huntsville, AL 35803. (205-831-3800). It is extracted from their software catalog for CCII,
3650, and 9650 computers. Prices are current. To our knowledge, ICS is the only ‘full line’ East Coast
distributor for CCII software. Personal experience has proved them to be conscientious, reputable,
and knowledgable dealers. Colorcue recommends that you consider purchasing any of these software
selections soon, because their availability in the future is uncertain.

The software catalog number appears first, followed by an evaluation code of six characters with

User Experience Required
A: Beginner

: Intermediate

B

C: Advanced
l D: Expert

X

- Not rated Available Disk Formats

|
990032/QDTFEC
Il l L

: CCI1/3621 v6.78

1

| 2: CCl1/3621 v8.79

{ | 3: 3651/9651 v9.80

Quality of Software Status of Documentation Available Disk Types Category of Software ;t: 31,365:1/1965 ldv§.80-3
: Bot an

A: Good A: Good 1: 5 MD for 3651/9651 : Business 6: Both 2 and 3

B: Average B: Average 2: 3 CD for CCII : Finance 7: Both 3 and 4

C: Needs Improvement C: Needs Improvement 3. 8" FD for 3651/9651 : Engineering 8: All types

D: Inadequate D: Not available, not needed 4: 5> MD or 8 FD for 3651/9651 : Educational

X: Not rated. X: Not rated 5: All disk types

BUSINESS

JH102A/AAS8BA ASSEMBLY DATA BASE/$85. Assembly
language program to write data fields into formatted SRC
files; includes editing, sorting, and printing facilities.
Change, delete, edit, review, sort, and search. Print entire
record or up to five selected fields. Screen editor may edit
files. Convert existing RND files to SRC. Fast disk access.
Options available for extended performance.

JW129/AA58AA CARAMOR/$24.58. Car expense accounting
with calculation of cost/mile, cost/day, etc. Can determine
cost effectiveness of lease/rental/own vrs public
transportation.

991545/AB58BA COMP-U-WRITER/$190. Full-feature word
processor with single key commands, full screen editing,
mov=, copy, delete, search and replace, boldface, underlin-
ing, selection of print parameters, fast disk access,
mailmerge facility. Professional performance. (Colorcue is
written on Comp-U-Writer. Ed.)

BG115 + AB25BA COMPUCALC/$120. ‘‘Spreadsheet’’ pro-
gram in assembly with unique file recovery system, stores
data on ARY files. Contains usual ‘‘Visicalc’’-like features.
Efficient, trouble-free software.

EM122/BBS8AA DECISION MAKER/$10. Program examines
input parameters for best buy or optimum decision. Op-
tional printer readout of input and output data.

EM111/AAS8AA INVOICE & ORDER/$30. Write personalliz-
ed invoices to printer, with inputs for discounts, taxes, ship-
ping, credit card numbers; input error correction provided.
Totals and customer ID can be stored on disk. Orders may
also be written, with similar features, and from a data base
for frequently-used vendors.

26

: System Ultilities
: Special Applications
: Games and Entertainment

QMmoo oW >

EM109/BD58AA LABEL/$15. Use any line printer to print
address labels. Special print features of Epson and IDS
printer families supported. Print individually or from disk
file.

JW104/BA58AA PERT/$39.50. Create 7 PERT plans with 200
activities each on one disk. Create, modify and analyze plan
to determine critical paths, with data accounting.

JH114 + ABSSAA PLANNING CALENDAR/$17.50. Assembly
language program to log 7 events/day to total of 400 events.
Specify daily, weekly, monthly, quarterly, bi-annual, and
annual repetition. Requires screen editor or assembly data
base to set up files.

EM103/BD58AA SCHEDULE/$49.50. Generate, update, and
save bar graph screen displays of scheduling. May be printed
on Epson and IDS printer families using special character
functions. Designed for multi-national aerospace projects
and is readily applicable to many other complex situations.
EM120/BD58AA YU-GRAPH/$10. Quick generation of VU-
Graphs for printout, with descriptor fields, centered text,
highlighting.

991005/BAS58CB BONDS/$20. See effects of bond price and
yield by variables, use realtime dates or time-to-maturity,
up to 5 call dates for callable bonds. Print amortization
schedule with a single keypress.

991007/AA58BA EQUITY/$20. Depreciation by straight line,
double-declining balance, constant percentage, sum of digits,
and sink-fund methods. Capitallized cost of periodic changes
of up to three assets simultaneously to determine best op-
tion. Solve for any variable in the capitalization equation.

COLORCUE MAY/JUN 1984

EM202/BD58AB FINANCIAL PROGRAMS SERIES/$18.50.
Twenty programs for daily use in business management, in-
cluding future investment value, calculation of effective in-
terest rate, earned interest table generation, depreciation
rate, depreciation amortization, salvage value, principal
loan, payment on loan, last payment on loan, term of loan,
mortgage amortization, and more.

EM205/BD58AB GENERAL LEDGER/$48.50. Capacity is 99
credit and 99 debit accounts with 200 + records per month.
Printouts include accounts summary report by month and
quarter, quarter and year, and complete account report by
item.

EM201/AD58AB GRAPHICS CHECKBOOK/$38.50. Accom-
modates 15 expense and 6 deposit categories. Display or
print (with Epson or IDS) tables sorted by date, totals of
one or all categories. monthly cash flow, totals for category,
for month, for year.

JH206 + AASS8AB LEDGER PAD/$75. For business and home
financial data. 80 rows by 32 columns, with titles, data
editing, arithmetic computation, report generation (to screen
and printer). Supports numbers to 99,999,999,99 and com-
putes to 2 to the power 40 with $ 0.01 accuracy.

DP208/AAS8AB PERSONAL BUDGET/$29.95. Enter and edit
monthly budget items by category, show CRT summaries
in tabular and plot form of income, expenses, and ‘‘net
worth’’(tabular form also on printer.)

991001/BB58BB PERSONAL FINANCE/$20. Calculate an-
nuities, interest rates, and mortgage payments by several
methods.

EM204/AD5S8AB REAL ESTATE INVESTMENT/$18.50.
Calculate best mortgage, monthly payments, investment
return, positive or negative cash flow.

DP207/AAS8AB STOCK FUND SWITCH STRATEGY/$39.95.
For telephone switch mutual funds (or similar) to determine
maximum earnings. Favors switch to common stock dur-
ing market rise, and to cash or money market on market fall.

ENGINEERING

AUG401/BD5S8AC ELECTRICAL ENGINEERING 1/$10. Color
graphics supported; Ohm’s law for AC, DC circuits.
Transformerless power supply design.

AUG402/BD5S8AC ELECTRICAL ENGINEERING I1/$10. Col-
or graphics supported; attenuator design for T, H, PI, and
O pad configurations. Multivibrator timing design for
astable and one-shot.

SP302/AB25AC GASMIL/$19.50. From mileage and gas pur-
chase, computes last miles/gallon, average miles/gallon for
last three fill-ups, and average miles/gallon to date. Data,
by table or chart, to Epson MX-80 printer.

993004/CD5S8BC STATISTICS 1/825. 1) FILES: generates,
maintains and displays files for use by other programs; 2)
REGRES: linear, log, exponential or reciprocal regressions
with confidence limits and graph; 3) PLOT: plot one to three
graphs on rectangular coordinates from disk file or equa-
tion; 4) STAT: compute measures of central tendency,
dispersions, skews, movement about the mean, from

COLORCUE MAY/JUN 1984

grouped or ungrouped data; 5) GRAPH: display histograms
or polygonial graphs from grouped or ungrouped data.

993006/ CDS8BC STATISTICS 2/$30. 1) FILES; 2) MLTREG:
multiple linear regressions to 6 variables, with or without
transformations; 3) POLREG: polynomial regressions to Sth
degree; 4) DISREG: fits binomial, norm, or Poisson
distribution to input data, plus CHI-square check for
goodness of fit; 5) VARINZ: test several sets of data for
variance, estimate evaluation mean.

993008/CDS58BC STATISTICS 3/$30. 1) FILES; 2) TIMSER:
smooth time series by trend regression and other cyclical pro-
cedures; 3) INDEX: computes eight types of index data for
several sets of data; 4) CMPTIM: computes variation within
or between sets of data; 5) RANK: rank analysis on data
oairs using Mann-Whitney test, computes rank correlations.

EDUCATIONAL

BM310/AA25BD ASSEMBLY LANGUAGE TUTORIAL/S$50.
18 lessons in assembly language programming.

992516/ AASSBD BASIC LANGUAGE 1/$25. Two disks, uegin-
ning tutorial.

992519/AAS8AD BASIC LANGUAGE I11/$20. Program
algorithms, more advanced commands.

992512/ ABS8AG HANGMAN/$20. Word game. Disk also in-
cludes MATH TUTOR for simple arithmetic and logic, and
TWO TO TEN, a simple card game for practice in sums.

992514/BBS8AD MATH TUTOR/$20. Simple arithmetic. Disk
also includes CHECKBOOK, for checkbook balance and
income tax data; RECIPE for storage and retrieval of
favorites; MATH DICE for practice of elementary
arithmetic, and the BIORHYTHMS program from the
Sampler.

AUG301/BDS8AD PRIMES & PRIME FACT/$10. Prime
numbers and factoring to primes.

SYSTEM UTILITIES

SYSTEM UTILITIES [Comments in this section by COLORCUE.
Starred programs are highly recommended as basic software
packages for both the CCHl and 3650 series computers. Evalua-
tions are made on the basis of completeness, reliability, versatili-
ty, and usefulness with all software versions. In some cases other
software may perform as well for your needs. Only one recommen-
dation is made in each category.]

Definitions: Screen editor: used to enter assembly language source
code and any other text that can be stored in a SRC file (contain-
ing only ASCII characters). May function as a mini-word-processor.
Printing capability to serial printer. Easy editing of text in full view
on CRT. Will load and edit any SRC or TXT file, as well as any ASCII
file with optionai file extension type, Monitor: a program to examine
and modify the 8080 registers in the course of program execution,
sometimes single-step through a program, examine and modify
memory. Assembler: a program to convert ASCIl source code
(mnemonics) into machine code, producing a memory image file,
ultimately “runnable” as a finished PRG program. A good
assembler finds coding errors and flags them, and produces hard-
copy of assembly showing source code, machine code, label
chart and address assignments. Debugger: an all-purpose tool for
working with any kind of disk file, principally used to work with PRG
files. A complete debugger will act as an interpreter, monitor, mini-
assembler, and disassembler. It facilitates examination and repair
of disk file damage, disassembly of ROM, error correction in BAS
files.

27

JHS855 + AA25CE ASSEMBLER/$20. Jim Helm’s assembler
with printer driver.

JHS811/AB25BE BASE2/$15. Set printing options on BASE
2 printer.

** ()S816 + ABSSBE ‘The’ BASIC EDITOR/$49.95. Quality
Software’s tour-de-force.

CT851+ AA25AE BASMERGE/$19.95. Merge Basic programs.
JHS856 + AA25BE BASSRC/$19.95. Basic code to SRC file
conversion.

** CT830 + XX25XE CLIST/$19.95. List Basic programs to
printer; converts control characters to printable symbols for
increased accuracy of printed program. Works with more
printers than most.

CT828/XX25CE COMTRX/$19.95. Terminal software, for
network communications.

JH857 + AB25CE CROSS REFERENCE GENERATOR/$10.
Generates cross reference of JMPs and CALLs from
assembly code. SRC code for program available.

** CT852 + AA25CE CTA-ASSEMBLER/$34.95. Probably the
best all-around assembler for ISC computers using FCS.
Good printer driver, good error displays.

** (CT833+ ABS8CE CTE-SCREEN EDITOR/$54.95. Text
move, copy, delete, control character inserion. Will accom-
modate upper-case-only if necessary; all keyboards. Printer
driver not as good as CTA, but adequate. Designed for
source code entry, may be used as limited word processor.

CT841/AA22BE DEBUG/$29.95. Editor, monitor,
disassembler, mini- assembler. Fine debugging tool, supports
serial printer.

CT825 + AASSAE DFM/CRC/$49.95. Disk duplicating; com-
plete disk on 1 or 2 drives, single file to either drive. Scan
disk by sector, protect files, change directory, write unique
format.

JH838 + AA25BE DIRECTORY/$15. Creates directory SRC
file compatible with Jim Helm’s assembly database
program.

CT822/AA25BE DIRMOV/$24.95. A directory handling
system for up to 600 disk directories, with machine language
sort by name or number; search, delete, add, save, or print
results.

BG836/BD25BE DIRECTORY ORGANIZER/$19.50. Saves
directory informaion in SRC file, for editing by screen
editor.

JH837 + AB25AE DISK EDITOR/$20. Move, copy, rename
disk files.

JH809 + AASSBE DRIVER/$10. Printer driver for SRC files,
set printing parameters. Supports special control codes for
Epson and Base2 printers.

JH815/AB25CE EXPANDED ASSEMBLER/$20. Printer
driver, line overflow function, program count, auto-pause
on error.

JH814/AASSBE EXPANDED SCREEN EDITOR/$20. Com-
plete screen text editing with move, copy, delete block func-
tions. Good programming. Not for 3651.

28

CT850 + AASSAE FILEMRGE/$24.95. Merge SRC files.
991527/AB47AE FORMATTER/$25. For 3651 5" or 8" disks.

SP845/AD25AE FORMATTER/$24.95. For CCII, includes
disk drive speed monitor and MAZE game.
991532/AAS8CE FORTRAN/$75. Fortran compiler, linker
and library. Experienced users report satisfaction with this
version of FORTRAN.

JH813 + AXS58AE HEXDEC/$10. Hexadecimal/decimal
memory dump of system or selected sections.

JH839+ AA25CE HEXDIS/$15. Assembly language
disassembler, displays hex, object code, mnemonics to screen
and printer. Creates SRC disk file is requested.

** . BG851/AA25CE IDA-Interpreter,
Assembler/$49.50.

This gets an entire page of stars. Software debugging tool.
It is not a SRC code assembler in the usual sense, but does
everything else to perfection. Fascinating graphics,
unbelievable printer facilities, excellant monitor, absolute-
ly written to ease debugging tasks. If you are a serious pro-
grammer, this one will do it all, better than you ever thought
possible. Available for loading at 4000, 8200, A000, E00O.
[See W.S. Whilly’s article, and review this issue.]
CT853/AA25CE LDA FILE/$19.95. Convert LDA files to
PRG the easy way.

BM810/XA25CE LDIS/$29. Two-pass labelling disassembler.
JHS06 + ABSS8AE LISTER/$10. List BAS files to printer.
Screens out control codes.

CT829 + AB25AE LLIST/$19.95. List BAS files to printer, set
printer parameters.

JH812/XB25BE LOAD76/$10. For BASE2 printer; loads and
prints user-defined character fonts.

991539/AB58DE MACROASSEMBLER/$50. Similar to
assemblers used by “‘professional’’ computers. Includes link-
ing loader and cross-reference generator. Some impossible
bugs but generally usable for most things. Difficult
instructions.

SP842/AD25AE MX80 BLOCK GRAPHIC DUMP/$14.50.
MX80 graphic dump of CCII screen.

CT854 + AA25CE NUBUG/$39.95. Software debugging tool. Im-
proved version of DEBUG.

CT831+ AASSBE PRINT 11/$19.95. Printer driver portion of
Com-Tronics software. Fine driver; set parameters, pause.
CT847 + AAS8AE RENUM/$19.95. BAS file renumbering.
JH805/AB25DE REPACK/$10. Removes REM statements
from BAS files.

JHS840 + AASSBE SCREEN EDITOR/$20. Requires deluxe
keyboard, complete screen editing. Not for 3651.
CT844 + AAS8AE SRCPRT/$24.95. Machine language dump
of CCII screen to printer (especially IDS printers). Rests in
high memory and ‘on call’ with key press. Requires very
careful handling. Not satisfactory on 3651.

JH805/AB5S8BE SMERGE/$10. Merge SRC disk files.

CT831+ AASS8BE SORT/$19.95. Binary-weighted sort pro-
gram, callable from BASIC. Sorts up to 1000 variable length
array elements. Rests in high memory or at 4000H. Reliable.

Disassembler,

COLORCUE MAY/JUN 1984

JH308/AB25CE SORT PROGRAMS/$20. Series of programs
for SRC files; sort, set fields to equal length, add fields; add,
remove, substitute, rearrange order of data. Versatile pro-
gramming for SRC.

JH802/AB25CE SOURCE/$30. SRC file from PRG file. Select
dump to printer and to disk file. Set printer parameters.
CT832 + AB25BE SRCBAS/$34.95. The reverse of BASSRC.
Convert SRC files into executable BAS files. Good for
modem users.

JH803/AB25CE STRIP/$10. Remove sections of SRC files to
disk. Set up SRC code subroutine library.
CT846/AA25AE SUPER MENU/$19.95. Select programs from
directory display by bar cursor.

BG3801/ABS8CE SUPER MONITOR/$30. Subset of IDA (see
above) and really obsolete because of it. Good monitor and
debugger, but ‘how ya goin’ ta keep ’em down ’n the
farm...?

BG835+ AXS8CE SUPER MONITOR PLUS/$49.50. Ditto.

** CT821+ AASSBE TERM 11/$69.95. Terminal software. The
early version seems more bug-free, the second is easier to
be with visually. Fancy provisions for uploading and
downloading, setting transmission parameters. Good
writing, but can’t someone get rid of the bugs? Ask ISC for
both versions.

CT831/BB25AE VLIST/$19.95. List BAS file variables to
screen or printer.

SJ843/AA25BE XEDIT/$25.50. ‘A totally different screen
editor’ with programmable function keys. New program,
but we’ve had no experience with it. Can someone write a
review? It sounds interesting.

GAMES

990046/AB58AG AIRRAID/$20. Airraid, Car race, Rover
robot and Tiles.

SR962/AD37AG ALIENS/$25. Good graphics, fast.
AUG930/BC58BC B747 FLIGHT SIMULATION/S$15. New
York to Hartford. We need a review!

JH908/AAS8AG BIORHYTHM/$12.50. Assembly language
with printout.

990040/AB5S8AG BLACKJACK/$20. Blackjack, Roulette,
Drag race, Horse race, Slot machine.

990052/ AAS8AG BOUNCE/$20. Bounce, Battleship, Slither.
AUGY34/ABS8AG BOUNCE BALL/$10. Bounce ball,
Crossword, Create crossword puzzle, and 2 person chess.
990036/BB58AG CHESS/$20. Chess, Acey-ducey, Line five,
Biorhythms.

SB950/AAS8AG CHOMP/$29.95. Assembly masterpiece by
David Suits.

JH901/AA25AG CRIBBAGE/$20. A peg board on a screen.
990042/AB58AG CUBIC TIC-TAC-TOE/$20. Tic-tac-toe,
Greed, Galaxy, Space lander.

RT960/AD25AG FINAL FRONTIER/$25. Rick Taubold’s
space battle with the Klingons.

COLORCUE MAY/JUN 1984

AUGY33/ADS8AG FOOTBALL/$10. Football, Space colony,
Drop the marble,15 piece puzzle, Mastermind.
JH937/AB25AG FOOTBALL/$20. Assembly language, with
real time clock.

QS910/AD26AG INVADERS/$34.95. The ‘arcade‘ version
with sound, Tic-tac-toe, Battleship.

JH906/AD25AG KALEIDOSCOPE/$10. Assembly language
graphics thriller.

JH905/BB25AG LIFE/$10. Assembly language life and death
struggle.

990056/ ABS8AG LUNAR LANDER/$20. Lunar lander, Coali-
tion, Linko.

PS952/ADS8AG MAZE/LUNAR LANDER/$14. Help a mouse
find the cheese, and David Suits land on the moon.
990060/ ABS8AG MAZE MASTER/$20. Maze, Crossword puz-
zle, Create crossword.

BG936/BD25AG MILLEBORNES/$15. Complete ve.sion of
the French card game.

AG935/AD58AG MONOPOLY/$10. Monopoly, Maze, Puz-
zle, and Hyper-space war game.

990034/ABS8AG OTHELLO/$20. Othello, Math dice,
Concentration.

WL949/AB25BG PROJECT APOLLO/$14.50. Dock Apollo on
Skylab. Good graphics. v

JH904/AB25AG PYRAMID SOLITAIRE/S$15. The card game
for the recluse. ‘

SR961/AD37AG ROBOT WARS/$25. Fast action space game.
AUGY932/BD58AG ROULET/$10. Roulet, Reverse number
game, Dog chase cat, Ask Eliza, Clock, Robot.
JH907/ADS8AG SCROLL/$10. Scrolling demo with source
code.

990044/ ABS8AG SHARKS/$20. Sharks, Towers, Kalah, Mill.
990054/ABS8AG SHOOT/$20. Shoot, 15 piece puzzle, Hyper-
space war game, Seawar.

GH947/AD25AG SNAKES & LADDERS/$25. Board game
from Australia with sound. Lemonade stand, Time
signature.

JH903/BB25AG SOLITAIRE/$15. Standard solitaire.
JP940/AD25AG SPACE ARCADE 1/829.50. Three fast-action
games: Galaxy attack, Invaders, Galactic patrol.
JP941/ADS8AG SPACE ARCADE I1/$29.50. Meteor mission,
Orbits, Star battle.

AUG931/CD25AG SPACE WAR/$10. Good graphics.
GH946/AD25AG STAR FIGHTER/$20. Games with sound,
plus word puzzle.

BJ920/BD25AG STAR TEC/$19.95. Star trek, Mastermind,
Bounce, and x-y graph plot demo.

9048/ABS8AG STAR TRADER/$20. Star trader, Color hunt,
Decision maker, Calendar, Concentration.

990050/ABS8AG SWARMS/$20. Swarms, Human reaction
time, Roulette, Reverse numbers, Captain Alien.

29

SOFTWARE REVIEW

Joseph Norris

The primary source of software for the Compucolor/In-
tecolor line of computers is Intelligen Computer Systems,
in Huntsville, Alabama, whose catalog is printed in this
issue. In addition, there are several other sources of pro-
grams, source code, and programs in ROM, some sources
with only a few offerings. This summary will treat these ad-
ditions to the software library. It is important, too, to
remember the disk libraries of the several user groups.
Catalogs of these holding are available to members.

FASBAS. $25.00. Peter Hiner, 12 Pennycroft, Harpenden,
Herts ALS 2PD, England. This is the one and only Basic
Compiler for the CCII and 3651 (all versions.) At this time,
all Basic commands are compilable. Peter is contantly mak-
ing improvements, which are available to previous buyers
free of charge if they send back the disk (or send $5 for a
new disk.) A new compiler, called ZIP, is in preparation
which Peter says makes Basic color graphics nearly as fast
as assembler graphics. We'll give more details when ZIP is
ready. The price of FASBAS is mine, not Peter’s. It is ap-
proaching the obscene to pay him less for all his incredible
effort. Don’t you agree?

COLOR GRAPHICS DISKETTE. $20.00. Joseph Charles,
PO Box 750, Hilton, NY 14468. This diskette contains
almost all the demonstration programs listed in David Suit’s
book on color graphics for the CCI1/3651 computers. It will
save many hours of typing. When ordering, please specify
the software version desired.,

COLORWORD, word processor, screen editor. $50.00.
(Shipment by airmail included.) Program Package Installers,
PO Box 37, Darlington, Western Australia 6070. For CCII
(all versions), and 3651 computers. Assembly program with
20K buffer for any keyboard. Will process existing SRC files
(or any file extension representing an ASCII text file), with
conventional word processing facilities: word wrap; block
copy, move and delete; string search with optional replace;
upper or lower case character set accommodated; HELP
facility; printer parameter setup; automatic repeat on
keystrokes; imbedding control characters for printer
parameters; screen preview of printout; compact FCS file
storage; all FCS commands available.

COM-TRONICS. Com-Tronics software is available from
Inteligent Computer Systems. There is no current activity
for CCII from Com-Tronics, and they have not answered
my mail. Fortunately, little software support would be re-
quired. Com-Tronics programs, by and large, work very well
on all software versions. CTE and CTA are still my
standards.

GARY DINSMORE. Selected software available. See adver-
tisement in last Colorcue. Gary is still interested in
establishing an independent software marketing arm for
CCIl. Write to him for details.

30

BILL GREENE. Bill has current releases of Compucalc,
IDA, some games, and a (free) version of FORTH for the
CCII. His software is available through Intelligent Computer
Systems. FORTH may be obtained by writing to Bill (or to
Colorcue for a version of FORTH for 3651, Colorcue will
also assist in providing 3651 versions of any other Greene
software.)

JIM HELMS. Jim has announced that he will not support
his software for the CC11/3651 beyond October of 1984,
The source code for his software is therefore for sale at a
cost equal to 1.5 times the selling price of the assembled ver-
sion. Source code may be ordered from Jim Helms, and pur-
chasers must agree not to distribute such purchased code.
User groups may purchase source code for their libraries,
with distribution regulated by the same rules that apply to
disk library holdings. Software compatibility to 3651 com-
puters has been a problem for Helm software. If versions
dated 1983 or later are used, they may be assumed compati-
ble with 3651. Otherwise, Jim cannot guarantee results.

Helms software is available from Jim Helms or from any
of these authorized dealers: Intelligent Computer Systems,
12117 Comanche Trail, Huntsville, Alabama 35803; Howard
Rosen, PO Box 434, Huntingdon Valley, PA 19006; Pro-
gram Package Installers, PO Box 37, Darlington 6070,
Australia. Some price reductions have been made recently.
Note that many programs are available in ROM for use at
4000H.

Jim Helms., 1121 Warbler, Kerrville, TX 78028,
(512-895-5136)

METIER. This software firm specializes in programs for
educational use in schools, They write software to specifica-
tion in Basic for a variety of computers, including the CCII
and 3651. Most software may be altered to suit specific
needs. Purchaser of programs must agree to the sale con-
tract prohibiting copying or redistributing the materials.
Some currently-available programs are listed here:
Database - Names, Addresses, Phone numbers (home use)
$27.95

Programs for Trigonometry, $29.95

Names, Addresses, Student Data (for teachers), $27.95.
(Note: the above programs may be purchased by Colorcue
subscribers for $15.00 for a limited time.)

Budgets, Requisitions and Cash Flow (useable with Title IV
grants), $700.00.

Pleate write to METIER for a complete description of this

software and other services.
METIER. PO Box 51204, San Jose, CA 95151,

PROGRAM PACKAGE INSTALLERS. This Australian
firm is offering selected software on disk or in ROM (for
4000H):

Colorword, $58; General Ledger, $70; Disk Editor/Format-
ter, $20; Directory (for use with Database I1), $20; WISE-

MAY/JUN 1984 COLORCUE

II (emulator), $25; Lister (Basic programs), $15; Printer
Driver (for SRC files), $15; Screen Editor and Assembler,
$30; Cross Reference Assembler Utility, $15; BASSCR,
HEX/DIS, SOLITAIRE, and CRIBBAGE, $15 each;
‘THE’ Basic Editor (available soon.)

PPI will copy your program to ROM for $10.00.
Program Package Installers. PO BOX 37, Darlington 6070,
Australia.

Compucolor/Intecolor User Groups

The active user groups still serving Compucolor and In-
tecolor owners are listed here. As usership declines, there
tends to be a collaborative spirit among these groups, shar-
ing library holdings as well as articles for publication. Should
you join more than one? If you are hungry for every bit
of available information, 1 think so, particularly CHIP,
CompUKolour, and CUVIC. These publications will be par-
ticularly helpful in providing the little bit of hardware source
material that might be available. There are borrowings from
material in Colorcue, and you may expect this to continue.
However, local activity is still in evidence, and this activity
is sometimes only available in the local publication. We have
done our best to gather complete information. Please write
to the group of your interest for more details.

AUSTRALIA

CUVIC, Victorian Compucolor Intecolor User Group.
Monthly newsletter, about six pages, with meeting notes,
reviews, software and hardware articles. Recent article titles

have been on Comp-U-Writer techniques, reading and
writing FCS files to Comp-U-Writer (including SRC and
TXT files!), a Computerized Star Map, and conversion of
disk drives for use with the CCII. I find CUVIC a good
source of ‘hard-to-find’ material. Meeting attendance varies
between 15 and 20. Total membership unknown. Subscrip-
tion rate unknown, but probably about $30 for US readers.
CUVIC maintains a disk library, $5 disk cost for copies of
their holdings (plus postage for U.S.)

President: Ken Winder, 8 Brindy Crescent, East Doncaster,
3030, Victoria. Australia.

Secretary/Treasurer: Ted Stuckey, Box 420, Camberwell,
3124, Victoria, Australia.

Editor: Barry Holt, 19 Woodhouse Grove, Box Hill North,
3129, Victoria, Australia.

Address library requests to the Secretary.

CUWEST, Western Australia Compucolor Intecolor User
Group, quarterly newletter, about 8 pages. Membership
about 30. Articles in last issue included a discussion of
Australia’s VIDEOTEX system, and a reprint of Gary
Dinsmore’s article from Colorcue.

Secretary: John Newman, PO Box 37, Darlington, 6070,
Western Australia. (Program Package Installers)

UPDATE, the publication of the Compucolor User Group
of New South Wales. I have not seen this newsletter, but
I suspect it serves a small membership.

Editor: Tony Lee. 52 Cowane Road, St. Ives 2075, New

South Wales, Australia.
(Continued on back cover)

to current.

1978 VoL | $3.50 each
No. 1-3: OCT/ NOV/ DEC
1979 VOL Il $3.50 each
No. 1-3: APR/MAY/JUN
No. 4-5: JAN/FEB/MAR 1981
No. 6-7: AUG/SEP/OCT
No. 8: NOV Xerox Cory, $2.00
1980 VOL Il $1.50 each 1982
No. 1 DEC/JAN
No. 2: FEB

MAY/JUN 1984 COLORCUE

Back issues of COLORCUE contain a wealth of practical information for
the beginner as well as the more advanced programmer, and an historical
perspective on the CCII computer. Issues-are available from October 1978

DISCOUNT: For orders of 10 or more items, subtract 25 % from total after
postage has been added. POSTAGE: for U.S., Canada and Mexico First
Class postage is included; Europe and South America add $1.00 per item
for Air Mail, or $ 0.40 per item for surface; Asia, Africa, and the Middle
East add $ 1.40 per item for Air Mail, or $ 0.60 per item for surface. SEND
ORDER to Ben Barlow, 161 Brookside Drive, Rochester. NY 14618 for
VOL | through VOL V;
Moorestown, NJ 08057 for VOL VI and beyond.

and to Colorcue, 19 West Second Street,

No.3: MAR No.6: JUN/JUL

No.4: APR VOL V

No.5: MAY No.1: AUG/SEP

No.6: JUN/JUL No.2 OCT/NOV
VOL IV $2.50 each 1983 No.3: DEC/JAN
No. 0: DEC/JAN No. 4: FEB/MAR
No.1: AUG/SEP No.5: APR/MAY
No.2: OCT/NOV No.6: JUN/JUL

No.3: DEC/JAN

No.5: APR/MAY

31

GREAT BRITAIN

CompUKolour, the magazine of the Compucolour User
Group (UK), published quarterly, or whenever, about 20
pages. Heavy article content and valuable material. Recents
topics have included ‘Improving your power supply’, ‘Tran-
sistor replacements’, ‘Compiling Basic’ (Peter Hiner), and
‘CREF, a cross-reference generator.” Issue 5 was dated
December 1983, Issue 6 was dated March 1984. Member-
ship fee is fifteen pounds (UK) yearly. Number of members
unknown. This publication carries some resemblance to
FORUM, and seems like a good source of materials. The
user group maintains a disk library, and is currently shar-
ing holdings with CHIP, in Rochester.

Secretary: Peter Hiner, 11 Pennycroft, Harpenden, Herts
ALS5 2PD, England.

Librarian: Bill Donkin, 19 Harwood Avenue, Bromley, Kent
BR1 3DX, England.

Treasurer/Editor: John Booth, 27 Romany Lane, Tilehurst,
Reading RG3 6AP, England.

UNITED STATES

CHIP, publication of the Rochester Compucolor Intecolor
User Group. This venerable body, the granddaddy of us all,
continues after six years as the leader in contributionship
to periodicals, disk libraries, and general sustaining activi-
ty. Membership is $10 per year, which includes a subscrip-
tion to CHIP (quarterly if lucky), and access to their very
large disk library. I don’t know their current membership,
but monthly meetings draw from ten to twenty local
members on a regular basis. Membership is international,
however, and extensive. Newsletters can be 20 pages long.
While content has been primarily a catalog of the disk library
recently, CHIP, historically, is a source of material on all
subjects relating to the CCII, hardware as well as software.
An investment in back issues is well made (forgive me, Ben!).
When the CCII is about to give it’s final sigh, the Rochester
User Group will most likely be there to ease it’s last days.
A remarkable collection of talent and dedication to whom
we all owe a great deal. The list of names is a Who’s Who
for all former and current CCII materials. CHIP is currently
working to assist 8000 users and investigate conversion of
their library to 8000 format. CHIP maintains a library for
the 3650 computer series as well. Write to them for more
details.

Membership: Gene Bailey, 28 Dogwood Glen, Rochester,
NY 14625

Librarian: Doug Van Putte, 18 Cross Bow Drive, Rochester,
NY 14624

Editor: Ben Barlow, 161 Brookside Drive, Rochester, NY
14618 '

STAN PRO, West Coast user group and newsletter. I wish
I could be more specific about this organization but they
are, frankly, ephemeral at best. I have seen several newslet-
ters, and they appear to include useful, and often ‘rare’
materials, with articles by names familiar and unfamiliar
(Rick Manizar, Carl Hennig). Stan Pro has been an Intecolor
dealer for some time, selling and servicing CCII, 3650 and
8000 series computers. Communications between Colorcue
and Stan Pro have been less than satisfactory. The best in-
formation I have is this: the newsletter is still published
quarterly(?), membership is about $35 per year, back issues
are available (more than $100 per set). Service facilities are
still available. Mr. Pro wrote to us recently giving permis-
sion to Colorcue to reprint articles from past issues of his
newsletter. We will be purchasing the back issues and review-
ing them. Thre is a large disk library associated with this
group, perhaps 1000 or so programs. I know nothing about
their content or availability. Perhaps you will want to com-
municate with Stan and see what is available.

S. P. Electronic Systems, 5250 Van Nuys Blvd, Van Nuys,
CA 91401.

8000 SERIES COMPUTER USER GROUP

A relatively new user group for 8000 users is in the process
of organization. I have had correspondence with several
members and the outlook for interfacing with v6.78, v8.79
and v9.80-3 software looks promising. You may write to
the ‘founder’, Glen Gallaway, at 1637 Forestdale Avenue,
Beavercreek, OH 45432. Mr. Gallaway is in the process of
moving and has a new address by this time, but perhaps his
mail will be forwarded for awhile. Colorcue is interested in
providing an outlet for articles, programs and source
materials for the 8000. Please write if we can be of help.[J

8000 article by Bob Mendelson....and more.

NEXT ISSUE: Last installment of Peter Hiner’s series on Compiling Basic; W. S. Whilly masters
the disk directory; Compucolor parts and service information; A switching box you can build; An

COLORCUE 19 West Second Street e Moorestown, NJ 08057

VOLUME VI
NUMBER 4

g

(.
t

\
J

)
)
)
1
)
g

(\
(
l
<
N
(

A BI-MONTHLY PUBLICATION BY AND FOR INTECOLOR AND COMPUCOLOR USERS

‘“...an engineer’s nightmare... "’

W. S. Whilly on the rampage again....

ANIMATION Compiling Basic

i icle!!!
Tiny-PASCAL First 8000 Article!!!

Calling Assembly Routines from BASIC

JULY/AUGUST 1984

Colorcue

VOLUME VI, NUMBER 4 JULY/AUGUST 1984

CONTENTS

COMPILING BASIC, Part 1V: Peter Hiner 3
ASSEMBLY LANGUAGE PROGRAMMING

Part XV. “Animation”: Joseph Norris 6
CRT CONTROLLER CHIP: Tom Devlin 12
GEMINI 10X PRINTER: David Ricketts 14
DELUXE KEYBOARD AID: Steve Perrigo 15
PESTICIDAL PROGRAMMING

Part 1I: W. S. Whilly ... 16
DISK SALVAGE: Robert Mendelson 22
MERGING BASIC WITH ASSEMBLY PROGRAMS
Rick Taubold ... 26
Tiny-PASCAL: Doug Van Putte 29
Editor's Desk 2 Unclassified Ads 31
Compucolor Books10 Backlssues 31
Cuties (@T7) e...13

COVER: "Nightmare” design by Jane Devlin.

BACK: W. S. Whilly’'s Directory Chart.

EDITOR: JOSEPH NORRIS COMPUSERVE: 71106, 1302

COLORCUE is published bi-monthly. Subscription rates are US$18/year in the U.S.,
Canada, and Mexico (via First Class mail), and US$30 elsewhere (via Air Mail). All
editorial and subscription correspondence should be addressed to COLORCUE, 19
West Second Street, Moorestown, NJ 08057, USA. (609-234-8117) Every article in
COLORCUE is checked for accuracy to the best of our ability but is not guaranteed
to be error free.

This issue contains the first article to ap-
pear in Colorcue for the Intecolor 8000
Series Computers. It duplicates, to some
extent, the material in W. S. Whilly’s
series on IDA, but is of a slightly dif-
ferent bent. I hope readers will forgive
the similarity as we push to include 8000
users in our community. Many thanks
to Bob Mendelson for taking the
plunge! Colorcue has received ROM
listings for the 8000 and will publish the
more pertinent addresses in the next
issue. The 8000 is very like the Com-
pucolor and the 3651. The primary dif-
ferences are in the 24K user RAM, an
80 by 48 screen display, and a totally dif-
ferent memory mapping. In general,
there is no reason why CCII programs
can not be converted for use on the
8000. The 8K RAM not present in the
8000 is occupied by Command files,
normally external in the 3651 and CCII,
and by printer and light pen routines. It
is exciting to have this extension to our
readership and I hope more articles will
be forthcoming.

Several subscription renewals have
been received at the office, well ahead
of schedule. As you probably know,
Colorcue has been accepting only full
calendar year memberships, both to help
us with planning on a six-issue basis,
and because plans for next year have
been uncertain. Please do not send in
subscription renewals for next year un-
til they are called for in Colorcue, that
is, unless you owe more money to com-
plete the 1984 edition. We will be mak-
ing plans for next year during the re-
mainder of the summer and announce
them in the Sept/Oct issue.

As the Sourcebook materials con-
tinue, you will notice a dearth of
material on hardware. PPl in Australia
and Tom Devlin, in Michigan, are vir-
tually the only vendors selling a selec-
tion of hardware materials for the CCII.
Tom Devlin continues to offer his RAM
card and Analog Protector circuit. Ben
Barlow is offering a lower case character
ROM (See previous issue). I do not
know if Frepost Computers still exists.

COLORCUE JUL/AUG 1984

Communications with them have been
unanswered. I would like to repeat that
any materials, software or hardware,
that you want to add to your system,
should be purchased very soon. It is not
likely that they will be available much
longer. The Rochester User Group re-
mains the strongest source of software
and overall inspiration. Join them to
assure their continuation, and to make
available to yourself a rich deposit of
software in the free library. Colorcue is
interested in having reviews of in-
teresting programs in the CHIP library.
This is a good time for you to write one
on a CHIP program that has been in-
teresting to you.

Since the publication of the ROM
tables in Colorcue, we will no longer
specify multiple ROM locations in ar-
ticles, both to save editing time and to
encourage you to use the tables. It is ap-
propriate that our articles lean more
heavily on Assembly Language pro-
gramming than ever before. Assembly
programming is the highest point in the
Compucolor experience. It offers the
greatest power. It is very enjoyable to
work on, and it brings one as close as
possible to the wonders of the Com-
pucolor computer. Although ‘getting
started’ articles have appeared in
FORUM and Colorcue, there are
readers who write that they are still
puzzled and ‘all at sea’ with Assembly
Language procedures. As I have noted
previously, one almost has to wait for
the ‘light’ to turn on. It will not turn on
without your help, however. If you are
among those still in the dark, we invite
you to write to us for a personal tutorial
in Assembly programming, tailored to
your own special needs. Please state in
your letter what you have already done,
your analysis of your present problems,
and what you think might be helpful.
We will try to respond accordingly, even
if you don’t know where to start. It isn’t
difficult, truly, and the rewards are
tremendous. You owe it to yourself to

accept the challenge. U %‘1’1«.

COLORCUE JUL/AUG 1984

COMPILING BASIC

Peter Hiner
11 Penny Croft
Harpenden
Part IV, Herts, ALS 2PD

ENGLAND

For this article, the last in this series, 1 am left with a long
list of Basic commands not yet described and some other
miscellaneous items. However, the majority of the remain-
ing Basic commands warrant, at most, a brief comment of
the “‘Did you know that...?’’ variety.

Did you know that once you have defined a function (as
in DEF FNA(X)=X+Y-Z), you can subsequently use that
function in defining further functions (as in DEF
FNB(M)=FNA(1)+N)? This is rather like nesting
subroutines, and you can add further levels of complica-
tion by using FNB in the definition of yet another function.
Personally, I find even a single level of FN functions too
complicated, but I came across nested functions while testing
out my compiler on Startrek.

Did you know that numbers in a DATA statement can be
read as strings? For example, DATA 1,2,3 could be follow-
ed by READ A,BS$,C. If you subsequently PRINT A; BS; C,
you will get a space in front of 1 and 3 but not in front of
2. I expect you knew that Basic puts the space in front of
positive numerical values to make them line up neatly in col-
umns with negative values (which have a minus sign instead
of a space.) But did you know that Basic carefully avoids
splitting a long number (such as 123456) between two lines
on the screen? Before printing a numerical value, the inter-
preter creates a string of ASCII characters (in string
manipulation space) and counts the number of characters.
If the cursor is too near the end of a line, the interpreter
inserts a carriage return before it starts printing out the
number (which it now handles in the same way as a string.)
However, the statement A$=*123456"" : PRINT A$, would
not cause the interpreter to check the cursor position, and
this string could be split between two lines.

Did you know that in a statement such as PRINT “DEAR
ME’’;N$, you can omit the semicolon? I learned this the hard
way when someone reported a bug in an early version of
FASBAS.

Did you know that the statement PRINT SPC(X) does not
cause a carriage return and line feed, even though it is not
followed by a semicolon? The same applies to PRINT
TAB(X). Unfortunately, 1 have only just had this pointed
out to me, so there is still a bug lurking in my compiler,
which can be avoided by putting a semicolon after these
statements.

While on this subject, I should advise you of the other
known bug. If you have a PRINT statement which contains
a ‘‘cursor down”’ character, it will compile without problem,
but, during the subsequent assembly operation, the ‘‘cur-
sor down’’ character will look like an end-of-line marker,
causing chaos and an error message. This problem can be
overcome by replacing the ‘‘cursor down”’ character with

3

CHR$(10), although that will be marginally slower. To max-
imize speed, you could be brave and edit the intermediate
version of a compiled program before assembly, but I doubt
that you would notice the difference in speed.

To avoid having this article become a jumble of
miscellancous items, I will move on to the subject of memory
space, beginning with a map to compare the allocation of
blocks of memory for Basic and compiled programs. (See
Fig 1.)

The manual supplied wih FASBAS describes the difficul-
ty in defining (for either Basic or compiled programs) the
limits of the ‘‘spare space” block, squeezed between blocks
allocated forward from 829AH and blocks allocated
backward from the end of memory. The ‘‘sparc space”’
block will vary in size, both from program to program and
during the course of running a program, so it is a dangerous
practice to use it for machine code routines. The safe place
for these is in space reserved at the end of memory, and this
space can be reserved by starting with a line like this:

8 POKE 32948,a : POKE 32941,b : CLEAR 58

F16 1. Relative memory allocations

ADDR BASIC COMPILED
8868H --- FCS Parameters ---
8208H --- Basic parameters ---

829AH Basic program Run-time library
including DATA * Data,
Compiled program
Variables & constants
One dimensional
numerical arrays

2727 Variables and
string pointers

String pointers

2727 All types of array String arrays
and File buffers File buffers
Multi-dimensional
numerical arrays

77 --- Spare space ---
2777 --- Space for stack ---
277? ---

String space ---

77?7 Space can be reserved here for machine
code routines

END OF RAM

The values for a and b can be found from Fig 2. The POKE
statements set a limit on the size of memory available to the
interpreter, and the CLEAR statement defines the size of
string manipulation space to be allocated (counting
backward from the new limit of available memory.) The
stack space is automatically moved further down in memory
at the same time.

If you have a program which runs out of memory space
when using FILE routines, you will have to consider reduc-
ing the size or the number of file buffers. The Compucolor
Basic Manual gives all the information you need, but re-
quires very careful reading to appreciate the implications
of the decisions you may make concerning blocking factor
and number of file buffers allocated.

The fast and easy way is to allocate enough buffers to
enable the whole file to be stored in RAM at once, but I
will assume, now, that you have run out of memory space.
If you had allocated more than one buffer in the FILE ‘R”
statement, you can reduce the number of buffers without
any problem, except that the number of file accesses may
be increased. If you had only allocated one buffer, you can
use the option allowed by the FILE ““R”’ statement to over-
ride the blocking factor. This can be done without chang-
ing the file itself, provided that everything (including your
new blocking factor) fits exactly into a pattern of multiples
of 128 bytes, or else you will be in trouble. If this sugges-
tion leaves you confused, then do not attempt to implement
it.[1]

If you are starting a new file, then you can get things right
in the first place. The number of bytes per record multiplied
by the blocking factor (number of records per block) deter-
mines the size of one file buffer (we can ignore the addi-
tional bytes used for housekeeping.) If this resulting number
is not an exact multiple fof 128, then you will waste space
both on the disk and in RAM.

Let us take as an example a file consisting of 256 records,
each containing 32 bytes, and then consider the effects of
varying the blocking factor and the number of file buffers
allocated. To read the entire file at once from disk would
require 8K of memory space, and it would make no dif-
ference whether we chose a blocking factor of 64 (and
therefore allocated one file buffer of 8K bytes) or chose a
blocking factor of 4 (and therefore allocated 64 file buffers
of 128 bytes each). Other combinations between these ex-
tremes would also give the same result.

If, however, we could only afford 512 bytes of memory
space for the buffers, then the maximum value of blocking
factor we could use would be 16, and we would then allocate
1 buffer. This would cause 16 records to be read every time
the disk is accessed, and would be the best arrangement
(within this memory limitation) for sequential file access,
or for most forms of random access.

To see why it is normally best to make the blocking fac-
tor as large as possible and to allocate only one file buffer,
let us consider what would happen if, in the above exam-
ple, we chose a blocking factor of 4 and allocated 4 file buf-
fers of 128 bytes each. The first file access would cause 16
records to be read from disk (just as previously) and these

COLORCUE JUL/AUG 1984

would fill all 4 file buffers. But any subsequent access to
a part of the file not already in memory would cause only
four more records to be read from disk. These four records
would be put in the ‘‘least recently used’’ file buffer (over-
writing the previous contents.) You can see that this is like-
ly to result in nearly 4 times as many disk read operations,
and will therefore be much slower. The only case in which
you would benefit from multiple file buffers is when you
want to retain part of the file (such as an index) in memory
all of the time, and to achieve this you might have to insert
dummy GET statements to assure that those buffers you
wish to retain do not become the ‘‘least recently used.”’

FI6 2, Values for Reserved Memory Space.

Number of bytes 16K Memory 32K Memory
to reserve (a) (b) (a) {b)
128 122 19 127 255

256 259 198 255 254

512 255 189 255 253

In one way or another, FILE statements gave me quite
a lot of trouble while writing FASBAS. For a start, I had
never been a heavy user of FILE statements in Basic pro-
grams, so I had to learn how they were meant to work in
Basic before I could even comtemplate compiling them. I
could see that FILE routines might spend a lot of time ac-
cessing the disk, which would not offer any chance for speed
improvement. So I did not apply much effort to them in-
itially, and I only included the minimum facilities in FASBAS
v12.20. I still managed to get some bits wrong, and while
correcting these bugs for vI2.21, 1 decided to try to provide
a complete implementation of all the FILE statements, in-
cluding the obscure FILE ““A”’ command. (Does anybody
ever use it?)

The most difficult FILE statement was FILE T, which
provides error trapping. The theory is that if you include
in your Basic program a statement like FILE “T’*,1000, the
interpreter will jump to line 1000 instead of giving an error
message, if at any time it finds an error while executing a
FILE command. The trap facility is turned off again by
declaring FILE “T”, without a line number. The problem
confronting me was that the error trap routine would try
to find and interpret line 1000, and I could not make the
interpreter give control back to the compiled program. The
file routines are long and complex, containing many check
points which might cause the program to jump into the er-

ror trap routine. So I could not put an alternative error trap

routine in the run-time library unless 1 was prepared to
rewrite all the file routines as well.

I came to the conclusion that I would have to include a
bit of Basic program to satisfy the interpreter when an er-
ror was trapped. This bit of Basic program would contain
an escape mechanism to give control back to the compiled

COLORCUE JUL/AUG 1984

program. Since the interpreter would start from address
829AH in its search for the required line, the compiled pro-
gram would have to start with one or more lines of Basic
before the machine code. The solution I eventually chose
was related to the solution to another problem (chaining
compiled programs), but I will try to keep them separate
for the moment.

First of all, I made life a bit easier by determining that
the error trap routine would always redirect the interpreter
to the same line number (I chose line 2 for reasons which
will be apparent later.) The compiled program would start
with three lines (0, 1 and 2) of Basic, and line 2 would look
like this:

2 POKE 33216,242 : POKE 33217,138 : PLOT 27,94

The POKE statements put the value 82F2H into memory at
address 81COH (which is the location of the jump vector
for [ESC] [USER]. PLOT 27,94 is equivalent to keying in
[ESC] [USER], and this will result in the program being vec-
tored to 82F2H, which is the start of the routine for error
trapping. So we have achieved the first part of our objec-
tive, by escaping from the interpreter routines to our own
machine code routine.

The error trap routine contains an instruction JIMPwxyz,
where ‘wxyz’ represents an address which has previously
been inserted during the execution of a FILE ““T”’ statement
(in our example the address inserted would be the location
of the compiled version of line 1000.) So by a devious route,
the program will eventually reach the right place.

Now we can look at the first two lines of Basic program,
which are included to provide a mechanism to chaining com-
piled programs.

8 REM (followed by what appears as garbage)
1 POKE 33215,195 : POKE 33216,154 :

POKE 33217,138 : PLOT 27,94
The POKE statements put the assembly language instruction
JMP 829AH into the user escape location, and the PLOT 27,94
causes user escape to be activated. So if the Basic interpreter
were to start reading what looks like the beginning of a nor-

Fig 3. Beginning compiled code lines.

Address Object Code Assembly Meaning in Basic

829AH A3H AN E Address of next

B298H 824 ADD D line of Basic

829CH CEL NOP Basic line

82904 88H NOP number 9

829EH 8EH ADC M REM

829FH C3H,FDH,82H JMP 82FDH Rubbish

82A2H 86H NOP Basic end-of-
Tine marker

mal Basic program, it would start at line 0, find a REM state-
ment, and ignore the rubbish in the rest of the line. Then
it would execute line 1 and the user escape function ould
cause the processor to jump out of the interpreter routine
and go back to address 829AH.

This time, the program would no longer be under the con-
trol of the interpreter and therefore the code starting at ad-
dress 829AH would take on an entirely different meaning.
To explain this, I have listed the address, object code and
assembly language version of the first few bytes in Fig 3.

The code in 829AH to 829EH (which is really the Basic
linking address, line number, and REM token) does nothing
useful when taken to be machine code instructions, but it
does no harm either. The JMP instruction then directs the
program to the correct address after the rest of the Basic
lines and the error trap routine.

Fig 4. Lines for pseudo-Basic program.

ORG 829AH

DB 8A3H,B2H,B,8,8EH
P BEGIN

DB 8,0CFH,82H,1,0
DB 95H,/33215,195:
DB 95H,”33216,154:/
DB 95H,’33217,138:/
DB 92H,’27,94’,,8,8

BEGIN: ; The rest of your program here.

Now we have a compiled program which can be run as
a PRG type program under FCS control, or can be access-
ed through the Basic interpreter. So if we change the file
type from PRG to BAS in the directory, we can load and
run it just like a normal Basic program. We can freely chain
together any combination of Basic and pseudo-Basic (com-
piled) programs using LOAD: RUN statements.

If you want to make your own assembly language pro-
grams look like Basic programs, you can include something
like the Basic lines 0 and 1 at the beginning. (They must load
to 829AH.) You can change the file type in the directory
from PRG to BAS using the FCS RENAME instruction and
then treat the program as if it were in Basic. One possible
application of this would be to name a program as MENU,
so that it can be run from the AUTO key.

For your convenience I give a listing in assembly language
of the instructions you would need at the start of a pseudo-
Basic program in Fig 4. This concludes my series of articles
on compiling Basic. I hope you have found this ramble
around the subject interesting and, in places, useful.

[FASBAS is available from the author for $25US. Ed]

1. See also COLORCUE, VOL VI, No 2, pps 26-28. Ed.

Assembly Language Programming

Part XV. Joseph Norris

Why are we so fascinated by animation? 1 wouldn’t want
it told that in spite of a very proper upbringing and a lifetime
of rather sophisticated intellectual pursuits, I can be hook-
ed for hours at the terminal trying to outwit a dumb figure
that 1 know, perfectly well, is programmed to do me in,
everytime. So, welcome to the human race!

This article has been requested more often than any other,
yet you already have a good feeling for the construction of
animation in assembly language. The fact that much of what
we do here will seem obvious and elementary will be evidence
of that. Since our purpose is to explore possibilities, rather
than create a finished program, we will look at some techni-
ques, carry them somewhat into a meaningful area, then
cruelly leave you on your own, with your imagination and
an inspirational screen display to use as a “springboard”’
for further play.

Animation on the CCI1/3650/8000 computer can be
achieved through the family of PLOT functions enabled in
the system ROM, and, more satisfactorily, through the direct
use of screen memory. We will begin by examining a brief
example of animation using the PLOT functions.

In BASIC, we can construct and plot a rectangular
“animaton’’ with a single line:
185 PLOT 3,38,15,2,118,111,3,38,14,2,108,189,255
This line sets the cursor at x =30, y = 15; enters the character

plot mode (*’2°’) and prints the 1st and 4th quadrant *‘cor-
ner figures where they belong.

To add dignity to the rectangle, we can enter the blind
cursor mode by preceding the x,y coordinates with a number
higher than the largest valid x coordinate (greater than
“63”). I have chosen ‘82"’ because it satisfies a ‘‘bug’’ in
carly software versions. (See the Instruction Manual for a
description of the blind cursor mode.)

185 PLOT 3,82,38,15,2,110,111,3,82,38,16,2,188,109,255
If we change the values of x and y in line 105 then we can
make the animaton ‘“move’’ through the screen area. This
is done easily in Basic by placing variables X and Y in the
string, and replotting the string with changing values of X
and Y:

185 PLOT 3,82,X,Y,2,118,111,3,82,X,Y+1,2,188,189,255

The illusion of motion of an animaton requires that we
erase the previous position of the animaton before plotting
its new location. To erase the rectangle, we can construct
another line that is identical to Line 105, except that it will
print “‘spaces’” (*’32"") over the graphics characters, hence
‘“‘erasing’’ them:

115 PLOT 3,82,X,Y,2,32,32,3,82,%,Y41,2,32,32,255

COLORCUE JUL/IAUG 1984

These two lines, executed in repeating succession, produce
a “‘blinking”’ character plot on the screen. We may plant
these same lines, virtually untouched, into an assembly
routine as labelled DB strings. The only difference is the ad-
dition of *‘239"’ at the end of each string, so OSTR can be
used to print them:

MAIN: LXI H,GRAPH ;Point to string
CALL OSTR i and print it
IXI H,CLEAR ;Point to erase string
CALL OSTR i and print it
M MIN Do it all again!

GRAPH: DB 3,82,38,15,2,118,111,3,83,38,16,2,168,189,239

CLEAR: DB 3,82,38,15,2,32,32,3,82,38,16,2,32,32,239

To change the plotting position of the rectangle, we need
only alter that portion of the memory contents of these two
strings which determine the x and y plotting values. For
GRAPH:, these are the third and tenth bytes for the x values
(GRAPH +2,GRAPH +9), and the fourth and eleventh bytes
for the y values (GRAPH +3, GRAPH + 10); similarly for
CLEAR:.

Before we can experiment with this animaton, we need
a skeletal program to perform the plotting and get some in-
terfacing from the “‘joystick’’ or keypad. I call, again, on
David Suits’s keyboard input routine, from the June/July
1982 Colorcue. We need only those portions that will “‘get’’
a character press and place it in the accumulator for fur-
ther processing. (Please refer to that article for explanation
of this portion of the source code.) Specifically we will use
the routines labelled ““TEST”’, ““GTCHA’’, and ‘““CHRINT.”’

Our need for a skeletal program is filled by GRAPH.SRC
(see Listing I). The comments are rather thorough, but I of-
fer the following additional explanations:

Keyboard Assignments. I have chosen to use the numeric
keypad for operator interfacing with the program, follow-
ing the convention of ““CHOMP”’, with “4’’ and ‘6’ mean-
ing “‘left’’ and “‘right”’, and ‘‘8”’ and ‘2’’ meaning ’’up”’
and ‘‘down.”’ My joystick is connected to these keys. If you
have a joystick assigned to the ‘‘arrow’’ keys, then make
the appropriate conversions in GRAPH.SRC to accom-
modate them, by changing the CPI values in MAIN. If you
have no joystick, then assign any keys that are comfortable
for you. One such arrangement that works well is to use ‘N’
and ‘“M”’ for left and right, and *“D’’ and ““‘C”’ for up and
down—using two hands for control.

COLORCUE JUL/AUG 1984

The ten lines of code at MAIN control the proceedings.
Their purpose is to intercept a keyboard input and branch
to the appropriate subroutine for action. Key in
GRAPH.SRC and assemble it to an appropriate origin. What
you see when you RUN the program doesn’t seem very ex-
citing. A stilted rectangle moves inelegantly in four direc-
tions within the screen boundaries we have imposed. We will
take some steps, however, to transform this into a rather
interesting animaton.

Suppose we bypass the GTCHA routine, and cause the
program to operate at full speed, maintaining its previous
branching action until a new keypress is stored in KBCHAR.
Change the source code at MAIN:

Replace MAIN: CALL GTCHA with MAIN: LDA KBCHAR.

With this change, the last keypress will remain in effect un-
til a different keypress is stored in KBCHAR (‘‘typematic’’
action, so to speak.) If you assemble this code you will now
have a more challenging animaton on your hands, zipping
from side to side and up to down , ‘“out of control.”” But
you have some important information in this demonstra-
tion. You now know how fast the PLOT structure can move
things on the screen!

Let’s slow things down a bit. Replace the single line at
MAIN with these two lines:

MAIN: CALL WAIT
LDA KBCHAR

iPause a bit
iGet last keypress

Add the WAIT subroutine in Listing 2. following the PRINT
subroutine. This handy timer has a very large range of
delays, and you will enjoy placing different numbers in the
B register (by changing the source code and reassembling).
You now have reasonable control of the rectangle. Notice
that as the speed increases (as the value of B goes down),
the lowly rectangle takes on a more interesting aspect. In
a single additional step, we can create a ‘‘useful”’ game. We
will paint the background blue, and permit the rectangle to
trace a path through the screen as it moves. Change the D3
string CLR to read as follows (adding a second line):

CLR: DB 6,36,12,27,24,15,38,6,2,3,8,38, 11
0B 3,8,31,11,3,0,31,SCORE: 7,239

Plot 6,36 gives us a blue background (other codes will do
that as well, of course) and we have “‘erased’’ the blue on
lines 30 and 31 for future use as a scoring area. In mid-string,
we have changed to green on black, so our rectangle will
plot in those colors through the blue background we just
layed out.

Now assemble and run GRAPH.PRG. Now see how
“animated’’ our rectangle has become, ‘‘eating’’ its way
around the screen under joystick or keypad control. Try to
make a continuous path around the screen without intersec-
ting any previous path; then test your skill at retracing it
without going off the path (see FIG 1). (It isn’t easy if B= 32
or less.) If you get tired, pressing the ‘‘fire’” button (or any
non-defined key) will stop the rectangle in its tracks. (We
are touching on ““DIG-DUG”’ territory.)

Making a useful “‘game’” of tiiis skeleton program isn’t
difficult. Your ideas will be better than mine, but here are
some inspirational thoughts. Suppose we began the game
with a highest possible score of 9999 and B=16. A
subroutine called at the beginning of MAIN decrements the
score by one. Your goal is to gobble up all the accessible
blue area before the score reaches 0. After displaying the
final score of the first game, the program recycles with a

Listing 1.
jGRAPH: AN ASSEMBLY ANIMATION PRIMER

; JULY 25, 1984 JIN
i Turn lower case off, caps lock on
} Group Equates together here

Use your ROM tables to get v6.78
addresses, ISC 8088 users see end
of listing for instructions.

0STR EGU
KBCHAR EQU

182AH
81FEH

1v8.79 &
+ 19,89

Set origin for ESCT .uvveennnnis

ORG 82084
jSETUP,.Set initial conditionsvvuvns

BEGIN: LXI H,8
DAD 5p jAdd SP to HL
SHLD FCSSP ;Store old SP
X1 5P,STACK ;Add new SP

iClear HL

W1 A,8C3H ;Setup for CHRINT

5TA 81C5H 3 See David Suits
LX1 H,CHRINT ; input routine
SHLD BICSH ; for details
W1 AJFH

5TA 81DFH

X1 H,CLR ;Clear screen etc
CALL OSTR

P PRINT ;Draw initial box

still lower value in the B register, getting faster and faster
each time it’s played.

Another interesting set of refinements comes from a
subroutine that can tell if the animaton is about to travel
into a previously ‘‘erased’’ area or not. This permits scor-
ing in a game that wants you to retrace a previously etched
pathway. Such a subroutine can be derived by testing the
CCI character in the plot blocks to be written to next.

With the ability to test plot blocks for their CCI content,
we can also “‘plant”’ barriers to the animaton in a previous-
ly etched pathway, requiring a change of motion, tracing
an alternate pathway, all with additional score reductions.

We will need a counting routine for the score as well.
These are some things you can work on until next time, and
we will then examine the use of direct access to screen
memory as a technique for animation. J

;MIN PROGWII'llll'llllll.tllllllll)lll

MAIN: CALL GTCHA ;Get key press
Pl ‘8’ ;Move right?
J2 XINR ;Jnp right routine
CPl ‘q iMove Left?
s XDCR ;Jmp left routine
el ‘g’ jMove Up?
J2 YOCR ;Jmp up routine
Pl 2 1Hove Down?
rd YINN jJmp down routine
NP MAIN ;lnvalid input

;SUBROU‘]MS...I.Iltllllllll'.llllllll.ll

CHRINT: PUSH PSW 1Suits input routine

XRA A ; See his article
STA BIFFH
poP PSW ;
RET
6TCHA: XRA A iGet keyboard char.
5TA KBCHAR ; See David Suits
GTCHI: LDA KBCHAR
ORA A H
3 6TCH1
RET H
XINR: LDA GRAPH+2 ;Move right routine

el 40 iRight linmit?
J2 MAIN ;Yes. Don’t move
CALL PREP ;Erase old box

LDA GRAPH+2 ;get old x value
INR A i & increase by |
JMP DOX ;Store new x value

COLORCUE JUL/AUG 1984

XDCR: LDA
CP1
3
CALL
LDA
DCR
NP

YINR: LDA
CcP1
3
CALL
LbA
INR
STA
STA
Lba
INR
§TA
§TA
NP

YDCR: LDA
cPl
32
CALL
LA
DCR
§TA
STA
LDA
OCR
STA
STA
NP

PREP: LXI
CALL
RET

bOX: STA
STA
§TA
§TA
WP

PRINT: WXI
CALL
P

GRAPH+2 ;Move left routine
2 iLeft limit?

MAIN ;Yes. Don’t move
PREP ;Erase old box
GRAPH+2 ;Get old x value
A i & decrease by !
DX 1Store new x value

G6RAPH¢3 ;Move down routine
27 iLower limit?
MAIN ;Yes. Don’t move
PREP ;Erase old box
BRAPH+3 ;Get old y value
A iIncrease by 1
GRAPHt3 ;Store new value
CLEAR+3 ; in two places
GRAPH+18;Get old y1 value
A jraise by 1
GRAPH+18;Store it also
CLEAR+18; in two places
PRINT ;Draw new box

GRAPH+3 ;Move up routine
i iTop linit?

MAIN ;Yes. Don’t move
PREP jErase old box
GRAPH+3 ;Get old y value
A iReduce it by |
GRAPH+3 ;Store it in
CLEAR+3 ; two places
GRAPH+18;Get old 1 value
A ;Decrease by 1
GRAPH+10;Store also in
CLEAR+18; two places then
PRINT ;Draw new box

H,CLEAR jErase current box
0STR

GRAPH+2 ;Store new x
GRAPH+9 ; value in
CLEAR+2 ; these four
CLEAR ; memory slots
PRINT ;Print new box

H,GRAPH ;Print box at
OSTR ; new x,y &
MAIN ; go back,

;STRINGSUOCIIIIIIllllllllllll'llllll.lllll

iSetup string: B6=BK, FG=GR, Erase page

;Page mode, A70¢f, Flag On

COLORCUE JUL/IAUG 1984

CLR: DB 6,2,12,27,24,15,39,239

iString to print animaton..viiiianeeieene

H BC x y Chars..
GRAPH: DB 3,82,39,15,2,118,111
; BC x y Chars..

0B 3,82,39,16,2,108,189,239

iString to erase animaton...oievieriininns

H BC x y Space
CLEAR: DB 3,82,38,15,2,32,32
H BC x y Space

0B 3,82,39,16,2,32,32,239

Storage for Stack Pointer

Numerical Storage ..evveiiiisnnncnniiens

FCSSP: DW 1 ;FCS Stack Pointer

SCORE: DS 2 iScore storage
;Stack Allocation. This EQU entry means:
’Let the address STACK be 88H
bytes further on than this address’

We do this because the stack works
backwards toward ‘SCORE’ and we
want to allow enough room so it
won’t write into “SCORE’s area.

- e e we we We ~ee

STACK EQU $+480H

END BEGIN

;0on’t forget CR after ‘BEGIN’
;INSTRUCTIONS FOR 8888 USERS:

Q ;‘3
10STR EQU 8981H %
:KBCHAR EQU 9FFEH i

; ORG ABBRH ‘ﬂ{

LiSting 20 ;MIN PROGRMI.-ttlltlt.'nnll'lnatolltc.t

MAIN: CALL WAIT ;Delay subroutine
L& KBCHAR jUse last key
CPl gy iMove right?

J2 XINR ;Jmp right routine
CP1 ‘q {Move Left?

J2 XDCR jJmp left routine
CP1 ‘8’ iMove Up?

J2 YDCR ;Jmp up routine
CP1 ‘2 jMove Down?

J2 YINR jJmp down routine
JMP MAIN ;Invalid input

PRINT: IXI H,GRAPH jPrint box at
CALL OSTR j new x,y &

P MAIN ; go back.

WAIT: ;Delay counter subroutine - a
jcounter within a counter. The
snumber placed in B register
jdeternines how many times the
iC register will countdown. If
syou’re really good, try ‘1’ in
iB. 1f you’re only mortal, start
jwith 255 in B and work down
juntil you’re pleased with the
jresults. This routine determines
show Tong MAIN will wait before
iplotting a new animaton position.
W1 B,32 - ;Do COUNT 253

WAIT1: DCR B ; times,

R2 iWhen B=8
CALL COWNT
P WAIT1

COUNT: MVI €,255 Count from 255

COUNTi: DCR C j down to -

R2 ; 8 & return or

JHP CONT1 ; keep counting

_

FI6. 1. Testing your skill with GRAPH

(&0

;sTRlNGSI'l!'lllllllilllllllll"l'l'.ll'll
iSetup string: BG<BL, FG=BL, Erase page

CLR:

;Page mode, A70ff, Flag On
;CLR erases page in blve

DB 6,36,12,27,24,15,38

1BG=BK, FG=GR, Erase score
jlines & print title, Set
scolor for box and Score
;as green on black (6,2

0B 4,2,3,8,38,11,3,8,31,11
DB 3,8,31,”SCORE: ’,239

BOOKS FOR THE COMPUCOLOR Il

Charles, Joseph. Basic training for VCOI?IplICO/OI‘ com-
puters.Hilton, NY: Joseph J. Charles, 1980. 192 pps.
(130 Sherwood Drive, PO Box 750 , Hilton, NY 14468.
$14.95. ’

Dewey, Dale. Advanced programmers manual. Dale
Dewey, $15. (Write Colorcue for details.)

Fernandez, Judi N. and Ashley, Ruth. Introduction to
8080/8085 Assembly Language programming. NY: John
Wiley and Sons, Inc, 1981. 303 pps. $10.95.

Hogan, Brian. Computing in color. (Programmer’s
manual supplement. (Write Colorcue for details.)

Suits, David. Color graphics for Intecolor 3651 & Com-
pucolor Il computers. Hilton, NY: Joseph J. Charles,
1981, 152 pps. (130 Sherwood Drive, PO Box 750,
Hilton, NY 14468.) $15.

Watson and Newman. Programming colour graphics for
Compucolor-Intecolor computers. Program Package In-
stallers, PO Box 37, Darlington, Western Australia 6070.

COLORCUE JUL/IAUG 1984

Compu—Free Col orrvwar &

Take the risk out of buying software. Compu—Free Colorware is
user supported software. Send your disk in a mailer, and 1include
return postage (the same amount it takes to send the disk), and 1
will return the disk with the program of your choice copied ontoc both
sides. Alternately I can copy twe separate programs, one on each
side. Each program includes a manual on the disk in a .SRC file along
with a simple minded Basic program to print it out. Use the program
for several days. Try your data in it, see if it will do anything
useful for vyou. If not erase the disk and all you are out is a couple
bucks for the postage. If you like what you see, then we ask you to
send a donation directly to the author of the program. The request
will be spelled out in the Copyright message, along with the authors
name and address. You are also encouraged to copy and share the
program with youw user group, and Compucolor +riends. They would be
under the same honor code to try the program and pay if they like 1it,
or erase it if they don’t.

Here is our current librarvy:

Frogram Name: Author: Description:
Wordy (NEW!') Dinsmore Word Frocessor with dictionary.

(Send two disks)
Book Dinsmore Programmed textbook teaching aid.
Intro. to Assembly Dinsmore Text +for Book
Assebly Language Dinsmore Text for Book
Assembly Applicaton Dinsmore Text for Book
Pottery HMaking Dinsmore Text for Book
Sur vey Dinsmore Conduct your own opinion survey.
Stock HMarket Dinsmore Tracks price of stocks from newspaper
Budget Dinsmore Will handle a home budget. (32K)
Frogrammers: Let me register and distribute your programs through
the Compu-Free Colorware system. You receive payment for vyour
programs directly from the users. I handle duplicating and
advertising. Send a SASE for camplete instructions for submitting
your work, and the standards to which your program and documentation

should measure up tao.

ORRDER FORMr:= COMPU—FREE COLORWARE

Gary Dinsmore’s

Creative Software
32695 Daisy Lane
Warren Or. 97@53

Program name: (one program copied both sides.

Second name: __ {(backside of disk)
Name: [J(place me on mailing list)
Address: ____ . _ e
City: _ _ . State ____ Zip

Send a disk for each request. Send the return postage with request.’

COLORCUE JUL/IAUG 1984 11

:

Notes On The CRT Controller Chip

Failure of the CRT controller chip in the
CCll is a distressing problem. These
parts are becoming very difficult to find.
The history of this part in the Com-
pucolor computer is a little complicated
because three different parts have been
used over the years.

The part first used was the SMC
Microsystems CRT-5027. This has been,
perhaps, the most widely-used CRT con-
troller chip in the industry. It currently
lists for $19.00 in the JDR Microsystems
catalog and in the most recent Byte
magazines. It is programmable for a
variety of screen formats, and so it must
be re-programmed each time the com-
puter is powered-up. In the v6.78
systems, the data is stored in the PROM,
UAL, to be read (as 170 of all things!)

and written into the 5027 by the FCS
routine from 3774H to 3794H.

At some time early in the v6.78 pro-
duction, ISC had SMC mask a version
of the 5027 for a 64*32 format
specifically for the CCIL. This version
was given the part number
CRT-5027-003, and it eliminated the
need for PROM UAL, although socket
space for UAL was left on the logic
board for quite some time after the
change was made.

It is my understanding that the
CRT-5027-003 device is now out of pro-
duction. On v6.78 systems it is possible
to replace it with a standard CRT-5027
and a copy of the original PROM. This
PROM is an 825123 (32*8) programm-
ed as follows:

Tom Devlin
3809 Airport Road
Waterford, MI 48095

ADDRESS: 66 81 82 03 84 85 84 87-1F
DATA: 35 97 D3 F9 48 30 FiI FF

(I can supply these PROMs at a cost of
$20.00 each.)

When ICS went to v8.79, they mov-
ed the set-up parameters into the FCS
ROM proper, and thus eliminated the
need for UA1. Since they used the mask-
ed part, this data was never used, but
its presence does make it easy to replace
the masked (-003) part with one of the
standard programmable versions.

The very last Compucolors built us-
ed a CRT-5048-3, instituted about the
same time as the REV 4 logic board. It
is probably not directly replaceable with
the 5027. The 5048 is used on the 3651
so availability should not be a problem.

) ¢
Word Processor

COLORWORD V4.5

for the COMPUCOLOR II (V6.78, 8.79), 3621 and INTECOLOR 3651.

(32K RAM)

Incl. airmail

only $50

Full screen, fast operation with 20K byte buffer. (Assembler written)
Can be used with any level keyboard. (101 key is recommended.)
Automatic word wrap on screen and printer with justification. (30-199 col)
Block and character Move, Copy, Delete, Save and Print.

String search with optional replace. (Both up and down file.)
Operates with or without lowercase character set. (Selectable).

HELP facility. Full command summary on screen.

Automatic repeat on all keys.

Imbedded control codes allows operation of any printer function.
Screen preview of printout at any time.

Compact file storage in FCS format. Can process existing .SRC files.

e

=

¥ %k N % X H O F

All FCS commands available:

PP

INI, DIR, DEL, DEV.
PROGRAM PACKAGE INSTALLERS,

P 0 Box 37,
DARLINGTON,

WESTERN AUSTRALIA 6070

Please include
payment with order.

(Ph.092996153)

*

12 COLORCUE JUL/IAUG 1984

QT=

108 REM #% COMPUCOLOR 11 CHARACTER DISPLAY ## ADDENDUM

1035 REM by J. Ramsey It’s time for some special thanks: to Peter
Hiner for four extraordinary articles on

Basic, representing countless hours of work

110 REM see.Press (RETURN> to escape.... : X . .
exploring, programming, writing and giv-
ing generously of himself; to Jane and Tom

120 CLEAR : L=1 3 C=2 : PLOT 12'3'64 1 Devlin for performances far above the or-
dinary, and steady support of this magazine

130 N=28470 : FOR XX=0 TO 127 and its staff; to the faithful writers of this
Volume - Doug Van Putte, W. S. Whilly,

149 XX$=RIGHTS$(" “+STR$(XX)) and Rick Taubold - who keep us in good

' company; and to all of you who continue

1358 FOR I=1 TD 4 : N=N+2 to fill our office with such good materials.

140 POKE N,ASC(MID$(XX$,1,1)) 1 NEXT We are still only hearing from a very few.

There is room in our pages for much, much
more. It’s time for your article now! Con-
tributions on animation are especially

176 N=N+4 3 POKE N,XX 1 POKE N+1,C : C=C+1

needed.
180 IF C>7 THEN C=2
So far there have been no entries in the
190 N=N+4 3 POKE N,XX+128 : POKE N+129,C Colorcue Contest announced in the
Mar/Apr issue. Does that mean I get to keep
200 PO_KE N+128, XX+128 : POKE N+129,C the prize money? You might try an entry,
you know. If only one person enters..he
210 C=C+1 : IF C)>7 THEN C=2 wins!
NeN We are sorry to lose Tom Andries as a
220 L=L+1 1 IF L)8 THEN L=1 : +128 user. He has endured much with a failing -
CCIL If you haven’t tried Tom’s Hour
230 NEXT : POKE 33278,8 Glass graphic from Vol V, Jun/Jul, you’re
missing a remarkable bit of programming.
240 IF PEEK(33278)=8 THEN 240 Try compiling it with FASBAS for some ex-
tra pleasure. It is a simple and elegant use
230 END of CCII graphics capabilities.

CUSTOM KEY CAPS FROM ARKAY

Arkay Engravers sells custom key caps and keyboard
switches for the CCll and 3651. Colors and cap styles
are an exact match, in both glossy and matte
finishes. Front and side face engraving are available
with up fo two-color fill. Prices must be quoted to your
specifications. This is a good way to expand to the
full keyboard, and to customize caps for your favorite
programs.

Arkay Engravers, Inc. 2073 Newbridge Road, PO Box
916, Belimore, NY 11710, (516) 781-9343. Write for
catalog.

| COLORCUE JULIAUG 1984 13

Product Review -
The Gemini 10X Printer

David R. Ricketts
108 Jovce Avenue
Fed Bank, TN 17415

It’s Thursday of ey one week of vacation, it’s rainirg, you

“want articles, sy CCII does not have lower case, my word
processor is *COMP-U-WRITER 3.3, I have never written for a
nagazine before and I can’t stand rejection. In spite of
all these handicaps, here goes.

Spend $300 for a printer, me! the original tightwad,
when this model 35 works great?? Oh! I gotta have a serial
board too, even more money, a huffered serial board would
be nice, even more mcrey, Oh well, a friend of mine is
selling the STAR, GEMINI line. "Take one home, try it out,
pay me if you like it and etc.”. I did, I did and I did.

I bought the Gemini-10X with the 4K buffered serial
board and I have been using it for several aonths noWw and,
if I can do so without sounding like a commercial, I'11 try
to share ny experience.

DOCUMENTATION: The "USERS MANUAL® (packed in the box)
although preliminary, is thorough, even to the point of
illustrating the Femoval of the Upper Case, Replacement of
the Fuse and Reolacement of Print Head. Also included are
such things as: FParallel " Interface Specifications,
Connector Signals and Functional Description for Parallel
Interface, Block Diagram, Code Chart & etc.

Although a "snow-joh® at first, the instructions for
set-up became clearer as I began to use thea. My
"preliminary” manual usage was short lived as sy friend
(the salesman} provided a such more thorough *USERS MANUAL®
which provides sasple programs for most of the popular
computers {but not the CCII - that’s okay ’cause we
Compucolor users are accustomed to such). This manual
utilizes illustrations liberally, is in an easy tao read
format, and it’s 282 pages are a wealth of information,
right down to the Glossary fpages 266 % 247) and the BUICK
REFERENCE CHART on the inside back cover. In short, in a
field where docusentation is so scarce, many manufacturers
(and software suppliers) could take a lesson from this
boak.

Did I aention that I did get the 4010X buffered Serial
Interface? Well, it has it's very own USERS MANUAL,
although very much like the ‘"preliainary" it too is
thorough and includes a schematic diagram, Interface
instructions for several computers f(not CCII). You must
look at the cpecifications page to get general information
on the EIA connection. Also included are cosplete step by
step installation instructions for the serial board.

14

1 also purchased a TECHNICAL MANUAL, but have had very
little use for it as no problems have developed in the
printer. It does appear to be another excellent
publication, with plenty of illustrations, a fairly gqood
schematic, complete parts list, lubrication instructions
and such more. The cost of thic manual was suprisingly low,
compared to what we are accustomed to paying for
saintenance eanuals of any type.

INTERFACE: Thanks, in part, to Ben Barlow’s article
"The Serial Port® (COLORCUE, AUG/SEP 1981}, The interfacing
waz not a big probles. 1 had to add the Handshake
Modification to the CCII and determine which pin & to use
going into the printer {for handshaking, wire up a db-25
connector and plug it in, I must adait that this is the one
area 1 used the printer’s Technical Manual as it has a good
explanation of the serial interface.

PRINTER FEATURES: Font Styles include Standard, Italic
and eight international character sets, Font Fitches are
Pica, Elite and Condensed (134 columns per line},
double-width (5, 6 and B.5 CPI), SOME MORE FEATURES:
Double-strike, Emphasized, Underline, Superscript,
Subscript, Unidirectional, pre-set linefeed to aleost any
value, Fors Feed, Variable fora length (% of lines or
Inches), Variable Header location, Vertical tab, Horizontal
Tab, Back GSpace, braphics - (Norsal, Double, Quadruple-
density), Macro instruction, Downloadable characters (make
your own}, and sore.

Since I was told that it is EPSON coepatible, [gamhled
several hours of programaing to asseable Martin P, Rex’s
Screen Dump program (FORUM, SEP/OCT 1982) and try out the
graphics. Mr. Rex’s program and the Gemini will reproduce
any and every character you can put on the CCII screen (in
black % white, of course - unless you use sose other color
ribbon).

Speaking of ribbons, there is nothing special or
expensive about the ribban used in the Gesini. Even though
discouraged by the salesman, I have been using up amy stock
of Teletype ribbons. I am careful to look for deposits on
them before I put one on the printer. Technically speaking,
it is a Standard Underwood spcol-type, 13x50ma.

The Geaini 10X handles tractor feed paper (fanfold)
3-10 inches, Roll paper B8.3-10 inches (3 inch Dia.} and
single sheets B-10 inches,

COLORCUE JUL/AUG 1984

The benini does all the Ads say it will and does it
well, It is of course, Dot Matrix but even that is
to notice with a good ribbon, I am well satisfied with
it’s perforsance to date. The only question remaining is

that of reliability, I have been through several ribbons

and probably 10000 sheets of paper without a problea. The
only failure 1 have heard of was almost immediate and the
printer was replaced when it was returned,

Telling the Gemini what to do is as easy as typeing
plot 27,32 (print in italics) or "plot 27,49* {print in

very
hard

emphasized mode). bemini also reconizes some control codes
i.e. 14(A7 on) causes the printer to print in enlarged mode
for one- line only, 18 (green)- pica, 19{yellow) - takes
printer “off-line, 17(red)- puts printer back "on-line" and
etc,

Since I have had no other quality printer I cannot
colpare the besini, but In case you haven’t naticed, I am as
pleased with the Geaini as I am with the CCII. All I need
now is a Word Processor that will take advantage of all the
Geaini features,

A Deluxe Keyboard Aid

For those of you with the ‘‘deluxe”
keyboard, the one with the 16 Function
keys, this project is a ‘must.” You have
all probably wanted to use the Function
keys for a program but haven’t im-
plemented them because of the dif-
ficulties of labelling them appropriate-
ly. If you have a word processor and
screen editor that uses these keys the top
of your keyboard can be cluttered with
a lot of labels identifying the key func-
tions. Here is a way to get rid of that
clutter, and to give yourself some incen-
tive to use the Function keys as they
were intended to be used.

The idea is to fabricate a ‘prism’ that
lies on the keyboard cover just above the
row of Function keys, with a function
description written on the prism just
above each key. Each face of the prism
holds the key codes for a different pro-
gram, three programs for each prism.
This method permits key labels large
enough to read comfortably.

Such a prism may easily be made in
several ways. Plastic supply houses often

sell triangular solid stock. Have them
cut a few 12-3/4 pieces for you. If that
appears too expensive, you may want to
search local drug stores for cheap plastic
engineer’s scales, triangular scales.
These usually have finger grips cut
horizontally which may be covered by
stiff card stock to make a smooth sur-
face. For any of the above, you can
write or type the labels on stick-on label
stock and fix them so they lay over the
appropriate key cap. You may want to
mark a vertical dividing line between
each key cap position. Color coded label
stock may be used for added emphasis.
Some users color code their programs,
white for the word processer side, green
for the screen editor side, etc.

The prism may also be constructed

from cardboard stock entirely. Using a

sharp X-Acto type knife, cut the card-
board to 12-3/4"° by 2-1/4”’. With a
drawing pen, ink 16 vertical lines every
3/4’ to make the divider between the
seventeen keys on the Function key row
(this includes the UP ARROW key.)

USRS ety

NN S AR

JNANANANAN

AN ANANAVANAN

COLORCUE JUL/AUG 1984

Steve Perrigo
16925 Inglewood Road NE
B-306
Bothell, WA 98011

Measuring from one long edge of the
cardboard, ink three lines horizontally
every 5/8” to mark the sides of the
‘prism.” A 3/8”’ strip will be left at the
other edge. This will become a glueing
surface for fastening the cardboard in-
to an enclosed triangle.

Use the knife to score the horizontal
lines, being careful not to cut all the way
through the cardboard. A light score
will do. Write the appropriate key func-
tions between the vertical lines (or fasten
stick-on label stock previously
prepared). Put a fine layer of glue on the
3/8’ area, fold the cardboard into a
triangular shape and slip the glued 3/8”’
surface under the open side of the
triangle to close it. A narrow piece of
wood and the table surface can be your
clamps to hold the triangle closed until
the glue sets. Instead of glue, you may
be able to use double sided masking
tape, if your cardboard is not too stiff.
To seal the open ends of the ‘prism’ cut
some triangular pieces from 3/16’’ balsa
wood (available at any hobby store) and
glue them in place. [

15

“ERLOZGRMT GSV
RMMVI HZMXGFN*¢

Our cliff-hanger in the last article was the prospect of forc-
ing a directory entry for CYPHER.PRG, composed on IDA
and written to the disk. Those of you who suspected this
was purc braggadocio are in for a pleasant surprise. Let us
first summarize where we were when we stopped.

Using an uninitialize disk, we used the WRIte command
to write the code of CYPHER to the disk, beginning at block
0005. We then initialized the disk with five directory blocks.
Next, through Basic, we created the file CYPHER.PRG,
allowing enough space to include all the file code (this was
done with a FILE ““N’’ statement). When we tried to RUN
CYPHER we received an error message because some critical
parameters had not yet been entered into the directory
record. Furthermore, we had an overlay table written to
disk, beginning at block 000A, with no directory entry at
all. (But you have created one as homework, by now.)

The directory doesn’t much care who writes the informa-
tion in it, whether it be operating system routines or you
and me. It has a simple format, and as long as all the right
data is in the right place, the directory will be effective. We
need to study the directory a bit before we try to create one.
I’m a great believer in creating ““clean’’ baselines for this
kind of work. To disect the mysteries of the directory, we
can begin by taking a clean disk and formating it. Do this,
and RUN IDAE or some other debugger. Reading the first
80H bytes into IDA at 8200H, a disassembly shows a pat-
tern of “‘¢’s’’, or ESH. This is the deposit of my formatter.
(Yours may be different.) The debugger instruction is:

IDAYXREA 89 8208-8288, or from FCSIREA 88 8288-8288

{I won’t always cite procedures for the other instruments
each time. Refer to the last issue or the instruction manuals
for a reminder.]

In order to get a ““cleaner’’ base line, let’s write some
00H’s to the first block of the formatted, uninitialized disk.

IDAXF 82689 8589 08
This will clear computer memory from 8200 to 8500.

IDAYXUR] 88 8200-8588, or from FCSHWRI 88 8209-8389

This will write the 00H’s (NOPs) to the disk. Now initialize
the newly-formatted disk:

IDAXXINI CDB:TESTDISK 85, or from FCSYINI CDB:TESTDISK 85

This will initialize the disk with five directory blocks.

Now we can copy CYPHER.PRG;02, from our very first
work disk, to the newly initialized disk. If you have a single
drive, then use the COPY.PRG software to make the
transfer.

Activating IDAE again, we can now inspect the directory:

16

PeSTiCidAl

IDAYF 82680 8508 88; clear lots of computer memory to 88H.
IDAYXREA 80 B208-8288; read in the first directory block.

Within reasonable limits, you should see the contents of the
directory as shown in Figure 1. The differences will be in

_ the Free Space entry, because I am using an 8’ double-sided

disk which has considerably more space than the CD disk.

The first column of Fig. 1 shows the first 23 bytes of the
directory. Most of them are not used for anything at all.
The first byte is always 00H (NOP) for the first directory
block. This byte states which directory block we are look-
ing at, Block 0 being the first block, Block 1 being the se-
cond, and so on up to 04 for the fifth directory block. The
second byte, labelled ‘‘Marker’’ in Fig 1, is always one less
than the number of directory blocks specified in the INI
command. Fig I shows [have five directory blocks on my
disk (04 + 1). The third byte is always 41H, the ASCII let-
ter ’A’’, and is the attribute byte for the volume name. The
next ten bytes, from 8203 to 820C contain the volume name.
(You can put all kinds of things in there with IDA; colors,
crazy characters, etc.) The remainder of the bytes, through
8216 are not used. They will be all 00H in our case because
we wrote O0H to the disk. Otherwise they will either be ESH,
on a newly formatted disk, or garbage left over from
previous disk contents on a used disk.

Now begins a succession of file entries, the first three en-
tries shown in the chart, each occupying 21 bytes.. The at-
tribute byte for an unprotected file is 03H, always. Data in-
volving two bytes, such as SBLK, SIZE, LADR, etc, are
written low byte first. The contents, you will notice, follows
the sequence that appears on the CRT directory listing. The
“‘spare’’ byte, first appearing at 822B isn’t used for anything,
although numbers will sometimes be written there by the
system software. I puzzled over this byte for a long time,
failing to establish any corrclation between its value and
what was occuring with the disk file. I expected it to be a
check sum for testing write integrity but I can’t demonstrate
that. (If you know something I don’t know, please drop me
a line.) A value of O0H is just fine for the “‘spare’” byte,
and has never failed to work for me with any kind of file.

Column three is the FREE SPACE entry for the
directory.[1] Its attribute byte is 01H, always. There is no
other meaningful data until SBLK, SIZE and LBC. LBC
is always 80H for the FREE SPACE entry, so it’s no pro-
blem determining that. But SBLK and SIZE should be ac-
curate. Notice that SBLK is 000A, the first free disk byte
following CYPHER, which confirms what we wrote to our
uninitialized disk last time. (This was the beginning of the
overlay for CYPHER’s alternate encoding table.) The SIZE
data in your directory will be a function of your drive type,
CD drives having less frec space than MD or FD drives.

COLORCUE JUL/IAUG 1984

ProGRammlng!!! .2

The last valid directory entry is always the free space en-
try, and it counts as one of the files in the directory. My
directory blocks hold five files, which means I can store four
““real’” files and one FREE SPACE *‘file.”” You can always
identify the FREE SPACE entry by the presence of the at-
tribute byte (O1H).

Column four is unused, and contains all 00H. Should I

want to add another “‘real” file to the directory, I would
add it beginning at the byte at 822CH, and move my FREE
SPACE entry, now amended as to attribute, SBLK and
SIZE, to the byte beginning at 8241H in Column 4 of Fig 1.

So let’s go to work, and fix our last disk from the previous
article. The directory should currently look like this (unless
you really did create a file entry for the overlay):

F16 1. MAP OF DISK DIRECTORY BLOCK

----- DISK VOLUME SPACE----- -------1ST FILE ENTRY------- ~=-===-ND FILE ENTRY---~=-- -------3RD FILE ENTRY-------
ADDR BYTE TRANS FUNCTION ADDR BYTE TRANS FUNCTION ADDR BYTE TRANS FUNCTION ADDR BYTE TRANS FUNCTION
8280 @ 1 NOP 8217 83 CTL C Attribute 822C 61 CTLA Attribute 8241 o8 3 Attribute
81 84 CIL D Marker 18 43 € 20 88 9 (Free Space 42 88 3
19 59 ¥ 2 08 3 Entry) 43 8 9
82 41 A Attribute 1A 58 P File 2F 88 3 File 4 6 3 File
1B 48 H Name 8238 90 3§ Name 45 98 3 Nane
83 4 T IC 45 E 31 688 23 4 08 3
84 45 E 1D 52 R 32 88 3 47 8 3
85 53 § - --- -—-
66 54 T Volume 1E 58 P File 33 68 23 File 48 08 3 File
87 44 D Nane IF 52 R Trpe 34 88 3 Type 49 68 2 Trpe
68 4% 1 8220 47 6 3% 8 3 A 88 3
89 53 § -- -- -
A 4B K 21 81 1 Version 3¢ 688 23 Version 8 68 9 Version
08B 28 space 000 e e
8C 20 space 22 85 SBLK 37 6A SBLK C 88 3 SBLK
23 08 8085 38 60 808A 9 88 3
80 98 3 ettt LU T e R
8E 88 3 24 85 SI2E 39 82 SIZE 4 0 3 SIZE
6F 88 3 25 88 8085 R 12 1282 4 88 3
8218 688 3 Not ----- -=- - i et e P
11 e 3 Used 26 88 LBC 3B 88 LBC 82586 88 3 LBC
12 88 3 e - --
13 88 3 27 88 LADR 3C 88 LADR 91 88 3 LADR
14 88 23 28 82 8288 3 o8 52 88 9
15 980 9 - -- -=-- - ---
16 88 3 29 88 SADR 3E 88 SADR 33 68 3 SADR
A 82 8260 3F 88 4 88 3
28 68 Spare 8246 68 Spare 35 68 3 Spare
COLORCUE JUL/IAUG 1984 17

DIRECTORY DF@: TESTDISK 85

3 CYPHER.PRG;81 8885 8085 80 8881 8288
81 FREE SPACE) 886A 1282

Let’s reinitialize this disk (no, it won’t hurt the files we
have on it!) and start from ‘‘scratch,”” making the direc-
tory conform to our needs. Go ahead! Have faith!

IDAXXINT CD8:TESTDISK 85

Now print the new directory on the screen and write down
the SIZE of the FREE SPACE entry for future use:

IDAYXDIR ; (my FREE SPACE is 1267H blocks.)
Let’s clear some computer memory,

1DAXF 8280 8568 A8

and read in the first block of the new directory:
IDAYXREA 88 82868-8288

You may now do a disassembly or hex dump from 8200 to
8280, and fill in the values you find there in the first col-
umn of the chart in Fig 2 (from addresses 8200 to 8216 only).

Using the chart of Fig 2 as a worksheet, and working light-
ly in pencil at first, let’s prepare to construct a directory for
our disk, making entries for CYPHER.PRG and the overlay.
Working now in column 2, the first directory entry, we enter
the value 03H at address 8217, because the attribute for a
“‘real” file is always O3H.

From 8218 we enter the file name, CYPHER, in hex, as
43H, 59H, SOH, 48H, 55H, 52H. Beginning at address 821E,
we enter the file type, PRG, as 50H, 52H, 47H. At address
8221 we enter 01H for the version. (Are you doing this as
we go?!)

At address 8222, we enter the SBLK (start block), low byte
first, 05SH, 00H (=0005H), and the SIZE of CYPHER (5
blocks, remember?) at address 8224; 05H, 00H (= 0005H).

We settled on a (L)ast (B)lock (C)ount of 80 for CYPHER,
last time, even though that’s not entirely correct; but we can
use it. At address 8226, enter 80H. Now the fun begins. At
address 8227, we enter the desired LADR (loading address)
and it will be 8200, but low byte first: 00H, 82H. We can
get fancy with the starting address. Remember that CYPHER
begins with three NOPs that don’t do anything. At address
8229, enter ‘‘8203”’, low byte first: 03H, 82H. Put a 00H
in the “‘spare’’ byte slot (=00H) and we’ve done it!

But wait! We must still make a FREE SPACE entry. So
move over to the next file column, and put the correct at-
tribute byte at address 822C. What did you put there? A
01H, of course. O1H is the attribute byte for FREE SPACE.
Now add the SBLK at address 8237, low byte first. 05H (for
the directory) + OSH (for CYPHER) = OA as the next
block. (5§ + 5is A, in hex.)

The SIZE will be the free space you noted from the freshly
initialized directory (1207 for me) minus the blocks we just

18

assigned to CYPHER (=05H). So the FREE SPACE SIZE
is, for me, 1207-0005 = 1202. I will put 02H, and 12H into
my chart beginning at address 8239. Put 80H in the LBC
slot at address 823B.

Let’s put the values from the chart into memory. With
IDA it’s very easy:

1DA)P 8288

Move the cursor right or left with the arrow keys. As you
enter hex numbers, the cursor will automatically move to
the next slot on the right. When you reach the end of the
line, the next set of addresses are automatically displayed.
Begin at 8200 and keep on entering data, checking addresses
and contents as you go, until you reach 823B, the LBC data
for FREE SPACE.

Check it out with a hex dump from 8200 to 8240.
If it all checks out, write the directory you just made to
disk:
IDAYXWR] 08 B208-8288

Display the directory:

1DAXXDIR
Run CYPHER from your new directory:
X 4* IDAYXRUN CYPHER

WOW! Now return to IDA and clear 8200-8500 with 00H
again. Read the directory back in:

1DA)XREA 88 8208-8280

Using the Chart of Fig 2, erase the numbers in column three,
the FREE SPACE column. We will now create a directory
entry there for the overlay.

At address 822C, we must change the attribute from O1H
to 03H. We can now enter the file name, TABLE1.OVR;0l
in succeeding bytes. (That’s this succession of hex numbers,
my friends: 54, 41, 42, 4C, 45, 31, 4F, 56, 52, 01.)

SBLK is the same is it was, 000AH, low byte first. Enter
at 8237H. Enter the SIZE as one block, 0001H. The LBC
must be calculated somehow. LBC tells how many of the
128 disk block bytes are being used. It does not mean how
many are left over! An LBC of 80H means all 128 bytes
in the block are used. You will have 34H bytes or so in your
overlay, depending on whether or not the last two space
bytes were saved with the table. Put LBC at 823B.

The loading address is 8448H. That’s where the table
begins, and that’s the point we saved it from (see last
Colorcue). But what about the start address?

SADR is used by the system ROM to get a LDA or PRG
program by placing this number in the program counter.
ROM will not be looking for SADR in our file type OVR,
which we just made up. We can make SADR 000H, then.
We prevent SADR from causing trouble by LOADing the
OVR, which simply puts the bytes in memory, instead of
RUNning it, which would cause ROM to look for a starting
address.

COLORCUE JUL/AUG 1984

i

|

We need to put 00H into the ‘“spare byte’” slot at address
8240. Now it’s your time to make the necessary FREE
SPACE entry in column four, the third file entry. After
you’ve done it, refer to [3] for my answers.

Write the new directory to disk, right over the old one:

But what happens when we look beyond the fifth direc-
tory entry? We will find two bytes preceeding the sixth en-
try. The first of these will be 01H, indicating that we are
in the second directory block (of five.) The second byte will
be 04H, the total number of directory blocks minus one.

~ The following byte will be the attribute byte for the sixth
directory entry.

It should be clear from this exercise that you now have
a ready tool for reconstructing a clobbered disk direc-
tory....IF... you have a printout of the directory to work
from. I periodically make a directory printout of all my im-
portant disks and store it in the disk sleeve. Not only is this
a convenient way to view the disk contents, but it is a good
way to have the data on hand for a reconstruction, ... and
who hasn’t needed a reconstruction at one time or another.

Even without a directory printout, IDA can search a clob-
bered disk, one block at a time, locate programs and create

IDAYXWR] 98 8280-8288

1DAYXDIR

10A5L0AD CYPHER)PRG;01
IDAJLOAD TABLE!.OVR
104)6 8289

There it is, folks! You have broken into the inner sanctum!

FI16 2. DIRECTORY WORKSHEET

----- DISK VOLWME SPACE----- -------15T FILE ENTRY---~~-- -------2ND FILE ENTRY------- ~-----=3RD FILE ENTRY-------
ADDR BYTE TRANS FINCTION ADDR BYTE TRANS FUNCTION ADDR BYTE TRANS FUNCTION ADDR BYTE TRANS FUNCTION
8200 @ | NOP 8217 Attribute 822C Attribute 8241 Attribute
81 84 CTL D NMarker 18 20 42
19 2E 43
62 4 A Attribute 1A File 2F File 44 File
--------------------------- 1B Nane 8238 Name 45 Nane
63 54 T iC K} 44
84 45 E 1D 32 4
85 53 § ---
86 M T Volume iE File 33 File 48 File
87 4 D Name 1F Trpe 34 Trpe 49 Type
88 4% 1 -8228 KR] 4
g9 53 S -—- -
A 48 K 21 Version 36 Version 4B Version
B 28 space -
8C 20 space 22 SBLK 37 SBLK iC SBLK
23 8885 38 8004 4D
80 88 3 cmmmemce e -—-- memmmeme | mmemmeemmecceecoooooooo-oses
BE 880 3 24 SIZE 39 SIZE 4E SIZE
6F 08 3 25 8085 3A 1282 4F
8218 88 3 Not
11 8 3 Used 24 LBC 38 LBC 8250 LBC
12 80 3
13 880 3 27 LADR 3C LADR 9 LADR
14 8 3 28 8208 3D 52
15 88 9 0000 meeeee- -- e L e e e
16 00 3 29 SADR 3E SADR 33 SADR
2A : 8208 3F 94
28 Spare 8248 Spare hh] Spare
JUL/AUG 1984 COLORCUE 19

S

new directory listings for them. If you know anything at all
about your programs, the construction of their source code,
their text, or whatever, IDA will assist in retrieving them
from a destroyed disk. It would be helpful to make a “dry
run'® with CYPHER.PRG, by reinitiallizing the disk we have
just created, and by means of a block to block search, get
CYPHER back into computer memory and SAVE it.

A review of FCS SAVE command will also be useful.[2]
1t is often used to save memory contents as a PRG file. You
will have noticed that when we use the FCS REAd or WRIte
commands they take a similar format: for example:

1DAYXREA 88 8208-847D; Note dash between last two numbers.

This means “‘read beginning at block 00 into memory star-
ting at address 8200, and continue reading until memory is
filled to address 847D.”’ The dash between 8200 and 847D
indicates that both numbers are memory addresses. If the
dash is omitted, the last number, 847D, indicates how many
bytes are to be read—in this case far too many for the pur-
pose. FCS allows you to specify either the last memory ad-
dress to be filled (by using the dash) or the number of bytes
to be read (without the dash.) This same convention applies
to the SAVE command as well. The SAVE command also
permits you to specify LADR and SADR, and this is useful
for converting LDA files to PRG from IDA. The format
is a little tricky. Here are some possibilities for a mythical
LDA file, CYPHER.LDA:

Example { - SAVE CYPHER.PRG;01 8280-847D 8283

This tells FCS to save the code beginning at 8200 and en-
ding at 847D to a disk file. LADR will be 8200 and SADR
will be 8203.

Example 2 - SAVE CYPHER.PRG 8208-847D

We omitted the version number this time, so FCS will supply
one for us. Since we omitted a specific SADR, FCS will
make SADR the same as LADR, in this case 8200.

Example 3 - SAVE CYPHER.PRG 8260 0289 8283 2808

This is a most sophisticated instruction. We have changed
the memory specification to show, not the end address in
memory (847D in the first examples), but the number of
bytes (0280H) to be saved. We have indicated SADR is to
be 8203H. But the last number is telling FCS that the code
we want to save isn’t currently located in memory at 8200
at all. It is really in memory beginning at 9000, but we want
it to read from disk to memory, henceforth, with LADR
= 8200. FCS will write 0280H bytes, beginning at 9000 on-
to the disk, label it CYPHER.PRG and set LADR = 8200,
and SADR = 8203. What use is this? Not much, in fact,
and a ‘“‘neater’’ way would be to use IDA to relocate the
code where we actually wanted it to be in memory before
a SAVE to disk as a PRG file.

Use Example 2 if LADR and SADR are to be the same.
Use Example 1 if you want to specify an SADR not the same
as LADR.

We have not exhausted the potential of IDA by a long
shot, and we’ll continue next time with the monitor discus-
sion 1 promised for this time. (The editor won’t give me any

20

more room.) But onc of IDA’s most useful features is the
reports it can generate to the printer. Any screen display,
from the top of the screen to the current cursor position may
be dumped to the printer by simply pressing CMD/PRINT.
If you do not have the extended keyboard, this may be
simulated by holding down at the same time the following
three keys: SHIFT/CONTROL/V (cyan color key).

To set the port Baud rate, type from the IDA prompt
some form of Bn(2), where n=1 to 7, and the optional (2)
adds two stop bits, example;

1DAYB7 ; for a Baud of 9488 and 1 stop bit.

IDA will also permit you to write on the CRT, in a
simulated CRT mode, to make notes on the screen before
you dump it! RUN IDAE, and XLOAD CYPHER.PRG.
Disassemble from 8200 15+ to get a screen display. Now
enter the simulated CRT mode by pressing the BREAK key,
followed by CMD/CRT (COMMAND key and SHIFT/CRT
all at the same time.) You may now use the cursor control
keys to position the cursor anywhere on the screen, type your
messages, then press ESC to return to the IDA prompt.
CMD/PRINT will now dump the edited screen to the printer.
Several of the printouts in my first article were constructed
in this way. If you haven’t ordered IDA yet, there’s still time.
Much more fun to come! W. S. Whilly. [J

[1] If there were formerly a “real” file in this entry column on your
disk. the file name and type may still be visable. The DELete com-
mand does not erase these parameters, but the aftribute byte will
be 01H, telling FCS that this is, indeed, the FREE SPACE entry.
[2] This information has been published previously by Jim Minor
in DATA CHIP, -29, Dec/Jan 1982. Jim has a thorough presen-
tation here of the REA, WRI, SAVE and LOAD commands that
has not been published elsewhere. | highly recommend this article
as a clear and thoughtful presentation of this material.

[3] SBLK = 000B; SIZE = 1202-1=1201; LBC =80.[172]

F16 3. Hex Dump of Directory with CYPHER.PRG
as the only file. Note FREE SPACE entry.

1DAXH 8208 8288

82608
8210
8220
8230
8248
8258
8248
8279
8288

80 84 41 54 45 33 54 44
90 00 00 60 00 80 88 83
47 91 85 06 85 60 88 81
6 60 89 90 88 00 89 8A
B0 86 80 00 88 86 99 88
86 60 96 88 80 80 88 09
99 08 08 60 86 066 86 90
066 86 60 60 80 08 08 6@
88

4% 53 4B 28 20 08 88 88
43 59 58 48 45 52 58 52
86 80 62 81 61 89 99 88
8 82 12 88 00 86 89 09
88 86 66 60 80 80 88 68
96 09 00 80 08 88 86 00
06 66 88 06 88 00 88 68
86 00 66 80 09 20 88 88

JUL/AUG 1984 COLORCUE

ITEM PRICE

COMPUTERS:

Intelligent Systems Corporation:
Model 3651, 32K RAM, 117 key keyboard, lOWET CASE seeecscsceseess ask for price

C

Morrow Micro Decision:

/MD2, CP/M computer system, 2 diskdrives, single sided,
180 K, with Wordstar WOrdprOCESSOr ®ece0000scercccencsvctoccesnsanse 5 1.490

MD3, CP/M computer system with 2 diskdrives each 386K,
Liberty monitor, with complete set of business SOftware .eeeeeeee & 1,845

D11, complete 11 mbytes hard disk computer system,
high resolution graphics monitor, complete set of
business Software, $00060e t0cc00vssccscsetssestcssevensccscsscses O 2,8“5

NEC APC
True 16bit CP/MBE (or MS.D0S) computer system, with high resolution
graphics monitor, 2 8" diskdrives each 1 mbyte, sesecevcscoseeees $ 2,795

USED CCII 32K incle SOftWATE eesececcscesscssscsscassscaccccceses $ 500
USED KAYPRO II incl. software 0scecccecccnccscssccscsscssnnscases D 1,300

PERIPHERALS AND OPTIONS:

Bell kit and simple soundware kit for 3651 tsesccccssscscscses B 25
CCII RS232 CTS kit "handshake" tesecscassssssssese 2
Lower case character kit, switchable esecssssecscsaccnce 38
Joysticks with instruction manual teeccscescstestcnan 33
Bank board 56 K EPROM, software selectable tessescsssescssascs 286
Disk drive 5 1/4" for 3651 cable included eessescsnsecesscnss 350

Disk drive 5 1/4" for CCII V6.78 cable INCle eeecescccssccccsses 250
Disk drive 5 1/4" for CCII VB.79 cable iNCle eeeececoceccscscsecs 250
Keyboard upgrade kit for CCII, 72 keys to 117 KEYS eeescesscccocs 150
Keyborad upgrade kit for 3651, 72 keys to 117 KeYS eeeecessscsces 250

Wordprocessor keycaps etecsescscsscscnnce 3
PRINTERS:

Gemini 10X dot matrix printer ®ecccsccssccecvecce 359
Gemini 15X dot matrix printer ecevccctccssccsccscns 495
RS232 Serial interface board ceccecscscscsssnsae 55
Brother HR-15 daisy wheel printer with Sheetfeeder seeesesevcesss 852
Cable for printer to computer eseeescescscacccnne 25

*##% all items subject to availability s

sle she st 3k 3k 3k ok 3k sk ok ok sk s ok o sk sk ok sk sk ok sk sk ok sk ok sk sk s ok ok ok ok sk ok sk sk sk sk sk sk sk sk sk s sk sk sk sk sk sk skesk ok

NISWALSAS HA1NdWOD INAODITIALINI

VISA, MASTER CHARGE AND AMERICAN EXPRESS ACCEPTED

INTELLIGENT
COMPUTER
JULIAUG 1984 COLORCUE Y SYSTEMS inc.

12117 COMANCHE TRAIL « HUNTSVILLE AL 35803 PHONE 205 8813800

Disk Salvage

Bob Mendelson
27 Somerset Place
Murray Hill, NJ 07974

[Because of differing ROM calls and memory mapping, this program is
not suitable for the CCIIL. Refer to W.S. Whilly’s article, this issue, for a
suitable equivalent procedure for thie CCIl. ed.]

The unexpected happened. I intended to initialize a new disk
in drive #1 but I forgot to type in the ‘1’, and lo and behold
I had reinitialized a utility disk with 30 programs. ‘DIR’ only
printed out an empty disk. I knew that INI does not wipe
out the disk in the same way that formatting does, but |
had only a vague idea of how the Directory is constructed.
To explore this, the first 9 sectors of the directory were load-
ed into memory at AOOOH by use of the REA command.
From here on it was easy.

The first 16 bytes are used for the ID of Sector 0, the name
of the disk, followed by 10 ‘don’t care’ bytes. It was also
apparent that only the first 80H bytes of Sector 0 are cleared
to 00H. Everything else was unchanged; that is, the rest of
the directory entries, the final line that shows the sectors
used, the number left, and the delimiter, 80H (LBC), and
all the program code.

My first try was to type in the data for the first 5 pro-
grams by use of the DIR printout that had been made for
my library reference. This was done with the CPU monitor
and an ASCII table for letters. It was primitive but not dif-
ficult. Each line of the directory uses 15H bytes, the last
one of which is a ‘don’t care’ spare byte. Therefore, new
lines start at addresses A017, A02C, A041, A056, AO6B...
ending at AO7F. A080 has a two-byte ID for Sector 1, which
is followed by another set of 15H data blocks. Following
the last line of active directory entries, there is an 01H,
followed by 10 bytes, each 00H, and then the calculated
number of sectors used, the number remaining, and an 80H
delimiter.

The program in Listing 1. was written to allow simple re-
entry of the first five lines of the directory. Following re-
entry, the program will then write the data onto the disk
and call for a directory printout. Should the directory have
four or less lines, the last line will have been wiped out.
Therefore, after typing the last data line, an 01 H at the start
of the following line will automatically calculate the used
and free sectors and write them to the disk.

To save publishing space for the Listing, I have omitted
the program instructions from the SRC code. They are
printed here instead:

INSTRUCTIONS FOR UNLOCK.PRG -

THIS PROGRAM WILL RECOVER A DISK THAT WAS INITIALIZ-
ED BY MISTAKE IF A PREVIOUS PRINTOUT OF THE DISK DIREC-
TORY IS AVAILABLE CONTAINING THE ORIGINAL DIRECTORY
INFORMATION.

TO OPERATE THIS PROGRAM, ENTER THE COMPLETE DATA
FROM EACH LINE AS IT APPEARS ON THE PRINTOUT. DO NOT
PRESS ‘RETURN’ UNTIL THE ENTIRE LINE IS ENTERED. IF NO
PRINTOUT IS AVAILABLE, USE THE ‘REA” COMMAND AND ESC
P TO DETERMINE THE START OF EACH PROGRAM BLOCK AND
THE PROGRAM SIZE.

22

THE LAST BLOCK COUNT (LBC) MAY BE 80H IF IN DOUBT.
IF LADR (LOAD ADDRESS) AND SADR (START ADDRESS) ARE
NOT KNOWN, CHOOSE ONE AND LATER CHANGE TO THE
CORRECT ADDRESS. ONLY ALPHABETICAL CHARACTERS MAY
BE EDITED DURING DATA ENTRY UNDER CURSOR CONTROL,
DO NOT ATTEMPT TO CHANGE BEYOND THE ;" FOLLOWING
THE FILE TYPE. NUMBERS ARE IN HEX, AND HANDLED IN THE
SAME WAY THAT THE MONITOR HANDLES THEM; THAT IS,
ONLY THE LAST FOUR HEX DIGITS WILL BE ACCEPTED BY THE
PROGRAM. ENTER A SPACE TO SEPARATE NUMERICAL ENTRIES
ON EACH LINE.

IF THE TOTAL NUMBER OF LINES IS FOUR OR LESS, TYPE ‘01"
FOR ‘ATR’ TO END THE INPUT AND HAVE THE PROGRAM
AUTOMATICALLY FILL IN THE ‘FREE SPACE’ DATA. IF FIVE LINES
ARE TYPED IN, THE ‘FREE SPACE’ DATA WILL BE SUPPLIED
WITHOUT MANUAL HELP. I

Eﬁé 03 LOTSAWORK.BAS S@z
03 PIRATED .COM

03 IRREPLACABLE . PR

03 SUBSCRIBERS . RND

LISTING 1 Disk Salvage: UNLOCK
By R. Mendelson, Vé-84

iA program to recover contents of a disk that was

; initialized in error, Only the first 88H bytes

; need to be restored to recover the directory,

: Remaining directory blocks & programs are intact,

o1 1 T § €1 T
£817 BUFF EQU 8A017H ;Store DIR string
g1e3 €l EQy 8183H ;Console in

8189 CO EQU 81894 ;Console out

g168 CPUDS EQU 8108H ;CPU Monitor

8a8D CR EQU 13
BE74 CRLF EQU BE74H
BBEF EOS EQU 239

iCarriage return
iNext line + GRN FG
;’End of string’

8133 EXPR EQU 81330 ;Convert ASCII -} HEX
8812 GR EQU 18 {GREEN
pagA LF EQU 18 iLine feed

818F LO EQU 810FH jCharacter to CRT
9FFF KEYBF! EQU 9FFFH ;KEYBOARD READY 41ag
8124 0STR EQU B12AH ;Print string

JUL/AUG 1984 COLORCUE

TR TS TR

R S

8811 RED EQu
8626 SPACE EQU
8813 YEL EQU
8F27 VECT EQU

17
28
19
BF274

{RED

;SPACE

jYELLOW
iRestart vector

iNote: Leading zeros may be omitted from hex inputs,

LT

Bees AF

Be8I 32FF9F
B8A4 CDB3BY
Bee7 214981
BBoA CD2A01

START:

ORG

XRA
§TA
fALL
X1
aLL

g8e8eH

A

KEYBF1

Cl

H,MSG1A ;Disk warning
0STR ;Print it.

iNotes 1 81 is hit before adding any Tine to the
s directory, Free Space SBLK will be set at 8689

i & SIZE at 8868,

BA6D 3EBY PROTEK: W1
BEGF 323382 STA
BA12 AF XRA
B813 323482 5TA
B814 323782 STA
Be19 323882 5TA
BAIC 2117A8 START!: LXI
addr

B8IF 223282 SHLD
B822 32FF9F STA
8825 CDB381 CALL
8828 21C981 X1
8828 CD2A81 CALL
BO2E 2117A8 X1
BB31 AF XRA
B332 0448 M1

A9

SBLKX ;Set SBLK=8689
A ;Clear Acc
SBLKX+1 ;Set SIZE to
SBLK+2 ; 8886H and
SBLK+3 ; store it.
H,BUFF ;Load ptr
ADDR1
KEYBF1
€1

jSave it
1(A=8)

H,MS62
0STR

iColumn headings
iPrint then

H,BUFF
A
B, 7FH-17H

iSet counter just past directory name and fill unused

i brtes with B8H....

8834 77
Ba3s 23
B83s 83
B837 C234B8

FILL:

B83a 21F98B1
Be3D ChzAe!
B848 365

B842 323482

READ1:

B84 320

JUL/AUG 1984 COLORCUE

SCREEN:

MOV
TNX
DCR
N2

X1
fALL
Ml
§TA

M1

H,A ;Byte to memory

H iIndex pointer

B iDecr counter
FILL 3Fill next memory
H,MS63 ;Point to MSG
0STR iPrint it

A,S iNumber of lines
CONT ; to be typed in,

A,SPACE ;Set CRT position

B847 CDOFE!
BAdA 3E30
BeaC CDAF8!

Be4ar CDB1BE
B852 FE3L

"B854 CADEBS

Space
B8S7 D438
Basy 28
BasA 77
B8SB 23
B8SC 3e20

“BOSE COBFAY

B84l CDBABE
Bad4 3E67
B844 BS
BB47 C241B0
B8sA 3E2E
BB4C CDEF!

B84F CDBARD
B872 3E8A
B874 B8
B875 C26FB8
B876 3E3B
Ba7A CDBF8I

B87D CD2EBI
BeSs 28

B881 CD2EB!
B84 EB
B685 223582
Be8s EB

B88? CD2ER!
BesC EB
BA8D 223782
BB?9 EB

Ba91 CD2EBi
B894 28

B89S CD2EBI

Re98 CD2EB!
keybd

BB9B 23
BE9C 223282
BA9F 3A34B2
BBA2 3D
BBA3 FEBS
BOAS CA1FBI

ATR:

TYPE:

VERS:

SBLK:

SI2E:

LBC:

LADR:

SADR:

CALL
Ml
fALL

fALL
cp1
42

Sul
DCX
MV
INX
W1
fALL

CALL
W1
P
Nz
Wl
CALL

fALL
W1
Hp
N2
M1
fALL

fALL
DX

CALL
XCHG
SHLD
XCHG

CALL
XCHG
SHLD
XCHG

CALL
DCX

CALL

fALL

INX
SHLD
LDA
BCR
CP1
T4

Lo
A,38H
L0

Y1
31H
FREE

30K
H

M,A

§

A, SPACE
L0

Y2
A7

B
NAME
A’I.I
Lo
Y2
A,18
B
TYPE
Ay

L0

HEMU1
H

HEXNU!

SBLKX

HENUI

SIZEX

HEXNU1

HEXNUL

HEXNUL

ADDR
COUNT

FREE2

;Fake zero

1Input ATR
ils it BIH?
iYes, set Free

iNo, ASCII to HEX
;Back to byte #1
sInsert hex
j..for next char -
Insert CRT space
iPrint it,

1Input file name
iCheck if all

; chars are in.
iNo, go back.
jAdd TYP delimit

1Get file TYP

;3 more bytes in?
iNo, go back

jAdd TYP delimit
1Get version in.
;Overlay MSB w/LSB
j6et SBLK

iFrom DE to HL
jSave it.

iBack to DE

iGet file soze

;Get LBC
;0verlay MSB of LBC

16et loading addr
iGet SADR from
iPass spare byte
iSave ptr addr

:Get prev tine cnt

;See note below

23

”

Note: 14 5 Vines are being typed, stop before adding 2
; 5th Tine ‘Free Space’ line, since the rest of the
; directory is still intact,

BeA8 323482 5TA COUNT

BBAB CD746E CALL CRLF ;For next dir line.
BBAE C345B8 JMP SCREEN ;Start next line.
1Input handler.ovuenss verreers verererees siireraste

BEBI 243282 YI: LHLD ADDR1 ;Current buff addr
BOB4 8409 Wil B,8 ;Reset char counter
B8BS AF XRA A e

BAB7 32FF9F STA KEYBF! ;Clear keybd flag
BeBA CDe381 Y2: CALL €I ;Input character
BABD FEIA Pl {AH ;Back space?

BOBF CACSBA Jl Yd iYes, jump

jInput to buffer..eovveviviinninss Crertesiiarrens .

Bec2 77 MV M,A iChar into buffer
BAC3 23 Y3: INX H sIncr buffer addr
BeC4 223282 SHLD ADDR! ;Update buff ptr
BeC7 84 INR B sIncr counter

BaC8 C9 RET ;.. for next char.

jBackspace rouUtine, vvsissirsiriirniiiiiiiiiniriiin,

BaCY 28 Y4: DCX H. 1Back up buff ptr

BACA 85 DCR B ;i & start of line,
BACB C2C980 N2 Y4 ;Do again!

BBCE 223282 SHLD ADDR1 ;Update buff ptr
BeD! 3E6B W1 A,8BH ;Erase line,

BeD3 CDaFe! CALL L0

BAD4 3ERD M1 A,CR ;Carriage return
BeD8 CDAFA1 CALL L0

BADB 343588 JMP SCREEN ;Start line over,

sInsert FREE SPACE entry if dir {3 lines

BODE D438 FREE: SUl J8H jASCIT to HEX
B8ER 2B DCX H iBack 1 buff addr
BBE1 77 MV N,A iNumber into buff
BBE2 23 INX H

BBE3 AF XRA A i

BAE4 8484 W1 B,18 ;Set 18 blanks
BBES 77 FREE1: MOV M,A yInsert zero
BeE7 23 INX H

BOEB 85 DCR B ;Reduce counter
BOE? C2E4BH JNZ FREE1 ;14 BOO

24

iCalculate next free block ¢5ADR).....

BBEC 223282
BOEF 243382
BEF2 EB
BOF3 243782
BOFS 19
BOF7 EB
BBFB 2A32B2
addr

BOFB 73
buffer

BOFC 23
BOFD 72
buffer

BBFE 23

iCalculate blocks still free (SIZE)..
; DE still has SBLK -

BOFF 223282
B1a2 78
complement
R183 2F
B184 SF
B185 74
BI04 2F
B187 57
B188 EB
R109 1E81
B16B 1408
B18D 19
BIGE EB
BIOF 2482
BI11 2E74
Bi13 19
B114 EB
B115 243282
addr

R118 73
B119 23
B11A 72
B11B 23

;Terminate directory ..

B11C 3t80
BI{E 77

BIIF 218FB2
B122 CD2AR1
BI125 212582
B128 CD2A81
B12B C3270F

FREE2:

SHLD
LHLD
XCHG
LHLD
DAD

XCHG
LHLD

KV

INX
MOV

INX

SHLD
MOV

MA
NIV
NV
o
MOV
XCHG
W1
W1
DAD
XCHG
W1
M1
DAD
XCHG
LHLD

MV
INX
HOV
INX

W1
MOV

X1
CALL
1
CALL
P

ADDR1
SBLKX

SIZEX
D

ADDR1

M,D

H

ADDRI
Ak

£,
D,8
D

H,82H
L, 76H
D

ADDR

A,80H

M,A

H,MSG4

DSTR

H,M565

0sTR
VECT

1Save buffer addr
iGet last SBLK
;Save it in DE
1Get SIZE

jAdd for SBLK

; and move to DE
;Current butfer

1Place LSB in

1Place MSB in

;Save buffer addr
Make 1’s

; of E register
jSave it,

11’5 conplement of
3 D register

; and save it too.
;Complement into HL
;Set DE=0081

;Convert to 2’s comp
jMove it to DE
;Total sector count
; is 276H
iDifference in HL
sMove it to DE
iCurrent buffer

;Insert LSB

; and MSB.

iDelimiter (LSB)
; into buffer

iPut dir on disk
iPrint to CRT

iReturn to system

JUL/IAUG 1984 COLORCUE

jVECT is restart vector RSTI, and the technical end of

; the progran,

jSubroutines TN

BI2E 223282 HEXNUI: SHLD
addr

B131 CD42B] CALL
B134 £8 XCHG
B135 243282 LHLD
B138 73 HV

B139 23 INX

BI13R 72 HIV

B13B 23 INX

iNote: DE retains the
i use in SBLK & SIZE -

ADDR! ;Save buffer
HEXIN
jMove HL to DE
ADDR{
M,E jInsert LSB
H
H,D ; and MSB
H

latest value for

B13C 320 HEXNU2: MV] A28 ;’space’

BI3E CDerey CALL LD iCRT display only
B141 €9 RET

B142 BER1 HEXIN: M1 C,1 j4-byte ASCII to 2.
B144 CD3381 CALL EXPR ;Hex # in HL

B147 £t PoP H

B148 C9 RET

iString storage........ i iaira e, sirrsierens

B149 8C135052 MSG1A: DB
B14D 4F475241

BI51 4D28544F

B155 26524550

B159 414952

BISC 204C4F53 DB
B168 54284449

B144 52454354

B168 4F52592D

B16C 12

B16D 83000242 DB
B171 3928522€

B175 264D454€

B179 44454C53

BI7D 4F4EL3

B186 83800458 08B
B184 4C4143435

B188 26114449

B18C 534B20854

B190 4F28

B192 42452652 DB
B196 45504149

B19A 52454428

BIPE 13494E28

B1AZ 44524954

B1AS 452D

JUL/AUG 1984 COLORCUE

12,YEL,“PROGRAM TO REPAIR’

* LOST DIRECTORY-/,GR

3,8,2,°BY R. MENDELSON’,YEL

3,8,4,”PLACE *,RED,’DISK T0 *

‘BE REPAIRED “,YEL,’IN DRIVE-*

B1AB 83208412
BIAC 28484954
B1B8 20414E59
BiB4 284B4559
B1B8 26544F20
BIBC 434F4ES4
BICB 494E5545
BIC4 298D8ABA
BICB EF

BICY 41545228
BICD 4E414D45
BID!1 28545956
BIDS 45285452
B1DY 282685342
BIDD 4C4B2828
BIEI 53495445
BIES 20284(42
BIE? 4328441

BIF1 53414452
BIFS 8D8A8A
BIF8 EF

BIF? 18845245
BIFD 41383430
B261 26413838
B265 38204134
B289 374480
B28C 1B1BEF

B28F 18845752
B213 49383438
B217 26413839
B21B 38204134
B21F 374480
B222 1BIBEF

B225 #DBA1218
B229 84444952
B22D 38341818
B231 EF

jData storage...,

B232
B234
B235
8237

B237

H562:

M563:

M5G64:

NSG65:

ADDR!:
CONT;
SBLKX:
SIZEX:

DB 3,32,4,6R,“ CHIT ANY KEY TO *

D8 “CONTINUE)/ ,CR,LF ,LF,E0S

D8 ‘ATR NAME TYPE Uk SBLK SIZ2E’

b8 LBC LADR SADR’,CR,LF,LF

0B EOS

0B 27,4,"REAB:D ABBB-A47F 13

DB 27,27,E05S

DB 27,4,URTD:B ADBB-A47F’,13

DB 27,27,E0S

DB CR,LF,GR,27,4,DIR8:",27,27

D8 E0S
DS 2

DS)|

DS 2

DS 2
END START

25

How to Merge ‘BASIC” Programs
with Assembly Language Programs

by Rick Taubold (and Tom Devlin, who helped but wants
none of the credit)

Let me ask all of you a question. How many of you have
seen one of those programs which you could LIST in BASIC
but which obviously contained more? Perhaps there was a
'CALL instruction but no machine language had been load-
ed either from disk or by POKEing. How many raised hands
do I see? The purpose of this article is to clear up this little
mystery. In the process you will learn new things about your
Compucolor I1I. What is described here is not limited to the
CCll, but will work on any computer that employs
Microsoft or similar BASIC.

It was Tom Devlin, maker of nifty hardware for the
Compucolor I, who first shared the secret with me. I should
also point out that this can be used to merge any number
of machine language subroutines with one BASIC program
as well as permitting you to SAVE a machine language pro-
gram as if it were a BASIC program. BASIC is a flexible
language. Unfortunately, it is occasionally too slow for all
desired uses. Writing entire assembly language programs
might be fun to some people. To most of us it’s a lot of
work. Therefore, it is often desirable to write in BASIC and
to add short machine language routines where speed is re-
quired. The CALL function in BASIC allows interfacing
to machine language subroutines. Since it involves a
subroutine, it must always end with the machine language
equivalent of a RETURN instruction (RET in mnemonic
code, hex value = C9, decimal value=201). Other times it
is convenient to write most of the program in machine
language but to write an introduction or instructions in
BASIC.

In this case there are several options. Usually the pro-
grammer will simply use BASIC to load and run his machine
language program directly in which case there is no diffi-
culty. An alternative is to load both programs at the same
time and to employ ESC USER to execute the machine
language. Again, the programs exist separately on the disk.
I will present ways of having both BASIC and machine
language programs in memory together but merged as a
single program on the disk. Interested? Read on.

Before 1 continue, I would like to clear up a few
misconceptions about the CALL and ESC USER functions
of the CCII. Many users seem to think that ESC USER is
limited to a single function. This is untrue. Both the CALL
and ESC USER commands represent what is called a ‘JUMP
VECTOR’. By way of explanation let’s consider an analogy
in BASIC. Assume that we have a command like GOTO X
or GOSUB X, where X could be a variable instead of a
specific line number. Wouldn’t the capability be nice? Our
variable X would be a set variable names but we could
change the value of X whenever we wished.

26

Rick Taubold
197 Hollybrook Road
Rochester, NY 14623

A JUMP VECTOR is similar. It means that we are tell-
ing the computer to jump to a particular fixed location. At
that location is another jump instruction. The CALL com-
mand uses the locations 33282, 33283 and 33284. ESC USER
employs the three locations 33215, 33216, 33217. The first
location (33282 or 33215) always contains a machine
language JMP instruction (C3 hex, 195 decimal) which is
similar to the GOTO and GOSUB instructions in BASIC.
This instruction is followed by a 2-byte memory address.
Most of the time the programmer only uses one jump ad-
dress. A typical program will assign only one CALL func-
tion. However, this is not a requirement. In my ‘FINAL
FRONTIER’ program several different machine language
routines are used, depending on the need at the time. Since
most of the program was written in BASIC and only one
CALL command available, the ‘jump vector’ must be
POKEd with a new jump address each time a different
machine language subroutine is required.

The CALL command in BASIC operates as a GOSUB
to a machine language subroutine. When the machine
language subroutine is completed, the program will
RETURN to the next BASIC statement. When the BASIC
sees a CALL command, it immediately jumps to memory
location 33282 and sees another JMP command. (Keep in
mind that ANY instruction could be placed here.) The
BASIC reset routine normally insures that a JMP command
is placed here, but I like to POKE in the command just in
case it is somehow wiped out along the way. The computer
will execute whatever it sees, so it pays to be certain which
command is there.

The jump address is calculated in an unusual way (unusual
only if you’re not used to it). As an example, let us assume
that the machine language subroutine to be CALLed is at
hex location FOQ0 (61440 decimal). From this we must cal-
culate two values to POKE: F0O and 00. These work out to

"be, in decimal, 240 and O respectively. However, when

machine language reads an address, it expects the two bytes
IN REVERSE ORDER! Therefore, we POKE them in
backwards, and our final POKE instruction line to set up
this particular CALL would be:

POKE 33282,195:POKE 33283,8:POKE 33284,248
(JMP) (88) (F8)

Whep we use X =CALL(0) from BASIC, our program will
first jump to location 33282, see the JMP F000 instruction,
and go to FOOO hex to begin execution.

The ESC USER works the same way. The only difference
is that ESC USER acts like a GOTO and recognizes no
RETURN instruction. Again, the important thing to
r_emember is that we are not restricted to a single jump loca-
tion. Your program can alter these jump vectors at any time,

JUL/AUG 1984 COLORCUE

and this makes them extremely powerful, ESC USER can
be executed directly from a BASIC program by PLOT 27,30.

There are several other places where jump vectors are used
in the CCII. One of these is USER TIMER -2, and another
is INPCRT. If anyone out there is interested, I can cover
these in a future article. Now let us return to our main topic.
You’ll see the relevance of the previous discussion shortly.

I will demonstrate the merging procedure using the Scroll-
ing Patch, a simple but useful illustration. In its original
form the Scrolling Patch used a BASIC program of some
500 bytes to POKE in a 32 byte machine language program.
Somehow, this seems like overkill. For many applications
the programmer can enter this Patch directly and ‘throw
away’ the BASIC part. New parameters can be POKEd easi-
ly. This method saves memory and cleans up a program.
A more or less complete description of this Patch appeared
in the double issue Nov/Dec-Jan/Feb of FORUM. The first
step in the procedure is to write and test the assembly
language program. I have already done this in Listing -2.
When everything works, you are ready to merge the two.
For this demonstration enter the BASIC program in Listing
-1, exactly as written, and SAVE it on disk. Next, using a
screen or text editor, enter the source code of Listing -2 and
save it on disk also. You may omit the comments. I placed
the scroll parameters in EQU statements so that you can
readily change them for your purposes. Do not assemble
the source code yet!

You should now have the two key programs on disk. So
far, nothing out of the ordinary has been done. Two
methods of merging are presented, each having its own ad-
vantages and disadvantages.

RICK’S METHOD:

This method yields the most compact program but requires
that you change and reassemble the source code whenever
you change the length of the BASIC program it is to be us-
ed with. It assumes that the machine code will begin im-
mediately after the BASIC code. In addition, any changes
will require that you also change the CALL jump vector.
When you write the BASIC program, you never know until
you’re done exactly where it will end. When you set up the
POKEs for the CALL vector, the values can be I, 2 or 3
digits long. You appear end up in a no-win situation. If the
number of digits changes, the length of the BASIC program
changes which in turn changes the CALL vector which
means changing the BASIC program, and so on...

Simply make all 3 numbers three digits long. The first
POKE will always be 195. Make the other two both 000.
In this way you can change the numbers without changing
the program length. BASIC won’t carc if you POKE
33283,019 instead of POKE 33283,19.

Before you can assemble the source code you must know
the ORG address, that is, where it will be loaded. This ad-
dress will become the same as the end address of the BASIC
program. If you have ‘The’ BASIC EDITOR, load the
BASIC program and note the END@ number (in hex) at
the bottom of the screen. Otherwise, you can get this value
from the disk directory. It’s in the SADR column of the
directory. This hex address now becomes your ORG address.

JUL/IAUG 1984 COLORCUE

It should be 8384 if you typed the program as written (watch
the spacing in the REM). Use your screen editor to change
the ORG then assemble the program. If you are using the
original CCII assembler (as opposed to the Macro
Assembler, which is frequently more trouble than it’s
worth), you can leave the file .LDA. There is no need to
convert to .PRG. Note the address of the last assembled in-
struction at the ENDPRG label which the assembler prints
out when it’s done. This should be 83A4. You’ll need this
in a moment.

LOAD the BASIC program. From FCS, LOAD your
machine language program. The two programs are now back
to back in memory. Here’s where the trick comes in. In order
to SAVE the whole mess from BASIC, we need to tell
BASIC where the new program ends. The only end address
it currently has is the old one of the BASIC program.
However, we’ve extended it by adding the machine language
portion..

Now you need that last address at the ENDPRG label in
your assembly printout. In the Programming Manual one
of the ‘Key Memory’ locations listed is 32982 (Points to end
of BASIC source and start of BASIC variables). This and
32983 are the locations which we must change to fool
BASIC. The start of variables pointer (SOV) marks the end
of the actual BASIC program and the start of the memory
area where BASIC’s variables can start. This location
changes every time you add to or delete lines in the program.
that’s why a pointer is needed, so we don’t waste space. The
variables start right after the program ends. By using this
pointer location we are fooling BASIC into thinking that
our machine language program is part of the BASIC pro-
gram. This protects the routine so it cannot be wiped out
by variables, etc. When using this pointer remember to
POKE the A4 first (164 decimal) then the 83 (131 decimal).
Use IMMEDIATE MODE and type:

POKE 32982,144:POKE 32983,131 (RETURN)

We're all set. Simply, SAVE the program from BASIC.
It can be LOADed from BASIC and RUN as any other pro-
gram. Test it. Just remember that if you make even the
tiniest change in the BASIC program, you’ll have to re-
merge the two using a new value for the ORG address. This
difficulty is overcome by--

TOM’S METHOD:

This procedure requires that you assemble the source code
twice. It also yields a somewhat longer total program,
although this may be inconsequential. The big advantaae
is that you can make minor changes to the BASIC program
without having to reassemble the source code. For most ap-
plications, this will be the better method. First, change the
source code in Listing 2 as follows (A.L. stands for assembly
language):

After the instruction W EQU 30 add—

ENDAL EQU B49AH ;WHERE WE WANT A.L. TO END

27

Between the ENDPRG label and END START add—

ENDPRG: REORG EQU ENDAL-($-5TART)
ORG 32982 ;START OF VARIABLES POINTER
] ENDPRG ;MOVE POINTER TO PROTECT A.L.

END START

In this procedure the main difference is the start address
of the machine language program. One advantage is that
we can make the total program exactly fill a given number
of disk sectors. (One disk sector holds 128 bytes.) Because
BASIC begins at 829A (hex), additional numbers ending in
001A hex (e.g. 831A) will fill an odd number of disk sec-
tors and those ending 009A hex (e.g. 839A) will fill an even
number of disk sectors. As an example, we chose 4 sectors,
making the end address 849A hex. This will add sufficient
‘space’ between BASIC and the assembly language for
future changes.

The next trick is to discover the ORG “address for the
assembly language. We want it to end at 849A, but, until
we assemble the program, we don’t know how long it will
be. The first line after the ENDPRG label helps us to ac-
complish our goal. ENDAL is set at the start as 849A. In
the expression the ‘$’ symbol is a notation for the current
assembler address. By subtracting the address of START
from it, we get the difference, or the length of the program.
Subtracting this result from the address ENDAL, we calcu-
late the starting address of the machine language. Now
assemble the program for the first time. The assembler will
print the REORG address (assuming you look for it) in
parentheses. It should come out as 847A. Go back and
change the initial ORG with the editor from 8384 to 847A.
Reassemble the edited program. If you did everything right,
REORG should come out the same as ORG. All that re-
mains to be done is to change the CALL vectors in the
BASIC program to reflect the new location of the machine
language and to merge the two programs, as with Rick’s
method. To change the CALL vector, line 120 of the BASIC
program becomes:

POKE 33282,195:POKE 33283,122:POKE 33284,132

With Rick’s method you had to manually POKE the
pointer values at 32982 & 32983. With Tom’s method, we
let the assembler do it for us. By setting the second ORG
at the end to 32982 and using the DW (define word, 2 bytes)
directive, we can insert the end address (ENDPRG label)
into the required memory locations. A word of caution is
in order. You must use the old assembler’s .LDA file to do
this. The .PRG file won’t work! If you must create a .PRG
file, you will have to POKE 32982 and 32983 manually as
with Rick’s method. In either case, you can still SAVE the
entire program from BASIC.

Before concluding, I need to mention a couple of possi-
ble bugs. The first one is that you cannot LOAD these hybrid
programs using the DOS of ‘The’ BASIC EDITOR. Ap-
parently this editor uses a different method to calculate the
end of the BASIC program rather than using the SADR ad-
dress on disk. The other possible problem is that using ‘The’
BASIC EDITOR’s HELP feature will effectively strip off
the assembly language program when you attempt to re-
SAVE it. Therefore, don’t take chances. Use BASIC’s direct
SAVE and LOAD commands and everything will be fine. (J

LISTING ¥

188 REM TEST OF SCROLL PATCH

118 PLOT 12,15

120 POKE 33282,195:POKE 33283,132:POKE 33284,131
138 N9

148 FOR J=1 TO 48

158 1F LNCI9 THEN LNELN:PLOT 3,10 ,LN:6OTO 188
168 Y=CALL(8)

178 PLOT 3,18,LN:PRINT SPC(38)*":PLOT 3,18,LN
189 PLOT 6,J:PRINT J;* TESTING---SCROLLING---*
198 NEXT

280 PLOT 8,6,2

210 END

LISTING #2 {Rick’s version)
;SCROLL PATCH ADD ON TO ‘BASIC’ PROGRAM

;SCROLL AREA PARAMETERS......cccovnnnnnse

X EQU 18 sSTARTING COLUMN ON SCREEN

Y EQU 18 ;STARTING ROW ON SCREEN

H EQu 18 1§ OF LINES TO SCROLL

W EQU 38 ;# OF CHARACTERS WIDE TO SCROLL
ORG 83844 ;END ADDRESS OF ‘BASIC’ PROGRAM
128672 is start of screen memory (X=8, Y=8)
1 50 first line below is starting screen location

START:

LX] H, 28472+128%Y+X+X
W1 B, H-1 jcount lines

LOOP2: MVI C, Wx2 show wide before next line

LOOPI: LXI D, 888OH ;128 decimal (down 1 line)

DAD D

MV AN iget a byte

LX1 D, 8FF8OH ;-128 decimal (back up 1 line)

DAD D

NIV M,A jreload byte in new location

INX H ;next location

NOP sbecomes INX H w/no color scroll

DCR C ;done with this line?

JNZ LOOP1 ino

LXI D, 128-W-4 ;yes, next line

paD D

DCR B jdone all lines?

JNZ LOOP2 ino

RET ;ves, back to BASIC progran
ENDPRG:

END START

JUL/IAUG 1984 COLORCUE

A PASCAL FOR THE COMPUCOLOR II

Part III. A Roadmap to successful installation and use.

In this part of the Tiny-Pascal series we will provide step-
by-step instructions for installing Tiny-Pascal, hoping to
provide more readers with enough inspiration to tackle this
tutorial series. While the necessary documentation was refer-
enced in Part I, the method of installation can be in-
timidating to those willing but unfamiliar with the approach
used.

The installation instructions are taken from the implemen-
tation of Tiny-Pascal, written in the FORTH language, pre-
pared by Dr. Jim Minor. Both the FORTH language and
the Tiny-Pascal language are utilized in this installation, and
both are available from the CHIP library by writing to the
author. FORTH is supplied as a PRG file, while Tiny-Pascal
is supplied in the form of FORTH programs, or ‘screens.’

FORTH (and Tiny-Pascal) utilizes the disk in 1024 byte
units called ‘screens.” The screen contains the program code
lines, and is used as the means of displaying, entering, and
editing programs using a special editor. A screen consists
of 16 lines of 54 characters. Only one screen can be displayed
onthe CRT at a time. A program may consist of more than
just one screen, each screen linked to the other by a special
coding. A disk side can hold fifty screens, numbered 0 to
49. Blank screens, or screen templates, are used to enter new
programs, so it is convenient to have a ‘starter screen set’
from which to begin.

A starter set of screens for FORTH is supplied with con-
tents on screens 0-19, starting at block 0. Screens 0 and 1
contain a conventional, but dummy, FCS directory. Screens
2and 3 contain ‘boilerplate.’ Screens 4 and 5 contain com-
piler error messages. Screens 6 to 16 contain an editor which
will be bypassed in favor of a better editor that comes as
part of the Tiny-Pascal disk. Special FORTH words are con-
tained on screens 17 to 19. I recommend that these FORTH
starter sets be backed up by using a disk copy program that
works without a directory. This copy should then be used
as a ‘program’ disk, to hold programs written on blank
screen templates.

The starter set of screens for Tiny-Pascal is supplied with
contents on screens 0-9 and 20-37. Screens 0-1 and 4-5 are
utilized for the same purpose as those on the FORTH starter
set, ie: FCS directory and error messages. Screens 2 and 3
contain the Tiny-Pascal error messages, and 6-9 contain
sample Tiny-Pascal programs. Blank templates for program
development are provided on screens 10 to 19. Screens 20-37
contain a FORTH line editor which is superior to the editor
provided on the FORTH disk. This is the editor we are us-
ing to enter and modify code. The Tiny-Pascal set should
also be backed up before program development begins.

Our objective is to install Tiny-Pascal (the compiler) and
to enter a Tiny-Pascal program using the screen editor. Once
the Tiny-Pascal compiler has itself been compiled and saved
in PRG format, subsequent sessions with Tiny-Pascal are

JUL/AUG 1984 COLORCUE

Doug Van Putte
18 Cross Bow Drive
Rochester, NY 14624

significantly simplified. [This process consists of saving an
expanded version of FORTH which contains Tiny-Pascal
command words. With such a version, the FORTH responds
to Tiny-Pascal commands as though it were a Tiny-Pascal
system. Ed.] You will need CHIP FORTH Disk #46, and
the two Tiny-Pascal disks, No. 83 and No. 84. In the text
below, ‘(cr)’ means press the carriage return key.

1) Place the FORTH disk, CHIP #46, in the disk drive. From
FCS type RUN FORTH{cr}

You should see the FORTH prompt ‘OK.’ If it does not
appear, press (cr).

2) Type at the FORTH prompt,
HEX 1 1A +ORIGIN ! COLD¢cr)

This will turn on the error message text.

3) Place CHIP Disk - 83 in the disk drive. Type
é LOAD{cr)

This will compile Tiny-Pascal into FORTH. Wait patiently.
4) Now place a fresh formatted disk into the drive. Type

SAVE TPAL4((:r}

This will save the augmented FORTH, containing Tiny-
Pascal commands, to disk.
5) Place CHIP Disk # 84 into the drive. Type

28 LOAD{cr)
Tlxis will compile the line editor into our augmented ver-
sion of FORTH (TPAL). Wait patiently again.
6) Replace the previously-used formatted disk in the drive.

Type
SAVE TPALED(cr)

This will save our FORTH/PASCAL Editor to disk.

Having made these changes, we need no longer be con-
cerned with them when using Tiny-Pascal. Our two Tiny-
Pascal programs, TPAL4.PRG and TPALED.PRG, can be
loaded from FCS using the RUN command from now on.
These two programs are our Tiny-Pascal system.

Assume, now, that we wish to create a new program on
a blank screen template and save it to disk.

7) Place the Tiny-Pascal system disk, containing TPAL4 and
TPALED, into the disk drive. Type

RUN TPALED¢cr?

This will load the line editor. Wait for the ‘OK’ prompt.

8) Now place your backup copy of Disk #84 into the drive.
Type

18 LIST{cr}

This will load a blank screen template.

29

9) To invoke the line editor, type EDITOR{cr)

10) You may now type in a program. Part I of this series
lists the editor commands. Refer to them for assistance. You
may use the sample program given in Part II of this series
for practice.

11) When the sample program is all typed in, type
FLUSH{cr?

to save screen #10 just entered.

12) To invoke the Pascal compiler, type

PASCAL{(cr)
13) To compile the program you just wrote on screen #10,
type

18 LOAD(cr>

14) To run the program just compiled, type just the pro-
gram name at the prompt. For example, to run Rec-
tanglearea, just type

RECTANGLEAREA cr}
at the prompt.

The following commands may be used for editing a pro-
gram. You will want to delete the compiled program, con-
taining the errors, before compiling a new one of the same
name.

14) To delete a compiled program, you may use the FORTH
‘FORGET’ command. For example, to delete a bad version
of RECTANGLEAREA, type

FORTH FORGET RECTANGLEAREA(cr)

before re-compiling an edited program version. This will
delete the ‘bad’ version from memory.

FORTH FORGET {(filename}{cr)

will delete any compiled program.

15) To re-invoke the screen editor for correcting mistakes
or any editing of a program, type

EDITOR(cr>
16) To get screen #10 back again, type
18 LOAD<cr?

Now the text may be edited using the line editor commands.
You will need to recompile following steps 11, 12 and 13
above.

What if your entire program takes more than one screen?

There is a FORTH word (a symbol, really) that ‘tells’ the
compiler there is yet another screen connected with this pro-
gram. This word is the ’continuation command’ and looks
like this: --)
It is always preceeded by a space. The continuation com-
mand is entered after the last Pascal command on the screen.
The continuation command assumes that the *continuation’
is on the screen with the next higher number from the screen
on which it appears. You cannot, for example, continue
screen #15 on screen #18. Screen #15 must continue on screen
#16.

30

120) Type

How do you get more blank screens? Use the Tiny-Pascal
command(really a FORTH command we are borrowing)
COPY to create blank screens. Assume screen #19 is blank,
and screen #20 contains information you can erase.

17) Load TPALED by typing from FCS,
RUN TPALED{cr>
18) To invoke the line editor, type

EDITORcr)
19) To make a copy of screen #19 on screen #20, type

19 28 COPY(cr)

This overwrites the contents of screen #20 with a blank
template,

Or you may do it another way. First perform steps 17 and
18 above.

28 LIST(Cr)

This will load the screen we want to blank out.
21) To clear screen #20 in memory, type WIPE(cH)

22) When you have entered the new program lines, type
FLUSH{cr?

to save the new screen #20 to disk.

It is not advisable to blank screens 0-5 on the disk, since
they contain the directory and the error messages. Any
screen beyond S may be used for programs. Preserve the
original sampler disks, however. Use backup disks for your
programs.

You may not change the screen number of any screen,
but the contents of a screen may be moved to another screen
using the COPY function from step 19, above. The source
screen may then be blanked if desired.

How can you remember which screen a program is on?
You can keep a logbook of screen contents, or the ‘dummy
directory’ may be used to ‘log’ the screens from 6 to 49.
Lets add a directory entry for RECTANGLEAREA.
Assume this program is on screen #10.

23) Place the Tiny-Pascal system disk in the drive.
24) From FCS type,

SAVE RECTAR.TPL 8 18(cr)

This command makes a directory entry consisting of the pro-
gram name, RECTAR, and the number 10, which references
the originating screen of the program. The number of en-
tries in your ‘program catalog’ (FCS directory) is limited
to 13. This ‘catalog’ of programs can be listed directly from
FCS with the DIR command.

Now you have all the resources to get started with Tiny-
Pascal. Gather together your FORTH and Tiny-Pascal
disks, follow the course provided, and journey to a fine ex-
perience. Best wishes on a safe trip! []

JUL/IAUG 1984 COLORCUE

UNCLASSIFIED ADVERTISEMENTS

FOR SALE: One broken v6.78 CCII with 32K memory, swit-
chable lower case character set. Eight related disks including
Soundware, Muldowney’s Assembly Language Tutorial,
assorted games, formatter, and more. Scads and scads of
documentation, including service manual, programming
manual, ‘‘Basic Training’’,* Color Graphics’’, and most
Colorcues. This unit has analog board and power supply
problems. You may be able to répair it. It is suitable for
spare parts at least. I’ll take the best offer over $100 plus
shipping. Write Tom Andries, 815 W. Douglas Road, Lot
1, Wishawaka, IN 46545, or call 219-272-6768.

FOR SALE: One unbroken 3651, 40K RAM, full keyboard,
too much software, CRT filter, switchable lower case,
custom key caps for Compuwriter and screen editor. One
internal 5°” MD drive. I'll take $1200, you pay shipping; and
Pll convert your CD disks to MD where possible.
COLORCUE, 609-234-8117.

Forum - back issues still available!

Al back copies of FORUM are still available and

loaded with informative articles, programs, and tips:

Vol I, No. 1 through 4, $3 each.

Vol I. No. 5 and 6 (double issue), $5.

Vol Il, No. 1 through 4, $4 each.
Vol ll, No. 5 and 6 (double issue), $6 each.
Vol lll, No. 1 (final issue), $4 each.

All prices include postage to North America. Europe
and South America please add $4.00 (US) per issue.
Asia, Africa and the Middle East please add $1.40
(US) per issue. Order from:

Mr. Arthur Tack, 1127 Kaiser Road, S.W., Olympia, WA,
98502, US.A.

RAM/EPROM for the CCII

An add-on memory board with 8K RAM plus space
for 8K EPROM is available for the Compucolor Il or
3651. This 8K RAM/EPROM can hold assembler pro-
grams at address 4000H. Your existing 16K or 32K of
user RAM is still available for other Basic or Assembler
programs. Some minor modifications are required to
the main logic board (five soldered links.) Some ver-
sions of v8.79 computers may also require an update
FCS ROM. All versions of vé.78 require the update

ROM. The RAM board can also be easily connected
to a ROMPACK system, instead of the fixed 8K EPROM.
In this case, two banks of memory are selected by
a switch. To retain the contents of the 8K RAM after
power-off, a battery backup is available. A second
8K RAM/EPROM can be connected to the first board.
PROGRAM PACKAGE INSTALLERS. PO Box 37,
Darligton, Western Australia 6070.

\s‘fk,;,‘[,
-5

v

g~y
—_i

to current.

2

= -
B, BACK(R i
& ssue \Y

1978 VoL | $3.50 each
No. 1-3: OCT/ NOV/ DEC

1979 VOLIl $3.50 each
No. 1-3: “ APR/MAY/JUN
No. 4-5: JAN/FEB/MAR 1981
No. 6-7: AUG/SEP/OCT .
No. 8: NOV XEerox Cory, $2.00

1980 VOL Il $1.50 each i
No. 1 DEC/JAN 1982
No.2: FEB

JUL/AUG 1984 COLORCUE

Back issues of COLORCUE contain a wealth of practical information for
the beginner as well as the more advanced programmer, and an historical
perspective on the CCII computer. Issues-are available from October 1978

DISCOUNT: For orders of 10 or more items, subtract 25 % from total after
RE postage has been added. POSTAGE: for U.S., Canada and Mexico First
Class postage is included; Europe and South America add $1.00 per item
for Air Mail, or $ 0.40 per item for surface; Asia, Africa, and the Middle
East add $ 1.40 per item for Air Mail, or $ 0.60 per item for surface. SEND
ORDER to Ben Barlow, 161 Brookside Drive, Rochester. NY 14618 for
VOL | through VOL V;
Moorestown, NJ 08057 for VOL VI and beyond.

and to Colorcue, 19 West Second Street,

No.3: MAR No. 6: JUN/JUL

No. 4: APR VOL V

No. 5: ;‘t’;‘;JUL No.1: AUG/SEP
No. 6: No.2: OCT/NOV
VOL IV $2.50 each 1983 No.3: DEC/JAN
No. 0: DEC/JAN No. 4: FEB/MAR
No. 1: AUG/SEP No. §: APR/MAY
No. 2: OCT/NOV No. 6: JUN/JUL

No.3: DEC/JAN

No. 4: FEB/MAR 1984 VOL VI $3.50 each
No. 5: APR/MAY

31

—===-DISK VOLUME SPACE----- -=---=-1ST FILE ENTRY---=--- =====-=2ND FILE ENTRY------- -------3RD FILE ENTRY 4TH FILE ENTRY----=-- =--=---3TH FILE ENTRY-------
ADDR BYTE TRANS FUNCTION ADDR BYTE TRANS FUNCTION ADDR BYTE TRANS FUNCTION ADDR BYTE TRANS FUNCTION ADDR BYTE TRANS FUNCTION ADDR BYTE TRANS FUNCTION
8208 8217 Attribute 822C Attribute 8241 Attributi 8254 Attribute 8260 " Attribute
81 Marker 18 20 42 57 6C
19 2E 43 58 4D
82 Attribute 1A File 2F File 44 File 59 File éE File
1B Name 8238 Name 45 Name] Nane éF Name
83 1C 31 44 B 8278
84 1D 32 47 5C i
85 .
86 Volume 1E File 33 File 48 File 5D File 72 File
87 Nane 13 Trpe K| Trpe 49 Type 3E Type 73 Type
88 8228 35 4 SF 74
89
A 21 Version 36 Version 4B Version 8268 Version 79 Version
8B
8C 22 SBLK 37 SBLK 4C SBLK é1 SBLK 76 SBLK
23 8685 38 seea 4D 42 8805 77 8664
8D
8E 24 SIZE 39 SI2E 4€ SI1ZE 43 SIZE 78 SIZE
8F 25 8805 3 1282 4F 44 8005 79 1262
8218 Not
1 Used 26 L8C 38 LBC 8258 LBC 45 LBC 7A LBC
12 ="
13 27 LADR 3C LADR 51 LADR 66 LADR 78 LADR
14 28 8200 3D 52 87 8208 7C
15
16 29 SADR 3E SADR 93 SADR 48 SADR 7D SADR
2 3F 54 49 8280 7E
28 Spare 8248 Spare 55 Spare éA Spare 7F Spare

QOhomocm 19 West Second Street e Moorestown, NJ 08057

' Ve © Ve © oW h g & mn
= = EE E EESL = = H—a! VOLUME VI
y B y B v W NUMBER 5

e/ NS A IS AN/ S Ay

A BI-MONTHLY PUBLICATION BY AND FOR INTECOLOR AND COMPUCOLOR USERS

TINY—PASCAL

FORTH SCREEN EDITOR

ANIMATION

m-
oy Sl

‘s l/// //‘ \ -
2 NNy

COLORWORD

‘S
o e
ARV RGN,

I\\

ZIP
HEX TO ASCII CONVERSION

Colorcue

VOLUME VI, NUMBER 5 SEPTEMBER/OCTOBER 1984

3651 PRICE REDUCTION

Intecolor Corporation has announced
a price reduction on ihe 3651 com-
CQNTEN‘J’S puter. With 32K memory, deluxe

keyboard, one Q0K internal disk drive,
manual and sampiler disk, this excellant
computer is available for $1450.00. The

3651 carries FCS v@.80, which is nearly
identical to v8.79 of the CCli. [COLOR-

!

ZIP, A new compiler. PETER HINER 4 CUE uses a 3651 for all ifs editing and
Hex to ASCII Conversion. BOB MENDELSON 5 S?OT%bi(:Sg,gv?éké]dAf(o:,Dﬁnggﬁ%pé%
) programs to the MD disk format used by
A Forfh Screen EdITOl’ TOM NAPIER oo o0 .. 8 the 3451, In order to use this program
you must have an external CD drive
Animation. CHRIS ZERR 12 available for the transfer. [COLORCUE
can provide this service for you if you
COLORWORD, review. DOUG GRANT ..o 18 wish at very low cost.] In our experience,
all files with BAS, SRC, and TXT exten-
Tiny-PASCAL. DOUG VAN PUTTE o oo 20 sions fransfer easily. Most PRG files writ-
ten for vB.79 transfer readily. A few re-
; C 4 quire modest changes to esoteric ROM
Subscriber LIS“ng """""""""""""""" 26 calls. This is easily accomplished with

Si lified 'N p)) IDA and is straightforward.
implihe O-echo’ Pafch TOM DEVUN .o 31 The 3651 is a one-piece computer, with
all the features of the CCIl, plus faster
and more reliable disk reads, improv-
Editor's Desk 2 ed internal and external commands, a
Colorcue’s ‘goodby’ 17 proper RS232 port, and the ability to
Intecolor BBS 18 handle four drives, either 5" or 8", for
FCS Escape (Zerr) 23 a total drive capacity of 2.4 mega-
CCH Service 24 bytes. FCS accepts both upper and
NOTES 25 lower case commands. It is a truly pro-
Basic Precision (Rust) 30 fessional version of the CClIl and a

pleasure to use. All important software
for the CCllis available for the 3651. In
fact, nearly all your present software is
) usable once it is transferred to the MD
BACK: CCII Color Adjustment (Rust) disk. The new price includes your selec-

Unclassified Ads tion of 10 software packages from the
intecolor catalog. Intecolor Corpora-

’

COVER: ‘As it was in the beginning...

v fion. 225 Technology Park, Norcross, GA
EDITOR: JOSEPH NORRIS COMPUSERVE: 71106, 1302 30092. (404)-449-5964.

COLORCUE is published bi-monthly. Subscription rates are US$12/year in the U.S., Canada, and Mexico (via
First Class mail), and US$30 elsewhere (via Air Mail). All editorial and subscription correspondence should be addressed
to COLORCUE, 19 West Second Street, Moorestown, NJ 08057, USA. (609-234-8117) All articles in COLORCUE

are checked for accuracy to the best of our ability but cannot be guaranteed error free.

2 SEP/OCT 1984 COLORCUE

iy “r

B o

Editor’s Desk's

Anything involving computers is in a
constant state of flux these days, and we
at Colorcue aren’t exempt from the
trend. While we are 200 subscribers
strong, we are rather weak in terms of
the kind of activity that keeps an expen-
sive magazine such as Colorcue alive
and energetic. In short, we have had to
accept the unavoidable truth that we
cannot continue to publish in our pre-
sent format.

Volume VI will be the last for Colorcue
{one issue to come) and we will be com-
bined with CHIP, the newsletter of the
Rochester User Group, under the gui-
dance of Rick Taubold. The detatls are
explained elsewhere in this issue, so
please take note of them, and lend your
support to this splendid group as they
continue their long history of Com-
pucolor activity. | will continue as an
author for CHIP, and have offered my
support as my tinie and means permit.

Since my work keeps me at one key-
board or another most of the time (on
three different operating systems!) I
share the turmoil felt by most of the in-
dustry on a day-to-day basis. With the
avalanche of technological sophistica-
tion and the increased demands of
business on software efficiency, those
of us who indulge in computer interests
as avocation are finding a major change
in the way we must approach our hob-
by, principally in the ways we differen-
tiate between hobby and our business
activity.

Small computers are great fun, relaxing
to operate, and elegant learning tools.
Most of the commercial ‘‘small’’ mach-
ines are rapidly disappearing as bank-
ruptcy claims its victims left and right.
Those of us accustomed to being in the
vanguard of computer experimentation
and development, pounding keyboards
late into the night, assembling equip-
ment from surplus houses, and pushing
forth the frontiers of technology, are
now replaced by the huge engineering
teams and multi-bitlion dollar resources
of industrial giants. The new technology
belongs to the rich and powerful.

COLORCUE SEP/OCT 1984

While we have lost our mainstream im-
portance as hobbyists, I greet this
change as a positive one overall. The
hobby can now flourish as a hobby
without the oppression of changing
business needs and economic necessity.
While we will continue to benefit from
the reduced prices of obsoleted equip-
ment and software, we will also be band-
ing together as a computer-interest com-
munity, consolidating our resources,
much as we did in the beginning; shar-
ing more, learning more, and contribut-
ing more. Expect to see new magazines
devoted to the hobby of computer elec-
tronics, such as the proposed hard-
ware periodical, Computersmith, to be
launched in the Spring of 1985 by Ed
Dell in New Hampshire. (Ed publishes
The Audio Amateur and Speaker Build-
er, two very fine magazines for audio
enthusiasts.) Expect to see more maga-
zines for the amateur devoted to ex-
perimental programming philosophies,
and an ever increasing proliferation of
public-domain software. Relieved from
the pressures of profit making, many
talented people will find more time to
devote to the avocational aspects of their
interests.

It is important to realize that no com-
puter is really obsolete in the face of this
kind of activity. Much as the humble
Sinclair computer challenged many pro-
fessionals to overcome its limitations, so
can we pursue the challenge of imple-
menting many new and fascinating pro-
cedures on the 8080 and Z80 machines
{such as the “‘window’’, pull-down
menu, and multi-tasking.) Experiment-
ing, at least on a small scale, is easier
on a simple computer with a straightfor-
ward operating system (and FCS is ideal
for this!). Programming is quick and
easily changed.

Many of you have not yet tapped the
abundance of excellant programming
tools available from the CHIP library,
such as Pascal, Forth, Tiny-C, and the
FASBAS and ZIP compilers. Colorcue
subscribers have written a word pro-
cessor with spelling checker, an analog
circuit analysis program complete with
Bode plots, and several very clever
disassemblers. We have in our software
bank the best programs ever written for

program development for any com-
puter, including editors, assemblers,
disassemblers, and compilers. It is no
longer appropriate to look only for pro-
grams written specifically for the Com-
pucolor. We are equipped to do almost
anything any other computer can do. I
would like to see programs to emulate
the batch files of MSDOS, and the
power of dBASE Il on the Compucolor.
They are within our grasp.

If you are planning to purchase new
equipment, and have given your best ef-
fort to the CClI, you are in a very for-
tunate position to make wise choices and
advance your skills. Few computer
owrlers have been in a position to get as
much for their investment as we have,
even without factory support.

Intecolor has been in commurnication
with Colorcue and CHIP in the last
months with offers of a renewed effort
to be of service to CCII owners. While
there isn’t a great deal they can do at this
late date, we appreciate their interest
and spirit of good will. We appreciate
their acknowledgement of our independ-
ent achievements as a community.

You will notice the announcement of a
new compiler by Peter Hiner in this
issue. There is irony and humor in the
fact of its appearance in this particular
issue of Colorcue. I remember very well
that FASBAS was first reviewed in the
final issue of FORUM several years ago.

So as we prepare to bid ““farewell’’ to
our present format, we are also pro-
ceeding with continued energy to im-
prove the resources for the CCII, and
looking forward to an expanded CHIP.
We extend our best wishes, and our ap-
preciation, to this organization, for
coming to the rescue still another time.

This issue has been greatly delayed for
lack of sufficient material to fill its
pages. The final issue will be subject to
the same restraints, so I urge you to sub-
mit your materials as promptly as you
can. I would like to see the Nov/Dec
issue long before the Spring of 1985, and
I will need your help to achieve that
goal. My wife, Susan, and I extend our
best wishes to you all for a happy and
fulfilling New Year. [

5"&«‘*

PETER HINER

[expect that most of you already know
of my compiler FASBAS, which speeds
up Basic programs. Those of you who
have used FASBAS will know that it is
easy to use, that it accepts Basic pro-
grams with virtually no restrictions, and
that speed increases of up to five times
can be achieved. Now | have produced
a new compiler called ZIP, which is not
as easy to use and which imposes some
restrictions, but which can make pro-
grams run much faster than when com-
piled by FASBAS.

ZIP achieves much greater speed by
treating all variables and constants as in-
tegers (instead of using floating-point
arithmetic like Basic and FASBAS).
This means that ZIP is not suitable for
all applications, and that Basic pro-
grams may need to be modified to suit
the requirements of integer arithmetic.
The manual supplied with ZIP explains
how to modify your programs, and the
disk includes an Integer Basic Inter-
preter with debugging facilities. So you
should be well equipped to overcome
any problems, and you will find that
ZIP opens the way to using Basic for
fast graphic displays and arcade games.

A review in the September, 1982 issue
of BYTE included some benchmark
programs for comparing the relative
speed increases achieved by integer and
floating-point compilers for the Apple
computer. The table in Fig I. compares
ZI1P and FASBAS results with the
ranges of results for Apple compilers.
The figures in the table are the approx-
imate number of times faster than nor-
mal Basic for each benchmark program.
The ZIP results for benchmark pro-
grams 7 and 8 are bracketed because in-
teger arithmetic does not give correct
answers. (One of the Apple integer com-
pilers handled this situation by reverting
to floating-point arithmetic.)

You can see that, while FASBAS
4

11 Penny Croft, Herpenden, Herts, AL5 2PD, ENGLAND

comes somewhere in the middle of the
field of floating-point compilers, ZIP
beats them all.

You can use ZIP to compile existing
Basic programs. Many will work with
little or no modification, some will re-
quire care and patience, and others
simply will not be able to give the re-
quired results using integer arithmetic.
However, the best way to use ZIP is to
consider it as a tool, which allows you
to use familiar Basic functions for the
framework of your program, while ex-
ploring techniques similar to those us-
ed in Assembly Language programs to
optimize the speed of critical routines.

The Z1P manual describes an exam-
ple where the PRINT function is replac-
ed by POKE to display a row of stars
on the screen. The times for 1000 execu-
tions of this routine are shown in Fig 2,
in seconds.

The POKE method gives ZIP an
18-fold speed improvement over the
normal Basic PRINT method. To see
how this compared with Assembly
Language (machine code), I wrote an
Assembly Language routine which took
3.3 seconds for 1000 executions. With
further optimization of the ZIP routine
I could cut the time to seven seconds,
achieving half the speed of machine
code (and more than 26 times the speed

A NEW COMPILER CALLED

of Basic) for this routine. This shows
that fast graphic displays and arcade
games in Basic are really made possible
by ZIP.

How, then, should you treat ZIP?
Should you consider it as another Basic
compiler, which can produce much
faster results once you have overcome
the obstacles of integer arithmetic? Or
should you treat it as a new way of
writing programs, almost like using a
new language which you nearly know
already? Whichever way you choose,
ZIP offers you the excitement of
holding a tiger by its tail.

The minimum requirements for run-
ning ZIP are 16K of user memory, one
disk drive, and v6.78, v8.79, or v9.80
Basic. The programs compiled by ZIP
are generated as PRG files for conve-
nience of operation, and will
automatically run on v6.78, v8.79, or
v9.80 machines.[*]

I propose to distribute ZIP in the
same way as I distributed FASBAS, en-
couraging user groups to make the pro-
gram available to their members on pay-
ment of a fee of $15.00 per copy. In-
dividuals are welcome to order direct
from me, in which case the price is
$25.00 for the disk (in CCII format),
manual and airmail postage. Personal

Fig 1.
BENCHMARKS { 2 3 4 3 4 7)
s ® M @ 4 om 8
ol e (14 15 -4 S5 &7 3§ i
w4 43 1 2 2

SEP/OCT 1984 COLORCUE

ZZZZZZZ i ppppppp

checks are welcome as the method of
payment.

The deal is further complicated by an
offer of the latest version (vI2.24) of
FASBAS, which now includes operation
on machines with v9.80 Basic, output
files in PRG form (instead of LDA) and
compiled programs which will
automatically run on v6.78, v8.79, or
v9.80 machines.[*] The new version also
fixes a few obscure bugs and makes
some improvements to the size and
speed of compiled programs.

Using BASIC FASEAS 1Z1F

Previous purchasers of FASBAS will
get a free update included on the ZIP
.disk. New purchasers may order the pair
of compilers (Z1P and FASBAS) on one
disk for a combined price of $40.00
from me (or a fee of $30.00 if obtained
through a user group). As always, I will
send a free replacement for any disk
which is unreadable or damaged in
transit. [J ‘

[* This means, for example, that a program
writften in vé.78 will run on any other version

of FCS without a jump table or conversion of
any kind. ED.}

COLORCUE SEP/OCT 1984

HEX TO ASCII CONVERSION (intecolor 8000)
BOB MENDELSON 27 Somerset Place, Murray Hill, NJ 07974

Whenever the ISC 8001 computer is us-
ed for BASIC programming there is a
need for decimal equivalents to the hex
memory addressses used for PEEK and
POKE statements. While there are
tables for these conversions, unless the
table is exceedingly long, interpolation
is required. It is true that Texas In-
struments makes a hand calculator for
direct hex-decimal-hex conversions, but
even here it is necessary to make a
manual subtraction of 65536 if the
original hex number is greater than
8000. This is because the ISC ROM re-
quires that numbers greater than 8000H
be used in Basic as 65536—hex#. This
program will take any hex number as in-
put, convert and print it as a decimal
number, including numbers greater than
8000H. The program is only 180 bytes
long and is well worth adding to your
general utility disk.

The initial steps from START to
HEX set up the title and column names.
At HEX, the routine HEXIN calls from
ROM a program that takes the ASCII
input for a hex number and converts it
to a true hex number which is stored in
memory at ORIG.

The standard hex to decimal routine
STDEC is then called. It first loads §
bytes of memory defined as UNIT,
TEN, HUN, THOU and TTHOU
designating each of the 5 digits in the
decimal number. The value 30H that is
loaded is the ASCII value for zero. As
we shall see, this is very important.

Now the actual conversion starts. By
use of the 2’s complement method, star-
ting with the most significant digit, suc-
cessive additions are made of the hex
equivalent of 10000 decimal. Each ad-
dition is counted by adding one to the
TTHOU memory byte. This raises
ASCII 30H to successive ASCII
numbers. This continues until a borrow
occurs and the carry is ‘true.” The same
procedure is followed for each of the
next three digits. The unit digit is con-
verted by adding it to 30H and saving it.

The program is now ready to print the
result under the decimal column, begin-
ning at routine PRINT. Register C is set
to 5 as a counter. Register B is set to 30H
as a detector of unneeded zeros to the

left of small numbers, and register D is
set to zero as a detector of the first digit
greater than zero that is printed. This
will be used to retain the print of zeros
in the middle of a number.

The most significant digit is recovered
and compared with 30H. If it is not a
zero, it is printed and the D register is
set to 1. The next digit is recovered and
the same sequence is followed. A zero
recovered while D =0 will be replaced by

.a space. When D=1, the zero will be

printed. The standard decimal conver-
sion process is now over.

The conversion to the ISC decimal
equivalents requires that the input
number be checked to see if it is greater
or less than 8000H. This is done at
DSPASC. If fess than 8000H, the print
will be the same as described above. If
it is greater than 8000H, then 65536 will
have to be subtracted to get the ISC
minus number. A modified 2’s comple-
ment method is used to achieve this.
Since the hex value for 65536 is 10000H,
it is too large to use 16 bit arithmetic.
Therefore a 24 bit routine is used. Fur-
ther, the need for a minus sign can be
met by merely printing it, since we won’t
be in this portion of the software if it
is not required. The routine starts at
NEG, where ‘00’ is added in front of the
input hex number (1 byte) and the con-
stant 010000H is provided by loading
three bytes. It is time, now, to perform
the subtraction-with-carry on the least
significant byte. The result replaces the
input hex number at the ORIG memory
address.

As a result of all of this arithmetic,
the ORIG address now holds the hex
equivalent of the ISC negative number.
The STDEC routine is recalled to con-
vert this new number to 5 ASCII digits
which are then printed in the ISC col-
umn. The number 8000H cannot be
defined since it is neither positive nor
negative, so a routine at ISC is used to
detect this number and print a ‘Not
Defined’ error message.

The program now recycles and asks
for a new input. Any non-hex character
at the input will cause a jump out of the
program. This may be used for an
orderly escape, including a vector to a
utility menu.]

;LISTING [. HEXASC.SRC - Hex to ASCII Conversion

For 15C 8881 Computer
by R. M. Hendelson, 7/8/84

Program origin = FEB8H

iEquates e vara
{1 EQU 8183H ;Console in
(o] EQU f189H ;Console out
EXPR EQU 81331 :Hex evaluation
KEYBFI EQU 9FFFH ;Keyboard flag
L0 EQu 818FH ;List out
0STR EQU B12AH ;0utput string
UTIL EQU 9BB4H sUtility ROM, may
; be any address
BA7ON EQU 14
BA7OFF EQU 15
CR EQu 13
CYaN EQU 22
EL Eau 11
E0S £qu 239 e
PRl 12 Q 5259
GREEN EQU 18 ;63
LF e 18 e
RED EQU 17 7o
up EQu 28
YEL EQu 19
ORG FEBEH
START: XRA A
STA KEYBFT ;Clear keyboard
fALL MESS
DB YEL,BA7ON EP
DB "HEX TO ASCIT DECIMAL CONVERSIONS-/
0B BA7OFF
;Column labels
DB CR,LF,LF,GREEN,” HEX STD 15¢/
DB CR,LF,RED,” ---- “ YEL,” ----- ¢
DB CYAN,” ----- *,CR,LF,EOS
jHain Routine. Input will appear in the HL
H register as hex #
JMP REPEAT ;Get input arrow
HEX: CALL HEXIN ;Input kybd ASCIT input to hexd
SHLD ORIG ;Save it for later use
fALL STDEC ;Convert to std ASCII decimal #
CALL MESS iAlign cursor for dec printout
DB CR,LF,’ 7 YEL,UP,EQS
CALL PRINT ;Print it out
6

iThis routine will check if number is greater than 8888H
; and if so will subtract 45334 and print it with a minus
; sign as required by the ISC B881. 1{ the number is less
i than B8888H, it will print it as standard.

LHLD
DSPASC: XRA
OCR
AN
i
faLL
JNP

ORIG ;Recover original hex# from mem.
A iSet A=8
A sA=FFFFH
H i1 H=> Bxxx, sign = 1 or minus

15C ;14 minus print /- sign
PRINT ;Print it. Dup of col 1{ 8880H
REPEAT ;Ready for new input

iCheck for input of B8B8H which is not defined as (-)#

ISC: HW
5U1
ADD
J?

AN iGet most significant byte

88H ;14 H=88 ANS=8, zero flag=|

L iAny digit but 88 resets zero {1
OVFLOW ;Number is 880BH

;Print minus sign and perform subtraction

M1
CALL
M1
CALL
CALL
CALL
CALL
Mp

A, 26 jCursor left for 7~ sign
Lo Move it

A,7-" Minus sign

Lo Print it

NEG ;Subtract 45534

STDEC ;Print difference as dec #
PRINT ;Print it
REPEAT ;Ready for new input

iConversion to std decimal number. Fill storage
; memory with ASCII @ (38H)

STOEC: LHLD
XCHG
LXI
Ml
SETTO0: MVI
INX
DCR

JNZ
;Convert hex to
0Cx

X1
CALL

X1
CALL

X1
CaLL

X1
CALL

OR1G i# to be converted must be
i in DE to start
H,NIT ;Point to 5 digit storage

C,3 ;Counter

M,38H ;Fill with ASCIT B
H

L iCount down

SETTO0 ;Re-do

ASCIT (8-45336)

H ;jBack up to ten-thou digit.
B,8DBFEH ;-18888 (2°s comp of 18K)
DIGIT ;Add to the content of DE

; reg until borrow occurs,

B,8FCIBH ;-1888 (2’5 comp)
DIGIT ;Do again til! borrow occurs

B,8FF9CH ;-188 (2’5 comp)
DIGIT

B,8FFF&H ;-18 (2’5 comp)
DIGIT ;Final addition

SEP/OCT 1984 COLORCUE

HOV A,k iGet the number of units

AD1 30H jRdd ASCIT B to it
HOY H,a jSave it.
RET

3Print out the ASCIT standard decimal 4

PRINT: LXI H,TTHOU ;Point HL to MSB ten-thous
M1 £,5 iSet counters print 5 digits
HJ1 B,38H ;ASCIT 8 (LXI B,3885H)
] 0,8 Marker for digit or zero
PRE: MOV A M iGet ASCIT digit
ity B i1s it ASCLY zero?

JNZ PRI iNo! Set marker

XRA A

(HP) iVee! Check marker for @
; No digits yet!

N2 PR2 iMarker is ‘17, Print 8

M1 A,28H jMarker is 787, so

JHp PR3 ¢ print space
PRI: M 0,1 iDigit for print, set marker=1
PR2: MOV A, iRecover non-zero digit
PR3: caLL €0 iPrint it

0cx H iDec pntr to next sig. digit
0CR C iDec counter
MN? PR8 Re-do till counter = 8
;Set cursor for last # printout
CALL MESS
DB ! *,CYAN,EOS
RET

1Subtract 65936 to get ISC negative number. Must
; get input number and 2’s comp of FFFF in 3 bytes
i each into memory, in order L5B, NSM, M5B. The
1 2’5 complement of 63334 is -10888d,
NEG: X 0 MINUS
XRA A
STA HINUS ;HINUS has 18086
5TA MINUS+]
STA ORIG+2 ;Blank MSB for 3rd byte of
i input number.
INR A
STA MINUS¢2 ;The ‘81 of ‘#18888°

5UB3: VI
X1
XRA
SUBAGN: LDAX - ;Get 1sb of constant

C ;Counter
H
fu
D
588 H iSubtract Isb
H
D
H
£
S

3
,O0RIG ;Point to lsb of original #

HV WA iReplace ORIG digit
IHX Next significant bits
INX

DCR iReduce counter

JN2 UBAGN ;Not done. Re-do, or
RET i return

COLORCUE SEP/OCT 1984

iGet ready for next hex input

REPEAT: CALL MESS iSet arrow prompt
DB CR,LF,LF,YEL,” » 7 EOS
JHP HEX

iRoutines for 8-45334 decimal conversion

DIGIT: PUSH H ;5ave men pointer on stack

XCHG iGet # for conver, in HL
DAD B jAdd 2’s comp test #

JHC ADDIT ;14 borrow then carry=True
XCHG Mo borrow, get HL & DE back
POP H ;iRecover memory address

INR H jIncr mem count by |

JHP DIGIT ;Try subtraction again. Loop
y will cont until carry=True

ADDIT: MOV A,C ;Form 275 complement

A

MOV E,A

MOV A,B

byl

MV D,A

INX D ;DE contains 2°s comp

DaD b iAdd it to test #

XCHG

PapP H iPop mem pointer off stack
DEX H ;Decrement memory pointer
RET ;Back to main program

;Subroutines

HEXIN: MJI £, ;jCounts 4 bytes of ASCIT input
CALL EXPR ; of a hex# and converts to
pap i i true hex. Result in HL reg.
RET

QUFLOW: CALL MESS
DB RED,“NOT DEFINED‘,EQS
JMP REPEAT

MESS: POP H i[This is very tricky! Seaspned
CALL 0OSTR i programmers, take note! EDI
PCHL

jMemory address for 8-45334 decimal output

WMIT: DS { ;9 digit memory storage

TEN: DS 1

HUN: DS |

THOU: DS 1

TTHOU: DS |

ORIG: DS 3 iOriginal input hex# + 88 msb
MINUS: DS 3 12’s complement of 45534=188884

END START

REFERENCES: 8080 Software Design, Book 1.
H. W. Sams, 1978, p 257. Computer Design,
April 1978, p 168.

TOM NAPIER 12 Birch Street, Monsey, NY 10952

In early 1982 I decided that I would like to try FORTH on
my Compucolor I, so I did the logical thing. I bought a
listing of FIG-Forth, typed in some 28000 characters, and
spent several weekends adapting CP/M based code 10 the
idiosyncrasies of the CCII disk system. Eventually it work-
ed, and it wasn’t until several months later that I discovered
the DATACHIP library already contained a version of Forth
for the CCII. [1]

I found the FIG-Forth editor to be so slow and cumnber-
some that 1 often ended up writing programs in assembler
rather than in Forth. Recently I took the plunge and wrote
my own screen-based editor. It is such a delight to use that
[even find myself touching up the layout of Forth screens
for fun, something I would never have dreamed of doing
before.

Since this editor is written in standard FIG-Forth, it
should work with any version of CCII Forth. It should also
be Intecolor model independent. Since it uses the editing keys
of the expanded keyboard it won’t be so easy to use with
only the standard keyboard. The allocation of screen
numbers in the accompanying listing is quite arbitrary and
can be changed to suit the user’s disk space, provided the
order of the definitions is not changed.

This editor uses one main word and two auxiliary words.
The latter two are CLEAR and COPY, which are copied
from the FIG-Forth editor. Their usage is ‘N CLEAR‘ to
clear disk screen N, and ‘N1 N2 COPY* to copy screen Nl
to screen N2. The editor is invoked by typing “SEDIT”’ (for
Screen EDI1Tor). At run time it prints the mcssage “NEXT
SCREEN NUMBER” and waits for the user to type in the
number of the screen to be edited. I’ve been lazy and omit-
ted the backspace function from the number input, so you’ll
have to get it right the first time. Type an out-of-range screen
number if you want to get a disk error message, and
therefore abort a typing mistake.

The specified screen is loaded from disk and displayed
on lines 4 through 19. Above these lines is a display of the
screen number and the current cursor position. The cursor
appears as a blue background travelling under the green

ASCII characters. Under the screen, the prompt “PAD", -

followed by a right arror, appears. This indicates that the
line below, initially blank, is a display of the contents of
the pad.

One may now type in any characters and have them in- -

serted at the current cursor position. Existing characters on
the same line will be moved to the right to make room for
the insertion. Any characters moved off the end of the 64
character line will be lost. Note that the insertion process
takes a macroscopic time. I occasionally lose one of a dou-
ble letter pair, and if you are a blindingly {ast touch typist
you will have to slow down a little.

The DELETE CHAR key deletes the character to the left
of the cursor and moves the remaining characters in the line

8

to the left. Lines arc treated independently; deleting
characters on one line does not move up those on the line
below, useful though this might sometimes be.

The cursor keys move the blue cursor around the screen.
They auto-repeat and also wrap around at the sides and the
top and bottem of the screen. The quickest way from the
extreme right of a line to the extreme left is to use the right
arrow key. The HOME key returns the cursor to the top
left corner.

The RETURN key acts as a ‘‘new line’’ key, moving the
cursor to the first left position on the line below.

Complete lines may be manipulated with the ERASE
LINE, INSERT CHAR, DELETE LINE, and INSERT
LINE keys. INSERT LINE moves the text downward star-
ting with the line the cursor is on, thus enabling one to in-
sert a new line at that point. The last line on the screen is
Jost in this case. DELETE LINE copies the line the cursor
is on to the pad, appearing under the screen display of text,
then moves all following lines up one line. ERASE line
copies a line to the pad without deleting it. The INSERT
CHAR key is used as a ‘paste’ key; it moves the text from
the cursor down to make room for a new line, then copies
the text from the pad to the screen. This can be used to
transfer text between screens as well as to duplicate lines on
the same screen.

ERASE PAGE is used to change from one screen to
another. It generates thc ‘next screen number’ prompt and
displays the contents of the screen specified. The current
screen is flagged as UPDATEd whenever any changes are
made to it.

Pressing the ESC key FLUSHes the changes to disk and
exits from the editor to FORTH.

One thing to watch—the DELETE CHAR command
deletes to the left of the cursor so it cannot erase the last
character on the line without one other character being eras-
ed first. Also, if one attempts to insert beyond the last
character the keyboard input will replace the last character
on that line. None of this should matter since the last
character of a line should always be a space, otherwise the
FORTH compiler will concatenate it with the first character
of the next line and be unable to find the resulting word.
It took me some minutes of gazing at the message ‘“;:7”’
before I realized that a FORTH screen contains nothing to
indicate where a line ends. (Another tip from hard ex-
perience; if a screen contains only a few lines, end them with
;5. If there are more than 255 spaces between the last
character and the end of a screen the compiler will hang up.)
[Thank you, Tom! I have been scratching my head! ED].

In this listing I’ve defined four words; CLRS, PLOT,
SMOVE, and VHTARB, which my system has built in. This
means that this published version displays the screen more
stowly than my original version. Happy editing. [J

[1] Two versions of FORTH, and three screen editors, to date. [ED]

SEP/OCT 1984 COLORCUE

O (SCREEN EDITOR, 5/1/85 COPYRIGHT 1985 T. M. NAPIER)
1
2 6 LOAD (CASE FUNCTION)
3 41 LOAD
SCR # 40 4 42 LOAD
5 43 LOAD
6 44 LOAD
7 45 LOAD
8 46 LOAD
9 47 LOAD
10 ;S
11
12
13
14
15
g (SCREEN EDITOR INSERT DELETE)
1
2 0 VARIABLE L# O VARIABLE C# O VARIABLE K#
3
SCR # 41 4 : PLOT 64 * + DUP + 28672 + ; (SCREEN ADDRESS)
5 : LINE SCR @ (LINE) DROP ; (GET LINE ADDRESS)
6 : CHAR L# @ LINE C# @ + ; (CHARACTER ADDRESS)
7 : -MOVE LINE C/L CMOVE UPDATE ; (MOVE LINE UP ONE)
8 : WIPE LINE C/L BLANKS UPDATE ; (CLEAR LINE)
9 : CLEAR-PAD C/L PAD C! PAD 1+ C/L BLANKS ;
10 : <SLIDE CHAR DUP 1 - C/L C# @ - CMOVE ;
11 : SLIDE> CHAR DUP C/L + C# @ - 1 -
12 DOI1-C@1C!-1+LOOP ;
13 : DASHES 0 SWAP PLOT DUP C/L 2 * + SWAP
14 DO 45 1 C! 2 +LOOP ;
15
0 (SCREEN EDITING COMMANDS)
1
2 : CLEAR SCR ! 16 0 DO I LINE C/L BLANKS LOOP UPDATE :
3 .
SCR # 42 4 : COPY B/SCR * OFFSET @ + SWAP B/SCR * B/SCR OVER + SWAP
5 DO DUP I BLOCK 2 - | 1+ UPDATE
6 LOOP DROP FLUSH ;
7
8 : SMOVE ROT SWAP OVER + SWAP DO DUP I C@ SWAP C! 2+
9 LOOP DROP ;
10 : COLOR-CURSOR C# @ L# @ 4 + PLOT 1+ C! ;
11 : MARK 34 COLOR-CURSOR
12 : -MARK 2 COLOR-CURSOR ;
13 : CLRS 6 EMIT 2 EMIT 15 EMIT 12 EMIT ; (GREEN TEXT)
14 : VHTAB 3 EMIT EMIT EMIT ;
15

COLORCUE SEP/OCT 1984

10

SCR # 43

SCR # 44

SCR # 45

0 (SCREEN EDITOR DISPLAY)

1

2 : SHOW-PLACE 1 4 VHTAB ." SCR# " SCR @ 2 .R

3 N LINE# " L#¥ @ 2 .R

4 ! CHAR# " C# @ 2 .R

5 21 O VHTAB ." PAD>" 24 O VHTAB ;

6 : SHOW-PAD PAD DUP 1+ O 22 PLOT ROT C@ SMOVE ;

7 : SHOW-SCREEN CLRS SHOW-PLACE 3 DASHES 20 DASHES

8 SCR @ BLOCK 0 4 PLOT 1024 SMOVE MARK SHOW-PAD ;
9 : SHOW-LINE SCR @ BLOCK L# @ 64 * + (LINE START ADDRESS)
10 0 L# @ 4 + PLOT 64 SMOVE MARK ;
11 : +MARK -MARK C# @ + 63 AND C# ! L# @ + 15 AND L# !
12 MARK SHOW-PLACE ;

13 : HOME -MARK 0 C# ! O L# ! MARK SHOW-PLACE ;

14 : NEW-LINE -MARK O C# ! L# @ 1+ 15 AND L# ! MARK SHOW-PLACE ;
15

O (SCREEN EDITOR INSERT DELETE)

1

2 : COPY-LINE LINE PAD 1+ C/L DUP PAD C! CMOVE SHOW-PAD ;

3 . INSERT-LINE DUP 1 - 14 DO I LINE I 1+ -MOVE -1 +LOOP WIPE ;
4 : PASTE-LINE DUP INSERT-LINE PAD 1+ SWAP -MOVE ;

5 : DELETE-LINE DUP COPY-LINE DUP 15 = IF DROP ELSE 15 SWAP

6 DO I 1+ LINE I -MOVE LOOP ENDIF 15 WIPE ;

/ . DELETE-CHAR C# @ IF <SLIDE BL C/L 1 - L# @ LINE + C!

8 0 -1 +MARK UPDATE ENDIF ;

9 : INSERT-CHAR C/L C# @ - 1 > DUP IF SLIDE> ENDIF

10 K#t @ CHAR C! IF O 1 +MARK ENDIF UPDATE ;
11

12 : CHANGE-SCREEN ." NEXT SCREEN NUMBER = "

13 0 BEGIN KEY DUP DUP EMIT 13 = 0=

14 WHILE 48 - SWAP 10 * +

15 REPEAT DROP SCR 1t

el e
NP WN PO~ DWW O

——

: INSERT/DELETE

ANY OTHER

e e s e, o,

-e
w

NON-CURSOR KEY TABLE)

INSERT LINE KEY)
DELETE LINE KEY)
INSERT CHAR KEY) 5 OF L# @ PASTE-LINE 1 ENDOF
ERASE LINE KEY)
DELETE CHAR KEY)
)

K# @ CASE
3 OF L# @ INSERT-LINE 1 ENDOF
4 OF L# @ DELETE-LINE 1 ENDOF

11 OF L# @ COPY-LINE O ENDOF
127 OF DELETE-CHAR O ENDOF
INSERT-CHAR O SWAP

ENDCASE ;

KEY

SEP/OCT 1984 COLORCUE

(CURSOR KEY TABLE)

ENDCASE

0

1

2 : STEP BEGIN 33252 C@ (STEP WHILE KEY DOWN)

3 WHILE OVER OVER +MARK 100 O DO LOOP (TIME DELAY)

SCR # 46 4 REPEAT DROP DROP ;

5

6 : PROCESS 0 K# @ CASE

7 (CURSOR RIGHT) 25 OF O 1 STEP ENDOF

8 (CURSOR LEFT) 26 OF 0 -1 STEP ENDOF

9 (CURSOR UP) 28 OF -1 O STEP ENDOF
10 (CURSOR DOWN) 10 OF 1 O STEP ENDOF
11 (HOME KEY) 8 OF HOME ENDOF
12 (RETURN KEY) 13 OF NEW-LINE ENDOF
13 (ANY OTHER KEY) INSERT/DELETE ROT ROT DROP
14
15

IF SHOW-SCREEN ELSE SHOW-LINE ENDIF ;

: SEDIT

0
1
2
3
SCR # 47 4
5
)
7
8

L

: CASE

0
1
2
3
SCR # 6 4 : OF
5
6
7 : ENDOF
8

9

11

12

13 : ARRAY
14 ;S

15

(SCREEN EDITOR MAIN LOOP)

CLRS CLEAR-PAD ." SCREEN EDITOR"
CR CR CHANGE-SCREEN
BEGIN HOME SHOW-SCREEN
BEGIN
KEY DUP DUP K# ' 27 = SWAP 12 = OR 0=
WHILE PROCESS (KEY NOT ESCAPE OR ERASE PAGE)
REPEAT
Kit @ 27 = 0=
WHILE CHANGE-SCREEN (ERASE PAGE KEY)
REPEAT
HOME -MARK FLUSH ; (ESCAPE UPDATES DISK AND EXITS)

(CASE,

ARRAY)
2COMP CSP @ ICSP 4 ; IMMEDIATE

4 7PAIRS COMPILE OVER COMPILE = COMPILE OBRANCH
HERE O , COMPILE DROP 5 ; IMMEDIATE

5 ?PAIRS COMPILE BRANCH HERE O , SWAP 2
[COMPILE] ENDIF 4 ; IMMEDIATE

10 : ENDCASE 4 ?PAIRS COMPILE DROP BEGIN SP@ CSP @ = 0=

WHILE 2 [COMPILE] ENDIF REPEAT CSP ! ; IMMEDIATE

<BUILDS DUP C, * ALLOT DOES> ROT 1 - OVER C@ * + + ;

COLORCUE SEP/OCT 1984

11

CHRIS ZERR 10932-156th Court NE

Redmond, WA 98052
Compuserve: 71445,1240

In the last article we plotted a rectangle on the screen and
moved it through a blue field at various speeds using OSTR
to print db strings.. Let’s try a more appropriate figure this
time, constructed from plot blocks, increase the action, and
poke the animaton directly into screen memory.

We will construct an ‘alien’ with a missile launcher, mov-
ing feet, and piercing ‘eyes’ that blink menacingly at us, all
through the use of plot blocks poked directly into screen
memory. Consiructing the figure of the alien is a matter of
laying out the plot blocks and identifying the code required
to illuminate them in the desired way.

CONSTRUCTING THE ALIEN'S PLOT BLOCKS.

Figure 1 shows a single plot block, consisting of eight con-
trollable portions .. Al through A4 and Bl through B4.
These eight portions coincide with the eight bits of a byte.
The portions of the plot block that will be illuminated will
depend on whether or not the corresponding bit in the plot
byte is set. To illuminate each of the four corners of a plot
block in turn, we would set our plot byte equal to each of
the following numbers:

Upper teft corner ; set Al bit {hit B)= PLOT value !}
Lower left corper : set Ad bit {bit 3= PLOT value 4
Upper right corner: set Bl bit (bit 4= PLOT walue 14
Lower right corner: set B4 bit {bit 7i= PLOT walue {2

Pl
0

So to construct a plot block, we shade in the bit sections,
add all the individual bit values to the find the total plot
value, and we have it! But we are not quite finished, because
plotting the plot value alone will not quite do it. The CCI
code must also be assigned, and for a plot block it must have
a value between 128 and 255. The effect of the CCI code
will be the same, by and large, as it would be for an ASCII
character attribute, but the number will be increased by 128.
For example, to set the color yellow, we issue PLOT 6,3
for ASCII, but for a yellow plot block it becomes 3 + 128
or 131. (Now we know how to peek at a screen memory loca-
tion to tell if there is an ASCII character there or a plot
block.)[1]

You may easily experiment with plot blocks and their CCI
codes in BASIC to observe the diffference various CCI codes
make. Whatever character we design must be derived from
a combination of plot blocks within the possibilities available
to us. A crude sketch on graph paper is the easiest way,
possibly, and permits an instant translation into the correct
plot codes.

12

Assembly Language Programming

Part XVI
Fig 2.
Fig A A FE
- ' ' i H !
Iy A !
! . 1 : :
. { i
A B }»..M‘f—w-q
I ' =
1] 1] 18 s ne
(X sl
2] 2 | 32 o e
oo b
3| 4 |64 :""”"i‘f““"i,,,’
:]
4| 8 |128 i
¥

[l

—— - gL : :

: ! t !

[T T =16= jo—cfmsey) : :
643216 8 4 2 1 Paadoul :

Our alien has two different forms in this program. In the
first form his left foot is raised; in the other his right foot
is raised. Figures 2 and 3 illustrate the composition of these
two figures. The outline of the plot blocks has been exag-
gerated in Fig 2 so you can see how the plot codes for this
figure were derived. The upper left plot block has bits 2,
3,5, 6, and 7 set, giving a value of 4+ 8+ 324+ 64+ 128 or
236 for this plot block. You should try to derive the plot
codes for the remaining blocks as an exercise. The lower left
block is shown with the proper bits set for you in Figure 2.

The plot blocks from Figure 2 contain the values 236, 238,
206, 251, 191, 116, 0, 143. The zero (0) count is necessary
to act as a filler which says a null block is to be plotted in
that location. In actual practice, each of these plot blocks
must also have a CClI code following it, so a completed com-
mand byte string for Figure 2 would be 236, 131, 238, 131,
206, 131, etc.

We may mix plot blocks with ASCII characters in the plot
command string, and our alien requires this to plot his ’eyes’,
which are quotes in ASCII. You will find them in the plot
string from this Basic example, which plots the alien in one
of his two forms on the screen:

1R 4=30738 : REM INITIAL SCREEN MEMORY LOCATION

{16 FOR A={ 70 3 : REM PAINT 3 VERTICAL PAIRS OF BLOCKS
128 FOR 8=1 7O 4 : REM THREE PAIRS OF BYTES FOR X AXIS
138 REAL ¢ : REM GET POKING DATA

143 POKE ¥,2 1 REM POKE ALT PLOT CODES & CCI

1538 ¥=k4

14§ NEXT B

178 ¥=x4122 ¢ REM PLOTS DOWN ONE BLOCK On © axis

158 MEXT A @ REM PLOT NEXT VERTICAL PAIR

198 END

298

i

il

274

[

iZr-

SEP/OCT 1984 COLORCUE

e e e . -,

i
i
1

This program may also be written as one line:

18 PLOT 3,38,18,19,2,254,236,238,2486,255,3,38,11,2,254,251 ,
255,6,25,34,6,3,2,254,191,255,3,38,12,114,8,143,255

All we have done so far is paint one of the two alien forms.
The numbers for the other form, including the ‘eyes’, and
the CCI1 code are:

234,131,238,131, 284,131,251 131,

!
34,27,191,131,248,131,8,6,7{,131 (See Figure 3.)

The principle is very simple. We now have a subject ready
for use.
BORDIRS.

Every game has a border, or a boundary, but it isn’t
always a visible one. For example, the edges of the CRT
are always a finite boundary for any plotting. The program-
mer needs a border, visible or not, so he can check to see
if his animaton has gone as far in one direction as it can
go. If such a check were not possible, animation would stop
when the CRT boundary were reached, or an animaton
might leave the screen when this was not desired. If you ook
at an invisable boundary (in a properly programmed routine)
you will probably see an ASCII character from 1 to 255,
but a CCI code of zero (0), so it doesn’t show. Whatever
the choice of boundary encoding, it must be selected so it
is unique to the boundary, and not used anywhere ¢lse on
the screen. It is entirely possible to make each of the four
boundary codes different so the program knows exactly
which boundary it has reached. This is much more easily
done if the actual boundary is invisible, for otherwise the
encoding changes would have to be visible sooner or later
(if the CCI code were not zero, for example.)

Our program uses a border made of the hatch character
(96 decimal) and a CCI code of 38 (blue on white). We are
not going to let the alien move off the screen, so our border
encoding will be a warning to us that a boundary is present,
and that the direction of the next move must be changed.

The border is poked directly into screen memory by the
subroutines TANDB and SIDES, beginning at memory ad-
dress 7000H. The blocks representing the animaton are also
poked directly into screen memory. The inital location of

COLORCUE SEP/OCT 1984

these blocks is established in the nineth line of START,
where location 30790 is recorded in LOC. You may change
this location, provided you replace it with a valid screen
memory address.

MOVEMENT

We will use keyboard scanning to let the operator move
the alien in one of four directions and to fire the alien’s
missile.[2] The scanning procedure makes it unnecessary for
the program to wait for a key press before proceeding with
the automation; otherwise, the left foot might just stay ‘put’
until we pressed a key. The technique we use was describ
ed by Steve Perrigo in Colorcue, June/July, 1982. The
following assignments have been made to direct alien
motion:

7’8 = move up, ‘2" = move down, ‘“4”’ = move left,
and 6’ = move right,

Entering a **5”” will ‘fire’ the missile. This pattern coincides
with most joystick wiring. If your joystick uses the arrow
keys, these may be substituted for the numbers readily.
Notice that diagonal movement is possible in our routine
by pressing two keys at the same time (or moving the joystick
between two absolute directions.)

FIRING THE MISSILE

When the “‘S”" key is pressed, the routine FIREX is call-
ed. It checks first to see if a missile is already being fired.
If so, the routine is aborted; otherwise FIREX finds the
alien’s current position and direction of movement. We are
choosing to fire the missile in the direction of alien travel,
and so we must plot a course for the missile. To make things
‘neat’ we fire the missile from the center of the alien. You
will notice that the MISSLE routine is called several times
for each single movement of the alien. This is necessary to
prevent the alien from moving right along with the missile.
The missile will travel until it hits the border.

The code in Listing 1 is well documented, and, as with
all assembly code, it needs to be read to be understood. You
might try experimenting with the time delay at label
MOVEIT. You might also try moving the alien on a totally
blue background (as with the rectangle, last time.) This kind
of experimenting can be very inspirational when designing
a game. As an additional exercise, find a way to remove the
call to OSTR, and make this program completely FCS-
version independent.

We also know, now, how to expand the program
developed in the last last article, making use of a border sen-
sor, and introducing a method by which the rectangle
‘knows’ when it is about to tred onto the blue field, and
when it is retracing a previous path. You may reprogram
that listing to guide the rectangle through its first complete
connecting loop, after which it will maneuver itself without
straying from the initial path. (]

[4) The CCl codes are discussed thoroughly in the CCll Program-
mer's Manual. Also see ‘Color Graphics' by David Suits.

[2] Note: This routine will not operate properiy on a 3651. To
duplicate the function, use the GTCHA routine and CHRINT setup
from David Suit's input routine in Colorcue. Write to Colorcue for
details if you need some help.

13

LISTING 1.

i
pherex A GAME SIMULATION by Chris Zerr. 4/38/84 ¥x¥3x

0STR EGU 18244 ;For v8.79,9.88
;See ROM tables for 4.78

0RG 78604
e SETUP PROCEDURES -=----===-c=cmmmmnn
START: XRA A $SET A=8

our 8 i{DISABLE KEYEDARD

5TA DIREC ;CLEAR DIRECTION

5TA SWITCH ; AND SWITCH

X1 H,8 sMISSILE LOCATION

SHLD FLOC ; SET TO Z2ERO

X1 H,CLEAR ;ELEAR SCREEN

CALL 0STR

$INITIAL POSITION FOR ALIEN

X1 H,38758 ;7 START SOMEWHERE IN THE

SHLD LOC ; MIDDLE OF THE SCREEN

X1 H,7862H iLETS MAKE A BORDER

CALL TANDB ;TOP & BOTTOHM - DO TOP

LX] H,7F80H

CALL TANDB 100 BOTTOM

L1 H,788EH

CALL SIDES 100 LEFT SIDE

| H,787EH

fALL SIDES ;D0 RIGHT SIDE
jommmTT e HAIN PROGRAN -~----mmmmmmommmmemomo e
REPETE: LHLD LaC ;LOAD HL WITH ALIEN LOCATION

LDA S4ITCH ;GET CHANGE SWITCH

ORrA A

J2 CLOSE ;1F 2ERD, USE LEFT FOOT DOWN

oy D,ALIENR ; ELSE ALIEN RIGHT

XRA A ; FOOT DOWN

5TA SWITCH

JMP HOVETT
CLOSE: X1 D,ALIENL sALTEN LEFT FOOT DOUN

M A, 233 1SET THE FLAG SO WE CAN

S5TA SWITCH ; ROTATE THE ALIEN MOVEMENT
MOVEIT: CALL HOVE sMOVE THE ALIEN

M1 C,78 ;DELAY ABOUT .5 SECONDS
AR M1 B,235 ;i { DELAY ROUTINE ?
LL: DER B ;

JN2 LL ;

DCR L ;

JINZ AA H

fALL KEY ;CHECK KEYBOARD INPUT

JMP REPETE ; AND DO IT AGAIN AND AGAIN!
j SmmmTmmmereeee e END OF MAIN PROGRAM --

14

UP:

DO

el
€2
MJI
ouT
N
CP1
C?
faLL
M1
out
IN
Pl

7
L

M1
auT
N
Pl
£z
1
out
IN
CPI
€z
fALL

RET

LHLD
LX1
ALl
LHLD
LXI
DAD
HIV
CPI

2
L

SHLD
fALL

RNZ
Wi
5TA
RET

Lx1
LHLD
CALL
LHLD
X1
aD
Dab

254
FIREX
A7

7

i

254

up
MISSLE
A, 13

7

1

254
DOUN
A, 11

7

i

254
LEFT
A,9

7

{

254
RIGHT
MISSLE

LOC
D, ERASE
MOVE

LOC
D,BFF83H
0

A M

9

Loc
HCHECK

A,
DIREC

D, ERASE
LOC
HOVE
LOC
D,128

D

D

1CHECK FOR *5*

JSEND 1T 0UT

{GET STATUS

J18 1T 577

SYES..PUT MISSILE IN MISSILE TABLE
;CHECK FOR *8*

jTES. . HOVE THE ALIEN UP

;CHECK FOR "2°

;YES. . .HOVE THE ALIEN DOLKN
;CHECK FOR "4°

jYES. . .MOVE THE ALIEN LEFT
;CHECK FOR "4°

TES. . MOVE THE ALIEN RIGHT
;1F THERE IS A MISSILE TO MOUE,
; MOVE IT AGAIN...

:PROCESS ALIEN T0 GO UP
+ BUT FIRST ERASE
i THE OLD ALIEN

;SUBTRACT 128 FROM HL REG
;1F WE ARE AT THE BORDER

; WE DON'T ADVANCE THE ALIEN
;CHECK TO SEE IF A MISSILE

; 15 TRAVELLING-

; 1T 15 S0 FORGET IT!
s 1T ISN'T SO-

; S0, YOU WANT TO MOVE
i DON'? WELL FIRST
; ERASE THE OLD ALIEN

;GET OUR DOWNWARD OFFSET

i WE MUST CHECK
; ONE BELOW THE

SEP/OCT 1984 COLORCUE

DAD
LY
CPI
Rl
LX1
04D
DAD
SHLD
CALL
Nz

M1
5TA

LEFT: LXi
I.HLD
aLL
LHLD
DX
MV
£rl
Re
iex
SHLD

taLL
RNz
Ml
5TA
RET

RIGHT: IXI
LHLD
CALL
LHLD
LX1
DAD
MV
el
RZ
141
Dad
SHLD
CALL
RHZ
Wl
574
RET

FIREX: CALL
Nz
LDA
DrA

D .
A M
9%

D,8FFBAH
b

D

LoC
MCHECK

a2
DIREC

D, ERASE
LOC
HOVE
LOC

A M
38

MCHECK

4,3
DIREC

U, ERASE
LOC
MOVE
LOC
D,8604
D

AN

94

D,8FFFCH
D

Lot
HCHECK

A4
DIREC
MCHECK

DIREC
A

COLORCUE SEP/OCT 1984

+ BOTTOM OF THE

: ALIEN -

+ T0 SEE IF WE ARE AT

; THE BORDER -

WE“RE NOT!

iSINCE WE ONLY NEED TO MOVE

+ ONE 128 BYTES, WE MUST

; REMOVE THE EXTRAS FROM ABIVE
MOVE A NISSILE (IF ANY)

i 1F A MISSILE IS IN PROGRESS
; DON‘T BOTHER WITH THIS NEW

i LOCATION
; OUR DIRECTIGN 1S 2 FOR DOWN

sAGAIN ERASE THE OLD LOCATION

:D0 THE ERASE

{REGAIN OUR CURRENT LOCATION
[DOWN BY ONE

'THIS 1S OUR CCI COLOR CODE
:IF WE ARE HERE, WE WILL NOT
: MOVE

{BECAUSE WE CAN MOVE

+ BUMP IT DOWN AGAIN AND SAVE
: THIS PUTS US ON AN EVEN XY
: OR "CHARACTER,CCI® CODE
‘CHECK FOR MISSILE IN PROGRESS
*YES. .50 RETURN TO THE CALLER
:0UR DIRECTION 1S 3

¢ UHICH 1S LEFT

tGET OUR LOCATION

1JUST 4 BYTES TO THE RIGHT

; 15 ALL WE WANT..NOT THE WORLD
;01D WE HIT THE BORDER?

t50RRY CHARLIE..ONLY THE BEST
sNOW BACK UP 4 BYTES

10017

$SAVE OUR NEW HOME

;OUR DIRECTION 1S 4
; WHICH IS RIGHT...RIGHT?

:IF A MISSILE 18 STILL IN
+ PROGRESS. .LEAVE

\GET 1TS DIRECTION

+ IF ZERD

RZ
LHLD
CP1
J7
Crl
JZ
CPI
JZ
Pl
Ji
RET

Lot

{
POSUP
2
POSON
3
POSLF
4
POSRT

i THERE IS NOWHERE TO GO0
sTHE FOLLOWING WILL

; POSITION THE HL REG

3 TO POINT AT A LOCATION
i IN WHICH THE MISSILE

; WILL LEAVE THE ALIEN

1223--=) HOW THE FOLLOWING ROUTINE WORKS

i
i
}
i
§
i
i

WHAT 1 HAVE CHOSEN IS TO LAUNCH A MISSILE
FROM THE CENTER OF THE ALIEN IN WHICH THE DIRECTION
OF THE ALIEN IS OR WAS PRESENTLY MOVING. S0 FOR OUR
FIRST POSITION, POSUP, WE GET OUR CURRENT LOCATION,

THEN ADD 2 BYTES T0 IT.

THIS WILL THEN BE THE FIRST

LOCATION OF THE LAUNCHED MISSILE.

POSUP: INX

INX
JMP

POSDN: X

A
JHP

POSLF: X1

DAD
JMP

POSRT: LX]

bAd

5AVPDS: SHLD

RET

MISSLE: LHLD

HV
ORA
ke

L0A
el

7
i

Pl

9
L

CP1
Jz
Pl
Jz
RET

SAUPDS
D,8258
SAUPDS
D,0128

SAVPOS

DIREC

1
FIREUP
2
FIREDN
3
FIRELT
4
FIRERT

iPOSSIBLE LOCATIONS ARE:

A

}

; PCPCPC

. (PCPCPC
; PCPCPC
; y

tHL 1S ALWAYS POINTING
: T0 THE FIRST POSITION
: OF THE ALTEN

jSAVE THE POSITION

;PLOT THE MISSILE

;1IF HL ZERO,

; THEN THERE 1S NO
i MISSILE TO PLOT

15

FIREUP:

FIREDN:

FIRELT:

FIRERT:

NOMORE :

16

[ALL
DCX
Lx1
Dab
SHLD
HY
Pl
JZ
M1
INX
M1
RET

fALL
DCX
X1
DAD
SHLD
MOV
CPI

7
[S

M1
IHX
MV
RET

faLt
DCX
DCX
DeX

HOV
cpl

Je
SHLD
Ml
INX
M1
RET

CALL
INX
HW
CP1
J7
SHLD
Y|
INX
M1
RET

X1
SHLD
RET

HERASE
H
0,BFF86H
D

FLOC
a,M

94
NOMORE
M, 110
H

M,1

MERASE
H
D,8128
D

FLOC
AN

9
NOMORE
M, 118
H

H,2

MERASE
H

H

H

A M

94
NOMORE
FLOC
M, 185
H

M,5

MERASE
H

A M

94
NOMORE
FLOC
M,185
H

M,7

H,8
FLOC

*ERASE THE OLD MISSILE
+HL RETURNED UP’ED BY ONE
{SUBTRACT 128 BYTES

1SAVE 1T

:CAN'T PASS THE BORDER
+PLOT THE NEW MISSILE

;USE COLOR OF RED

{ERASE THE OLD MISSILE
+ T0 PLOT IT DOWN |
: ADD 128 BYTES

jWE ARE AT THE BORDER
; S0 RETURN

;USE COLOR GREEN

jERASE OLD MISSILE

;T0 GO LEFT

; WE MUST SUBTRACT 3

; BECAUSE MERASE ADDS ONE

;CAN'T GO THROUGH THE BORDER
jLOMER CASE 1

1COLOR MAGENTA

{ERASE
;INCREASE HL BY ONE

;SORRY PAL
;1775 GO0D! SAVE 1T

;COLOR WHITE

;MISSILE NO MORE, SO
;CLEAR 1T FROM THE
; MISSILE TABLE

MCHECK: LHLD

HERASE:

MOE:
ROW:
COLLEdN:

;PAINT BORDER

TANDE:

SIDES:

SIDE!L:

HOY
ORrA
RET

M1
INX
M)
RET

W
Wi
LDAX
HIV
INX
INK
OCR,

7
S

PUSH
X1
DAD
Pop
OCR
dNZ
RET

M1
M1
IHX
1
TNX
DCR
JNZ
RET

X1
W1
)
IHX

M1
DX

DaD
OCR
JNZ
RET

FLOC
A, H

H,I 7

x =
=

3 O oo
I [=)

OLUMK

8122

DWW oom oo OOy o I

=

TANDB+2

D,128
¢,3
M,94
B

M,38
H
D
C

SIDEY

;CHECK TF MISSILE 1S
i IN PROGRESS

;ERASE THE OLD MISSILE

!

jPLOT THE ALIEN ON THE SCREEN 1

iTHIS ROUTINE DOES THE ACTUAL
sPLOTTING OF THE ALIEN. HAL
+ ARE PASSED TO THIS ROUTINE
i AD THE ALTEN 1S THEREFORE
; PLOTTED,

jAT THE END OF & WE MUST

; POSITION OURSELVES AT THE
; NEXT LINE.

jEXANPLE:

tHL=7888H

i AT THE END OF 4 COUNTS,

s HL=7884H, SO WE ADD 7AH122)
i HL=7886H, WHICH 1S RIGHT

+ BELOW WHERE HL WAS (7888H)

;TOP AND BOTTOM OF BORDER

iSIDES OF BORDER

SEP/OCT 1984 COLORCUE

e P s el

e DATA STORAGE =--=n==mmmmmmwmmmmmmcmmm
; ALIEN WITH RIGHT FOOT DOWN
SWITCH: DS 1 sALIEN SWITCHING
DIREC: 0 1 MISSILE DIRECTION ALIENR: DB 236,131,239,131,204,131
FLOC: 0S 2 sMISSILE LOCATION 0B 251,131,34,28, 191,131
Loc: 0% 2 ALIEN LOCATION DB 248,131,0,8,71,131
CLEAR: DR 4,8,15,27,24,12,3,64,8,239 ; DATA TO ERASE THE ALIEN
; ALTEN WITH LEFT FOOT DOWN ERASE: DB 32,6,32,8,32,8
DB 32,8,32,0,32,8
ALIENL: DB 236,131,238,131, 286,131 DR 32,0,32,8,32,8
i 251,131,34,25,191,131
0 116,131,8,8,143,131 END START

Colorcue will be saying ‘goodby’

The next issue of Colorcue, Vol VI, No 6, will be the last for this seven year old publication. Diminishing
support is the primary reason, along with greatly increased publication costs. We might have simply economized
on our formatting and means of distribution, but it has been clear that what is most needed is a consolidation
of effort among the various CClI organizations. With consolidation, we have an opportunity to maintain our

activity and still provide the necessary publication services to subscribers.

The Rochester User Group is the most appropriate center for this consolidation. Its publication, DATA CHIP,
and its fine user library provide subscribers with a wealth of continuing materials for the Intecolor computers.

Reginning early in 1985, CHIP will be expanded to include materials normally published in Colorcue. Authors
will continue to write for publication in CHIP. With this added contribution, CHIP can be a more frequent
and expansive publication, which it well deserves to be.

The price of membership i:x the Rochester User Group has beer increased from $10 to $15 per year ($20.00
USA for overseas) to cover the expanded publication of CHIP. | urge you to lend your total support to this
effort. Send your check for $15.00 today tc

GENE BAILEY: 28 Dogwood Glen, Rochester, NY 14625

Your prompt response is necessary for good planning in Rochester, and to be sure you don’t forget and therefore
miss some of the exciting material ready for release (including a new article by Ben Barlow on expanding
the disk capacity of the CCIl!) Send materials for publication in CHIP to Rick Taubold, 197 Hollybrook Road,
Rochester, NY 14623.

The last issue of Colorcue will contain a complete index of the major CCIl publications, and a fine set of
articles recently submitted for publication. It will, no doubt, be a large issue, and will also, with certainty,
be late. There is a large amount of midnight oil to be burned before it is ready. Meanwhile, | hope we will
see our first issues of the expanded CHIP newletter. As always, these are your publications, and your active
support is required to make them valuable to CClI users. The end is not yet in sight, friends!

A reminder, too, that Australia has been very active lately in the CClI department. You will enjoy a subscrip-
tion to CUVIC. See Colorcue, Vol VI, No 3, page 31 for membership information.

COLORCUE SEP/OCT 1984

17

COLORWORD A re-review
DOUG GRANT

Doug Grant, the librarian of CUWEST in
Australia, sent a very enthusiastic letter to
David Ricketts, the author of the GEMINI
pﬂ'nler review in the last issue. His subject
was COLORWORD, the word processor
distributed by PPI in Australia. Doug feels
the COLORCUE review was less laudatory
than it might have been and poinis ou!
specific features of the software that have
proven valuable to him.

We are pleased to excerpt it here, with per-
mission, and print a few examples of (ype
from Doug’s Epson printer.

“{Dear David,)..We are about even in
our standard of Tightwadishness. I took
a good look at Comp-U-Writer long ago
and decided that 1 didn’t want a WP
which couldn’t use all the codes of the
Epson printer. I purchased Wordthis
and Wordthat and Thisaword and That-
aword and probably got to around
Comp-U-Writer’s price in total anyway.
Now, we have a very good programmer
in our group, Chris Teo who came up
with COLORWORD, and if you don’t
send off the $50 to PPI as soon as you
can drag out your chequebook then you
just don’t deserve to own a printer as
good as the Gemini appears.

““(The enclosed page is a printout of a
disk file I use to demonstrate COLOR-
WORD’s use of printer control codes)
and you will see that with expert
use...you can really get a message
through. All of these codes are added to
your text following your pressing IN-
SERT CHAR, of course, and this in-
cludes CTL @ and CTL G. ESC ap-
pears as ‘[, in blue, and CTL @ and
CTL G as @ and G in blue. You will
find out for yourself about the ‘A7’ and
etc.

“Have a good look at the review in Col-
orcue of May/June 1984 but don’t let
it deter you. We have members who
have both Comp-U-Writer and COL-
ORWORD v4.5 who rarely use C-U-W
except when they require two column
wark or lots of text centering. COLOR-
WORD misses these two features, but
Chris will probably come up with that
later. The ounly thing you may get a bit
excited about is that when you go back
in the text a little way to add a few more
words here and there, the word wrap
still does its job but sometimes moves
the remainder of the line down a line,
and if you move the cursor past that line
you may think you have lost a line or
so. No worries though, you simply go
back to the beginning of the paragraph
and hit CMD R to reform the para-
graph. Even if you didn’t do this, the

printout would still be correct, as you
have to hit RETURN twice to force new
lines anywhere and you can’t lose any
text without really trying.

““The underline is a true underline and
not a series of dashes and in editing you
can use the colour pad to whip through
by paragraphs or lines in either direc-
tion. There is no ‘undelete’ so you must
make fewer errors in this regard. If you
accidentally hit AUTO you go off into
a ‘search’ mode but don’t panic, just hit
AUTO a couple more times and you are
back to the text again.

““You can set up your output baud rate,
double spacing, spaced print, etc. at
each sitting, but there is a provision for
vou to make up your own text file in-
corporating all the parameters you wish,
and load it up when you start work. |
have 24 cood sized letters on one side
of the disk (initialized to 07y which 1
have in the drive at this moment, and
I can exit the text and delete any of them
if I run out of disk space; or put another
disk in. At the top of the screen | sce
that I still have 12701 characters of space
left in this text if I want to go on all
night at my rate of typing, but I won't.
Oh well; back to the cot for another read
of COLORCUE.

“All the best to you from,
Doug Grant.”

INTECOLOR BULLETIN BOARD FOR CCII

Steve Reddoch’s proposal for a bulletin
board for the CCIl has not had any
response from readers. The Santa Barb-
ara subscriber has prepared a pro-
gram for free distribution to CCll owners
in machine language to service both
300 and 1200 baud. Our two hundred
users are not enough o support such
a project, it seems, and there are many
of us who can sympathize with Steve's
disappointment that this project has not
seen the light of day. But there has been
progresst Intecolor Corporation has
recently announced the establishment
of a Bulletin Board for all its products,
including the CCll, 3600 and 8000 com-
pulers. it is located in the Northwest USA.
The telephone number is (206) 4833460,

18

and the Sysop { “System Operator”) is
Bob Morgan, an Intecolor dealer. While
it is a CP/M board, TERMIl software
should work well, We encourage you to
take advantage of this new opportuni-
ty. The board will also include news on
Intecolor’'s DataVue computers. These
are being offered at a special price to
CCllowners. They are CP/M machines,
with built-in hard disks and full CP/M
features. The computer is available
without a terminal, and the CCll may be
used as a terminal with it. Software is
available for the terminal conversion
from Rick Taubold and Tom Devlin,
which they developed with Myron Stef-
fy for interfacing with the Morrow com-
puter line.

KEYBOARD UPGRADES

it's not too late to upgrade your CCII
keyboard to the full 117 keys. Howard
Rosen (PO Box 434, Huntington Valley, PA
19006) has enlarged keyboard covers
available for $20.00 and switches for $2.00
each. Key caps may be ordered from Arkay
Engraving (see last issue). Intelligent Systems
Corporation in Huntsville has some of the
same materials. Give them a call at (205)
881-3800 or write 12117 Comanche Trail,
Huntsville, AL 35803.

John Ker in Los Angeles is a network
subscriber. His Compuserve network
address is 71735, 1673, and his Source
address is TCP733. Welcome aboard,
John{ I’ve enjoyed our modem talks.

SEP/OCT 1984 COLORCUE

Control CODES for COL ORWORD and EPSON with GRAFTRAX PLUS
ROM Set.

turnes on &

oo turne off

characters

A7 on Turns on gy 3 e g
BLUE KEY turns off enlarged ohe

furns on condensed chiaractes

turns ofd condense

Turms or emphasized character:

exmpfya

] characte

s}

K
tovrrre off

turns on daouble

turms off double

Subwoar i pt mercte

I LT ER o Brap e@es anon e dopsy e M d)

opF Supsresoript omode,

of F Underline

Caontraol G Sounds the Frimter Bell.

COMEBINATIONS 3 VARIOUS 3N
GIVE VARIOUS RESLILLTS

COLORCUE SEP/OCT 1984 19

tiny — PASCAL ...

This final part of the series is dedicated to the ‘bread-n-
butter’ Tiny-Pascal commands. We can not hope to give a
textbook treatment of these commands, so we will restrict
ourselves to some typical examples of their use. Your
familiarity with other programming languages, and the use
of a good Pascal tutor will enable you to understand and
apply our contents on the CCII.

A NEW SCREEN EDITOR

A new tool is now available to help in the exploration and
implementation of Tiny-Pascal on the Compucolor in the
form of a full screen editor, written by Bill Greene, and
housed in the Chip Users Group Library. This editor
significantly reduces the task of entering and editing both
Forth and Tiny-Pascal programs on Forth screens. The
screen editor, along with two Forth disassemblers and an
8080 assembler are contained in screens on Chip Disk #121.
This disk complements Bill Greene’s implimentation of
Forth, called Forth8, contained on Chip Disk #120. The
editor, and any of the other features, may be compiled into
the Forth8 core program and saved on disk as an augmented
version of Forth (call it FORTHE.) The screen editor is not
compatible with Jim Minor’s version of Forth on Chip Disk
#46. However, the editor can be used to enter and edit Tiny-
Pascal screens. On the other hand (all confusion aside,
folks), Jim Minor’s Tiny-Pascal compiler, which resides in
screens in Chip Disk #83, can be compiled into Greene’s
Forth8 and saved as an augmented version of Forth8 (and
call it FORPAS.) It is unfortunate that both the screen editor
and the Tiny-Pascal compiler can not be compiled into the
same Forth version, due to memory requirements, but us-
ing them in two separately augmented versions each will
facilitate Tiny-Pascal operations. a) Use FORTHE to enter,
edit and save the programs, and b) use FORPAS to com-
pile and run the programs.

If this seems too much, use the line editor already describ-
ed previously in these articles, or you can send two disks,
and $2.00 for return postage, to the author at the above ad-
dress for these new materials and instructions. Be sure to
specify your FCS version, and add $10.00 to have Chip supp-
ly the disks. The four sides you receive will contain Chip
Disk #120, #121, FORTHE/FORPAS, described above, and
all the program examples in the Tiny-Pascal series. Back up
the disks when you receive them. [You do realize what a
bargain this is! Two languages for the price of none. ED]

TINY PASCAL COMMANDS

It is called ‘Tiny-Pascal’ because it contains a subset of the
fully-implemented version of the language. This subset is
sufficiently complete to allow for effective programming in
many instances. When viewing Tiny-Pascal you will find
many commands similar to those of the more common Basic
language dialects, such as IF..THEN..ELSE and
FOR..TO..DO. Other commands are found only in very ex-
tended Basic dialects, like BEGIN..END, WHILE..DO,
REPEAT..UNTIL, CASE..OF, and the PROC and FUNC
structures.

20

You will learn best by working the examples at the com-
puter. Most examples have been limited to a single screen
to conserve time for entry and editing. You must carefully
observe the punctuation and program structure as it is shown
in the listings. Review Part 2 of this series in Colorcue, Vol
VI, No 3 to remind yourself of the commands already
covered, like WRITE, READ, and NEWLINE.

This version of Tiny-Pascal is intimately intertwined with
the Forth language as well, as we have seen, which is used
to facilitate program execution. Defining Forth commands
in such a way that they may be injected into Tiny-Pascal
makes the programs significantly more versatile and useful.
In mastering Tiny-Pascal, there is great incentive to master
Forth, one language helping to clarify the other. We will
demonstrate, this in some examples.

The Pascal statement format is very important. Pascal
commands are used in both single and compound statements
in the listings. Single statements use a command word
followed by a semicolon (;). A compound statement begins
with a BEGIN and ends with an END and semicolon, sur-
rounding multiple command words and their arguments. (If
a compound statement is the last statement before an END,
the trailing semicolon may be omitted. This is the only place
where the semicolon is optional.) These compound
statements form a functional sector, much like a subroutine,
and which holds the great strength of a structured language
like Pascal. Such a structure makes reading programs,
without line numbers, fluent and logical.

To combine the functional sectors into a unified program
we group them into a ‘block’. The block is terminated with
a period (.) to tell the assembler where the program ends.
You will see in the examples that compound statements may
be nested within a block.

We use two types of comment delimiters in Tiny-Pascal,
() for Forth and // for Pascal. Qur programs always begin

.in the Forth domain, so the parentheses will be seen there.

Following the Forth word PASCAL, we are in a Pascal en-
vironment, and the slash must be used, since parentheses
are not defined as comment delimiters in Tiny-Pascal. Note
that a space between the delimiter and the comment is re-
quired in Forth, but not in Pascal. Finally, following the
Tiny-Pascal END statement, the computer is returned to the
Forth environment, and rules for Forth will again prevail.

Each of the sample programs explores a different major
statement function. The WHILE..DO and REPEAT..UN-
TIL statements are shown in Listings 1 and 2 respectively.
Note that the WHILE and UNTIL are followed by a con-
ditional expression (telling ‘while’ and ‘until” what?) which
is either true or false. (Conditional expressions are familiar
to Basic programmers from their use in the IF.. THEN for-
mat.) Examples include ‘X =Y’, ‘U greater.than V’, and ‘Z
not.equal A.” Note also that no colon is used in a condi-
tional expression before the ‘equals’ sign as it is in the assign
statement. In the WHILE..DO statement, a ‘true’ condi-

SEP/OCT 1984 COLORCUE

DOUG VAN PUTTE

18 Cross Bow Drive, Rochester, NY 14624

tion will cause the statement following the DO (whether
single or compound) to be repeated until the conditional ex-
pression becomes ‘false.” The ‘true’ condition invokes a
looping etfect, similar to the FOR..NEXT statement in
Basic. When the conditional expression becomes *false’, pro-
gram control will be advanced to the point following the
semicolon (;) just after the statement associated with the DO.
The final *;S* in this and other listings is a FORTH com-
mand (remember we are back in the FORTH environemit
after the END. appears!) This FORTH symbol has various
nieanings in different circumstances. Here it means simply
‘stop execution of screen and go back where you came
from.’

Although similar to WHILE..DO, the REPEAT. UNTIL
statement has one basic difference; for a given conditional
expression, the statements following REPEAT will be ex-
ecuted one time more (than in WHILE.. DO) because
WHILE..DO tests the conditional before executing the
statements, and REPEAT..UNTIL tests the condition after
executing the statements. Following a ‘false’ condition, con-
trol is passed to the first statement following the first
semicolon to appear after the UNTIL.

Experiment with the programs of Listings 1 and 2 by first
loading the FORTH editor. Then, using a disk with blank
screens,usc the editor to type and save the program on a
screen of your choice. Now, load the Tiny-Pascal compiler
from its disk and run it. Reload the screen disk. Type the
program screen number followed by ‘LOAD’ and a carriage
return. This will compile the program. If the compiler finds
an error, the screen editor must be reloaded and the code
corrected. When the code has finally compiled correctly, it
may be ‘run’ by just typing the program name (such as
"WHILEEXAMPLE’). Follow similarly for all the other
listings.

SCR & 135
0 (ELISTING 1! WHILE DO EXAMFLE) PASCAL DECIMAL
1 PROGRAM WHILEEXAMPLE;
2 VAK
3 Xs Y+ SQUARE ¢ INTEGER;
4 BEGIN)
S5 NEWLINE; WRITE (‘ENTER NO., TO SQUARE *)3
& READ (#Y);
7 X i= 1%
8 SOUARE i= 03
9 WHILE X <= Y LO
10 BEGIN
11 SQUARE $= SAUARE + Yi
12 X 1= X +1
13 END;
14 NEWLINES WRITE (8Ys» ’ SOUARED IS ‘ » #SDUARE)
15 END, 35S

SCR # 14
O (xLISTING 2:
PROGRAM UNTILEXAMFLES$
VAR
Xy Yy
BEGIN
NEWLINE$ WRITE ¢
READ ¢ $Y)¢
X 1= 14 SQUARE = 0j
REPEAT
BEGIN
SQUARE =
X =X+ 1
END3
UNTIL X > Y3$
NEWLINESF WRITE (
END. iS

SQUARE ¢ INTEGERS

‘ENTER NO. TO SQUARE ’)i

ODWDNOWL SN =

[
(=

SQUARE + Y§

. s
RSN

#Ys ’ SQUARED 1S ’ » #SQUARE

-
w

In contrast to the looping statement types we have just
discussed, the IF.. THEN..ELSE statement, demonstrated
in Listing 3, is designed for branching, just as in BASIC,
and the statements which follow are executed only once. In
this statement format, a ‘true’ conditional will cause action
by the statements assigned to THEN, passing next beyond
any statements allied with the ELSE. Otherwise action will

COLORCUE SEP/OCT 1984

w
i

a
CONCUMEWLNNSOD

$ 17
(¥LISTING 3¢ IF THEN ELSE EXAMPLE
FROGRAM IFTHENELSEEXAMFLES
CONST
X =73
VAR
Y @
BEGIN
NEWLINES WRITE (*GUESS A NUMEER (1 TO 10)7)i}
KEAD (&Y)j
NEWLIRE$
10 IF (Y <> X)
11 THEN
12 WRITE(
13 ELSE
14 WKITE (
15 END., 5

INTEGERS$

SORRYy WRONG NUMBER “)

‘YESy THE NUMEER IS * » 44X)¢

derive from the statements associated with ELLSE, then con-
tinue onward. The ELSE portion is optional, which means
it may be omitted. In this instance, the IF.. THEN rules app-
ly just the same as before (just as they do in BASIC.)

FOR..DO is very similar to the FOR..NEXT loop in
BASIC, and is illustrated in Listing 4. DO is usually followed
by a compound statement, but single statements are accep-
table. What is ‘done’ lies in the commands between DO and
the first semicolon (which is at the end of line 12 in our ex-
ample). From there, the program advances to the next com-
mand. Notice that if one enters ‘0’ or ‘I’ in this program
as a response to line 8, the DO function will not be honored
because it asks for a ‘Y’ greater than or equal to ‘2’. (The
correct factorial will be printed in these cases, however.) It
is possible to step down in a FOR..DO statement. The syn-
tax in this instance, in line 11, would be....

‘FOR X := 2 DOWNTO Y DO’.

A flexible and interesting branch command is the
CASE..OF..ELSE command illustrated in Listing 5. Depen-
ding on the integer or string value of the expression follow-
ing CASE, the line following OF which begins with this value
will be executed to the first semicolon. An ELSE provision
1s available with this command also, as illustrated in line
13. Note that an END statement is required to mark the end
of the CASE options (see line 12; it terminates the OF path,
so to speak). Compare the punctuation in this listing and
Listing 3.

21

REFEAT UNTIL EXAMFLE) PASCAL DECIMAL

) PASCAL DECIMAL

SCR % 18

0 ¢ XLISTING 4: FOR L0 EXAMFLE) SUBSCRIBER WRITES....
1 PASCAL DECIMAL . .
2 PROGRAM FORLOOFEXAMFLE Subscriber Vance Pinter owns an
3 UA;: ¢ INTEGER} IBM-XT he purchased to use in his
. ? . . “ .
S Y ¢ INTEGEFR; daily oﬁ‘pe work Iond) hosht
6 FACTORIAL I INTEGEFR: regretted it for a minute.” He in-
7 BEGIN . , EK NUMEER FOR FACTORIAL (<8) *)3 cluded the color monitor to ease
g :lé:'l;(n:s,”umm e i) ’ the transition from four years of
10 FACTORIAL 3= 135 CCll experience in his practice of
11 FOR X i= 2 TO Y L0 ' x law. The old machines are still us-
12 FACTORIAL t= FACTORIAL i , .
13 NEWLINE: WKITE (/FACTOKIAL OF “¢ #Ys * 15 * y 4FACTORIAL)i ed othorTIwe, for fUO- vance s
14 END. }S especially interested in hardware
® aricles and has added many op-
tions to his CCll, including lower
SCR ¢ 19 case, the 4000H ram card by Tom
0 (SLISTING 5! CASE OF ELSE EXAMFLE) FASCAL DECIMAL Deviin, Frepost Computer's 16K
1 PROGRAM CASEEXAMFLE} g
2 VAR Y ! INTEGEK3 RAM o‘dd-on, a pe!ll onq second
3 BEGIN disk drive. He noticed an improve-
4 NEWLINE; WRITE (ENTER A NUMBER (0-2) ’)i ment from the disk drive modifica-
Z ?EA(D(:(;Y~1); :5:‘_(1;{5" 3N tions recommended by John
HEN Newman (Feb/Mar and Jun/Jui
7 T
8 CASE Y OF 1983).
9 0 & WKRITEC ‘THE NUMEBER YOU ENTERED IS5 ZERGQ *)i . ‘ ‘
10 1 ¢ WRITE(‘THE NUMRER YOU ENTERED IS ONE °)i The Dynamic Ellipse Doodler
11 2 ¢ WRITE(‘THE NUMBER YOU ENTERED 1S TWO 7) by Tom Napier was fun. | keyed it
:g Engn in Sunday A.M. and it worked first
14 WRITE(‘SORKY» WRONG NUMEER! *) try.” Vance says he hqs Though‘T of
15 END. §S seliing the old machines but just
can't bring himself to do it.
SCR ¢ 20 heard a whisper of regret from the
0 (SLISTING 6% FROCELURE EXAMPLE) FASCAL DECIMAL : - f othat the
1 PROGRAM PROCELUREEXAMFLES Suits fomllyhncgtls %%?\A . dy
2 VAR Xy Y» SO ¢ INTEGERS no longer ha e on hand.
3 PROC GETNOj ED)
4 BEGIN NEWLINE: WRITEC(’ENTER NO.(<182) 7O FIND SGUARE, 0 TO STO
S P) REATCRY)S NEWLINES ENDY
& PROC SQUARE(Uy V INTEGER)}
7 BEGIN SO := 05 U i= 13
8 WHILE (U <= V) D0 BEGIN 90 t= SQ + Vi U i= U + 1 ENDj CRT INTENSITY CONTROL
9 END'§

10
11

FROC PRINTNOS
BEGIN WRITE(’THE SQUARE OF “+$Ys’

BEGIN N\ HMAIN
KREFEAT BEGIN GETHO7
UNTIL SG 0%

END. (END MAIN)

IS ‘o#8G) END

13
14
15

=

SQUARE(X+ Y)i FRINTNO# END

Instructions for mounting a front
panel potentiometer to control
CRT intensity have been prepared
by subscriber Norman Johnson. A
copy is available by writing 1o

The PROC (procedure) command is the single, most im-
portant concept in Pascal for creating a structured program.
In a top down’ structured programming approach, the func-
tions of a program are separated into modules, each one
programmed and tested separately, then joined together into
one complete program. This removes complex debugging
from program development, for if each parts works correct-
ly, the whole will operate correctly.

To use a procedure, it must be defined before the pro-
gram proper begins, and it may then be ‘called’ as many
times as needed. Listing 6 demonstrates some sample pro-
cedures following the VAR and CONST commands. Here
a procedure was written for each main part of the program.
READNO reads in a number to be squared. SQUARE ac-
tually computes the square. PRINTNO prints the input
number and its square to the screen. See how simple the main
program becomes! The procedures are ‘called’ in the com-
pound statement which follows the REPEAT command.

22

Note that the procedure SQUARE is the only one with
a parameter list. In Pascal, this is a way of ‘passing” a value
or 4 number of values, back and forth between the main
program and its procedurcs. The CALL to the procedure
SQUARE, in the main program, also has a parameter list.
The parameter list in the PROC and FUNC statements are
optional, but if used, it must appear in both places. The
nanics in the parameter list need not be the same, but their
position in the list is important. This kind of parameter
listing makes processes in the extended Pascal language 'por-
table’ from one program to another, without renaming the
variables they contain. Inserting variables in the right order
is critical, however.

While full implementations of Pascal accommodate such
a parameter list, in Tiny-Pascal, there is no provision for
returning them. This is probably an oversight by its designer,
Zimmer (or perhaps a deliberate part of the design!) So the
result, SQ, is ‘stuck’ in the process. This really makes the

SEP/OCT 1984 COLORCUE

(123
[w]
x

$ 21

(BLISTING 7! FUNCTION EXANFLE 1) DECIMAL ¢ CLS 12 EMIT 3

0 VARIAELE FUNCTIONVALUE @ VALTOSTACK FUNCTIONVALUE @ § PASCAL
PROGRAM FUNCTIONEXAMFLE? VAR X+AsB/CyZIINTEGER

FUNC QUALRATIC(XVAL » AVAL » KVAL s CVAL ! INTEGER) #

FUHCTIONVALUE (= AVALXXVALXXVAL+BVAL¥XVAL+CVAL VALTOSTACK:
BEGIN CLS# \ MAIN PROGRAM \

BEGIN NEWLINE; NEWLINEF NEWLINES

WRITEC ENTER Xv Ay Br & C TO EVALUATE (AX124¢BX+C)I%2¢9 ‘)i
READC #X,#As#B+8C)7 NEWLINEF NEWLINE;

1 = QUADRATIC(XsArB+:C) & 2 + %}

WRITEC('THE Z VALUE 1S ‘+%2)

ENDF UNTIL (X=0)

ANOTHER RETURN TO FCS ‘1’

Chris Zerr submits his favorite way 2

of returning to FCS or any other 3 BEGIN
ESC [vector] from an assembly =
program. It is only applicable to 6 END}
v6.78 computers, however, If you g REFEAT
first fill the A register with the vec- 9

tor code, such as [D] for FCS, [E] 10

for Basic, [P} for 4000H, etc. If pro- }}1

grams are ORiGined at 8200H 13

they will be damaged by this 14
method. The routine that com- 15

pletes the exit is located at 053AH

END, (MAIN) DECIMAL $S

Inv6.78, Asimilar function has not ch : EEISTING B: FUNCTION EXANFLE 2) DECIMAL : CLS 12 EMIT
. o e $ CL i
been identified for v8.79 as yet. 1 0 VARIAELE FUNCTIONVALUE ! VALTOSTACK FUNCTIONVALUE @ ; PASCAL
Here is a sample code: 2 PROGRAM FUNCTIONEXAMFLE? VAR XvAyB:C!INTEGEK}
3 FUNC QUADRATIC(XVALsAVAL s BYAL»CVAL INTEGER)}
Lo s e e 4 BEGIN
START: TALL KETIN bef Fevonirs input 5 FUNCTIDNVALUE = AVALAXVALEXVAL+BUALXXVAL+CVAL# VALTOSTACK:
[P1 e iho some & ENDj
1 BT srror 7 BEGIN CLS; \ MAIN PROGRAM \
e B £oERET 8 REPEAT
tFl E i checking.., 9 BEGIN NEWLINE; NEWLINE}
I EXIT 10 NEWLINE; WRITEC(’ENTER X» As By & C TO EVALUATE AX124BX4C *);
= 11 REALC #$Xs8#As#Es8C)5 NEWLINEF NEWLINE;
! 12 WRITEC(‘ THE QUADRATIC VALUE IS5 ’,#QUADRATIC(X:AsE+C))
s [Errar routines herel 13 END}
k 14 UNTIL (X=0)
; 5 END, ¢ MAIN) DECIMAL S
EXIT: PUSH o3y 1Save registers
M1 A,12 3Clezn up the screen SCK # 23
TALL LD O (XLISTING 9! MEML 1 EXAMFLE) $ CLS 12 EMIT
N v s “ASCAL DECIMAL
POF Pl iRestore regicters ;PRgggiHBpEﬁthéTEHn ? FASCAL DECH
MP BR3AH Exit program 3 CONST SCREENSTART = 28472
4 VAR Xy Y» 2 ¢ INTEGER;
5 FUNC PLOT(XVAL s YVAL: INTEGER)
& BEGIN
7 IF ((XVAL>-1) AND (XVAL<&4) AND (YVAL>-1) AND (YVAL<31))
Colorcue. We advise that while 8 THEN MEMLSCREENSTART+XX24Y#128) $= 42
the projec# is simple, it should not 13 EN%’;SE BEGIN WRITE(‘RANGE ERROR)i Z t= 1 END
be undertaken by inexperienced i1 BEGIN Z $= 0i CLS;

hands. Damage to the CCI 12 REFEAT BEGIN HOME; WRITE(’ENTER X»Y *)j
and/or injury through shock to the e oW AYIE PLOTONY) ENDS
installer is a potential danger. 15 END. 35S

parameter list for a PROC in Tiny-Pascal superfluous, and
we suggest that you not try use one. It really isn’t needed
since the variables defined in the VAR statement, in the
declaration part of the program, are ‘global’ type variables
(that is; accessible to all parts of the program, as opposed
to just a particular process.) So in Tiny-Pascal, the portabili-
ty concept is lost, an unfortunate, but not serious,
circumstance.

A subset of the PROC command, in Tiny-Pascal, is
FUNC, the function command. For this command, we have
devised a way to circumvent the direct inability to pass values
from a procedure back to the main program. The ‘function’
is defined in Pascal to compute a single value, whereas a
PROC may compute any number of values. The procedure
SQUARE may be written as a function instead. Alas, in
Tiny-Pascal, procedures and functions are defined in the
same way, and we are stopped again from returning
parameters. FORTH comes to the rescue here by allowing

COLORCUE SEP/OCT 1984

us to define a FORTH variable in which to store the value
of a function, and then define a means of placing that value
on the FORTH stack so that it may be used in an equation.
The FORTH code to accomplish this appears in the second
line of Listing 7.

To use a FUNC in this way (for otherwise it is the same
as a PROC), simply code the second line of your scieen in
a fashion similar to Listing 7. (Those interested in understan-
ding the commands may refer to the FORTH definitions
in a suitable reference.) The function, like the procedure,
is defined in the first lines of the program (line #1 of Listing
7.) Its purpose is to clear the CRT whenever it is called. Note
that the program in Listing 7 requires four input values.
Separate the entry of each value with a carriage return.
(Commas must not be used to punctuate inputs to any of
the programs in this article.)

In general, FORTH may be used to extend the power and
versatility of Tiny-Pascal by using FORTH to define com-

23

SCR 4 24 SCR # 25

0 ¢ *LISTING 10: INLC 1 EXAMFLE) 0 ¢ XLISTING 11! ARRAY EXAMPLE) O VARIABLE N { COLOR N @ EMIT ¢

1 PASCAL DECIMAL 1 ¢ BON 31 EMIT 5 ¢ BOFF 15 EMIT § ¢ CLS 12 EMIT ¢

2 PROGRAM INTEST: 2 PASCAL DECIMAL

3 VAR A3{INTEGERS 3 FROGRAM USEARRAY?

4 HREGIN 4 VAR IAsIHIARRAY(8] OF INTEGEKSW

5 REPEAT REAIKAZ) S CrIvZPINTEGERS

6 UNTIL A3 IND 3042,°Y" 1 6 BEGIN

7 REFEAT FEALCAZ) 7 IAC 1 1:=14% IAC 2 2i=174% 1AC 3 1i=18% 1AL 4 11=19;

8 UNTIL A3 INC 30+2,°E” 1} 8 IAC 5 1:=205 IAL & 1i=21F IAL 7 1i=22% 1AL 8 11=23;

9 REFEART REALCAZ) 9 IBL 1 1¢="B’FIHL 2 1:=825 IBL 3 1i=71% IBL 4 1= 'Y’
10 URTIL A3 INC 3042,°5% 1] 10 IBC S 1i=68% IBL & 1i1=807 IBL 7 1i=67+ 1EL 8 1i=873}
11 END. iS5 11 CLSé

12 12 WHILE C<>‘FY DO

13 13 BEGIN

14 14 MEWLINE} NEWLINE? Zi=03 Ii=13

15 15

mands which then become part of the FORTH/Tiny-Pascal
dictionary. In addition, the core directory of FORTH, once
mastered, may be referred to in creating special effects not
obtainable otherwise through its own basic commands. This
kind of language is said to be ‘‘extensible.”

Listing 8 is a modification of Listing 7 showing an alter-
nate way of referring to a FUNC so its output may be "pass-
ed’ back to the program.

Our next two commands are not present in extended
Pascal. MEM is used in Tiny-Pascal to place a value in an
absolute memory location. The program of Listing 9 uses
MEM to ‘plot’ (as in Compucolor: PLOT 3) using screen
memory. MEM uses the [] style of delimiter to contain the
memory address. We set MEM|[addr] to a legal value (us-
ing : =) between 0 and 255.

[Note: The MEM command did not function until screen

#39 of the Tiny-Pascal compiler was altered. The ‘!” word,
which follows the word COMPILE, must be changed to

‘Cl’. Note that CLS is also defined in FORTH, ahead of

the Pascal program, to use later to clear the screen. If you
haven’t surmised already, 12 EMIT is the same as PLOT
12, in Basic. Note on the following line another FORTH
word, ‘HOME’, is defined by using ‘8 EMIT 11 EMIT’
(PLOT 8 PLOT 11), to return the cursor to the upper left
corner and erase the line.]

The IN command allows one to check a single keyvboard
character for a match with a list of possibilities within []
delimiters. Only ASCII numbers or their single character
string equivalents, enclosed in single-quotes, are permitted
in the brackets. Listing 10 presents an example of this com-
mand in use. When the program is ‘run’, it screens the
keyboard for the single characters ‘Y’, ‘E’, and ‘S’, in that
order. Any other input is ignored.

Our last program example, the use of the integer array,
is demonstrated in Listings 11 and 12. This is our only ex-
ample employing two screens working together. This pro-
gram makes liberal use of FORTH-defined commands, to
execute the equivalent of BASIC’s PLOT command. In the
pregram, two parallel arrays are defined by assignment. One
array contains single character strings or ASCII values, and
the other contains the equivalent of BASIC's PLOT
numbers. The user is asked to choose a color by selecting
a single letter key. With a simple table ‘look-up’, controll-
ed by a WHILE..DO sequence, the ASCII value of the let-
ter is sought. When it is found, the value at the same index
in the parallel array is used to set the color, prior to screen
printout. Screen 25 has no final S’ so the program con-
tinues on to the next screen.

Tiny-Pascal has provision for most commonly-used
operators. These include MOD, NOT, OR, SHL, SHR (shift

CHIP REPAIR NETWORK FOR THE CCII

A network of privale service faciliies is being formed
with the help of Intecolor Corporation, who have of-
fered to assist us by supplying a parts inveniory. So far,
three locations have been designated. | have confir-
mafion on only the first two tisted here. You are invited
o contact these service personnel regarding CCll
repairs. Al three come highly recommended, and Al
three have had exiensive experience.

Steve Wooten: 155 Baringlon Street, Rochester, NY
14607 Telepnone: (716) 442-4914 Cdll evenings.

Steve charges 520,00 per hour if he fixes your com-
puter. There is no charge If he doesn't. Customer pays
for parts and shipping both ways.

24

Gary Sipple: 27750 Goltview Street, Soulhheld, M
48034. write 1o Gary for detalls.

Bill Freioerger: Box 207, Mountain Lakes, NJ 07049.
Telephone: {201] 263-2859 Write o Bill for details,

When having a CClrepaired the biggest hurdle is in
the shipping. Severe damage has occurred in ihe oast
to computers improperly packaged. It is your respon-
sibility 10 prepare the computer properly for shipment.
Make certain that you consult with the repair agent
you select before making shipment. The cathode ray
tuoe, #13VAXP22, used in the CCll was proprietary and
is No longer available!

SEP/OCT 1984 COLORCUE

SCR & 26

0 \ SLISTING 12¢! ARRAY EXAMFLE CONTINUED \

1 WRITEC(“ENTER COLOR TYFE (BsRoGrYeDsPrCyrl }? F-END “)iREALCC)?
2 WHILE Z2<>1 DO

3 BEGIN

4 IF C=IBCI11] THEN

b BEGIN NI=IAL T 13 Zi=1

[} ENIL§

7 Ii=1+1% IF I>9 THEN Zi=1

8 END}

? NEWLINE$ NEWLINES COLOR:
10 IF I<10 THEN WRITE(’ THIS REPRESENTS THE COLOR CHOSEN ‘)
11 ELSE

12 EEGIN BON? WRITE('ENTRY ERROR “)} BOFF

13 END

14 ENDi Ci=’B’
15 ENLI. DECIMAL 3S

bits left or right), ‘less than’ (and ‘or equal to’), ‘greater
than’ (and ‘or equal to), ‘=", *+7, -7, **’, DIV, TRUL,
and FALSE.

There are several commands in Tiny-Pascal we have not
covered, such as TYPE and CALL. CALL is supposed to
be a FORTH routine to ‘call’” non-alphabetic routines in
Tiny-Pascal. Perhaps it will be the subject of a tuture arti-
cle in DATA CHIP. The TYPE command does not func-
tion in the normal Pascal sense, so no immediate explana-
tion of this command is available.

There is greater depth to Tiny-Pascal commands than has
been conveyed in these articles. A more thorough explana-
tion may be found in Jim Minor’s Tiny-Pascal documenta-
tion in the PASCAL Syntax Diagrams. You may have copies
of this material from the CHIP library.

This ends our Tiny-Pascal series in Colorcue. I apologize
to those of you who have becen ‘stumped’ by some features
of Tiny-Pascal because of insufficient coverage here. Feel
free to telephone me, evenings, at (716) 889-4994, if you
would like to explore any particular feature in greater depth.
My very best wishes to my friend, Joe Norris, and my heart-
felt thanks to him for his contributions to the Compucolor

Community by piloting Colorcue during its last year (1.

BACK ISSUES

Vol VI, numbers 4 and 2 are out of print.
They will be available in Xerox form at
$4.00 each if requested.

CHIP Library Reviews

We are interested in having your review
of CHitp library holdings which you have
found useful. Describe what the pro-
gram does and how you use it. Include
games, utilities, languages, etc.

COLORCUF SEP/OCT 1984

COLORCUE CONTEST

Not one entry! The prize money will be
returned to Colorcue’s publication ac-
count. Shame! Shamel

SOFTWARE STILL AVAILABLE

You may still purchase CCll software
from Intelligent Computer Systems in
Huntsville, AL. The Muellers are per-
manently in the United States and are
pursuing a diversity of activities involv-
ing computers and alternative energy
sources. It is very considerate of them
to maintain the CCli software library for
us even though it must be more a
nuisance than a business at this point.
They are a good source for diskettes at
a very low price.

Glen Gallaway ‘“found!’

Intfecolor 8000 users will be happy to
know that Glen Gallaway, the 8000
coordinator, has been ‘found’ again,
following some confusing address
changes. His new address is 1637
Forestdale Avenue, Beavercreek, OH
45432. Glenn is relocated now and is
looking forward to some permanence.

Work continues to compile a useful set
of memory addresses for conversion of
CCll programs to the 8000 series com-
puters. All 8000 users are invited to par-
ticipate. Write to Glen at the above ad-
dress if you are ready to help.

Tom Teaser!

Tom Napier wants to know if any
readers can, without using the
Mviinstruction, or making any
preconditions, load the A-register
with '06" using only 2 bytes!

TECH TIP, DISK DRIVES

One user had a problem with his disk
drive that turned out to result from a
drive belt near the breaking point.
Doug Van Putte has found a source of
drive belts for the CCIl. Try Floppy Disk
Services, 741 Alexander Road,
Princeton, NJ 08540. Their phone
number is (609) 799-4440. Ask for a stan-
dard 5-1/4" Siemans drive belt.

CONNECTING EXTERNAL DRIVE

Gary Dinsmore has submitted plans for
connecting an old internal drive as a
second CCIl drive. If you have such a
drive available, Colorcue will be hap-
py fo send you a copy of his procedure
for ifs installation.

NEXT 18SUE: CCll publications index;
reviews of software by Bill Stanton
and Wallace Rust; a captivating
program adaptation by Tom
Napier (a magnum opus ‘Cuties’);
an article on Recursion by Doug
Van Putte; W. S, Whilly’s final install-
ment on debugging, a biographi-
cal sketch of Peter Hiner, and more.
Get your contributions in promptly
for our last issue!

25

CURRENT COLORCUE SUSCRIBERS

ACT DISTRIBUTOR
8322 CRANSTON DRIVE
WESTLAND, M1 48185

GEORGE R. ADAMS
4452 HIGHLAND CIRCLE
MARIETTA, GA 38044

JAY T, ALBRECHT
4484 FREEMAN ROAD
MIDDLEPORT, WY 14183

ED ALLEN
4R48 SMITH LAME
REDDING, €A 25892

CHARLES L, ANDERSDH
2728 HASTE STREET
BERKELEY, CA 94784

HARGLD L. ANDERSIN
1184 WILSON STREET
RICHLAND, WA 79352

T ANDRIES
1423 N, T0WAS STREET
SOUTH BEWD, IN 44428

B. J. ARBUNIC
5218 MARIT DRIVE

SANTA ROSA, CA 95483

GENE BAILEY
28 DOGICOD GLEN

ROCHESTER, NY 14625

BEN BARLDM
181 BROOKSIDE DRIVE
ROCHESTER, NY 14418

MICHAEL P. BARRICK, VAL FRG HS
7999 INDEPENDENCE BOULEVARD
PARMA HEIGHTS, OH 44138

26

JOHN E. BEAM
4687 VALERIE

BELLAIRE, TX 77481

YN BEICGH
1221 WEST GLENLAKE AUENUE
CHICAGD, ILL 4B44B

CREIGHTON BELL
2332 WAYSIDE

EL PASQ, TX 79924

JOHN BELL
3380 4TH AVENUE

NORTH BERGEN, NJ 87847

WILLIAM R, BOCK
8317 LOUTS DRIVE

AUMTSVILLE, AL 35882

JACK H, BOGHOSIAN
1843 N. THORNE AVENUE
FRESND, TA 93704

08J10 B, BOUCHER
33 ST JOSEPH AVENUE
FIRCHBURG, M #1428

FATHER GEORGE BRUNISH
MATH DEPTAWESTHINSTER COLLEGE
NEW WILMINGTON, PA 16142

STEVE BRUND
2426 CORONADD AVENUE
SAN DIEGD, CA 92134

k. 5. BUCY
428 SOUTH JUANITA
REDONDD BEACH, CA 98277

MICHAEL R. BURCHAM
1787 GLEASON

To# CITY, 1A 52248

ROBERT L. BURTON
114 AHANDA PLACE

0AK RIDGE, TN 37830

ARTURD L. CAZARES
2384 EAST FREMONT STREET
STOCKTON, CA 95285

JOSEPH J. CHARLES
130 SHERWOOD DRIVE
RILTON, NY 14448

DR. ORPHIA C. CHELLAND
SE1 NORTH PROVIDENCE ROAD
MEDIA, PA 19842

GENE COLLINS
ROUTE 7 BUX 334
COay, SC 29526

PAT COLLEY
32 QUEENSWAY, CAVERSHAM PARK
READING, ENGLAND RG4 Q3

COH4TK HIGH SCHOOL, MR WETJEN
VANDERBILT PARKWAY
COMHACK, NT 11725

VINCENT CORDIVA/NATIONAL MEDIC
PO BOX 433-A

WILLOW GROVE, PA 19874

BRIAN CRUSE
B ULVA STREET, BALD HILLS
QUEENSLAND 4836, AUSTRALIA

HICHAEL DALEY
4643 CLOVER LANE
TOLEDD, OH 43423

WILLIAM L. DARKE
3318 SOUTH DEXTER STREET
DEMJER, CO 88222

HUGH DARRAGH
32 McCAUL STREET/TARINGA
EAST BISBANE 4848 AUSTRALIA

§, DE SANTIS
786 AMSTERDAM ROAD
MT LAUREL, NJ 88857

MICHAEL DEVITO
2779 WIEDRICK ROAD
WALWORTH, NY 14368

JANE AND TOM DEVLIN
3889 AIRPORT ROAD
WATERFORD, M1 48893

THEODOR DIDRIK3SOH
S914 AMAPOLA RIVE
SAN JOSE, (A 95129

BART A. DINSMORE
ROUTE 3 BOX 321¢
WARREN, OR 97833

F. ALLEN DOW
248 NORTH MATHILDG AVENLE/AS
SUNNYVALE, CA 74886

PAUL DUDLEY
148 RAILROAD MILLS ROAD
PITTSFORD, NY 14334

RANDALL DUNSHDOR
415 SOUTH JACKSON STREET
GREEN BAY, Wl 54381

RONALD EISENSMITH
22 KINGSW00D

ORCHARD PARK, NY 14127

WILLIAM A, EMOND
1458 OAKLAND RD. SPACE 48
SAN JOSE, A 93112

SEP/OCT 1984 COLORCUE

DUAINE ESEENSHAOE
RIVER ROUTE, BOX 875
SILETZ, Ch 97338

JOHN EWEL
DEPT OF BOTANY/UNIV OF FLORIDA
BAINESVILLE, FL 32411

MARK D. FAIRBROTHER
HC76 BOX 442 PENNWIEW APTS
BINGHAMTON, NY 13981

DR. MARJORIE FIRRING
§365 CHIANTD COURT
SAN JOSE, A4 93139

ROWARD FLANK/FLANK ASSOCIATES
2889 ATLANTA DRIVE
WHEATON, MD 28986

HENRY 6. FLUCK
384 RANDLE COURT
CHERRY HILL, NJ 88834

J. FORD
FO BOX F
KIMMSWICK, MO 43853-8618

M. B. FRASER
! LILY STREET/NORTH RYDE 2113
NEW SOUTH WALES, AUSTRALIA

BILL FREIBERGER
BOX 287
MOUNTAIN LAKES, NJ 07849

BRUCE A. GEIL/ G&B AUTO
7817 5157 AVENUE SOUTH
TAMPA, FL 33419

JAMES GICZKOWSKI
THE WURLITZER COMPANY BOX 591
CORINTH, MS 38834

COLORCUE SEP/OCT 1984

IRVING GILES
172 WALNUT CREEK LANE
TOHS RIVER, N& 88733

CHARLES H. GOULD
317 COCOA AVENUE
INDIALANTIC, FL 32983

D, B. GRANT
2 BRAOKSIDE AVENUE/SOUTH PERTH
WEST AUSTRALIA 4151

EDWARD GREANEY
BLX 421 CHESTER AVENUE
NESHAMIC, NJ 88833

DANTEL P. GREEN
985 BEECH
DINCaN, OK 73533

EUAN GREEN
11526 38TH NE
SERTTLE, WA 98125

WILLIAM L. GREENE
3681 HOBLE CREEK DRIVE, N
ATLANTA, GA 38327

ART GRUSENDORF
BOX 485, MAGRATH, ALBERTA
CANADA TOK 100

FREDRIC HAERICH
1828 BROADWAY STREET
ALTAMINTE SPRINGS, FL 32714

JIM HALDEMAN
333 5 WILLIE
WHEELING, IL 48898

ROBERT HALLEY
1714 HALDEN STREET
SAN DIEGD, LA 92189

CHARLES E. HAMMETT JR
611 BARKFIELD STREET
BRANDON, FL 33511

HAROLD R. HAMM
11739 LORETTO W0ODS COURT
JACKSONVILLE, FL 32223

ROBERT G. HARDIN
1424 CHARLES AVENUE
KALAMAZOD, M1 49481

A. P. HARGREAVES
BRIDGE STREET/ ELTHAM
TARANAKT, NEW ZEALAND

BOB HARRIS
2934 SUNW0OCD DRIVE
SAN J0SE, €A 9511

GLENN HAYHURST
9595 PECOS H14
DENVER, CO 88221

PETER HINER
11 PENNY CROFT./HARPENDEN
HERTS/ ENGLAND ALD 2PD

HARLEN HOWARD
832 SAN RAFAEL STREET
SUNWYVALE, CA 94884

FRED HUDSON
£43 BROOKS ROAD

W, HENRIETTA, NY 14384

GRAHAM HUNT
17 BARQSSA CLOSE/ST CLAIR 2759
NEW SOUTH WALES, AUSTRALIA

INTEGRATED LOGISTICS SYSTEMS
PO BOX 318
ALTADENA, (A 91081

CHARLES 1VY
18926 SHADOW WOOD DRIVE
HOUSTON, TxX 77843

RONAN JAMES
11770 TIMBERLINE LANE

HALES CORNERS, WI 53138
NORMAN JORNSON

STONE MARINA

JOHNS I1SLAND, SO 29453

R. JONES
33363 LYNN AVENUE/ ABBOTSFORD
BRITISH COLLMBIA/CANADA VZSIE2

JAMES R. KENNEY
237 BERRY ROAD
BEALMINT, TX 77784

JOHN KER
11839 WEST TRAIL

KAGEL CANYON, (A 91342

HARRY J. KERGQP
76 RATTLING YALLEY ROAD
DEEP RIVER, CT 84417

KEN KERRISON
5 BELTANA ROAD/PIALLAGO A.C.T
AUSTRALIA 2489

ALDOLPH KLUKOVICK/KAY ENTERPR
2325 KINGSBRIDGE LANE
OXNARD, [A 93038

WILLIAM G. KNAPP
1761 CARMEL DRIVE
IDAHC FALLS, ID 83482

PAUL D. KOERBER
17898 SAN BRUND/APT 623
FOUNTAIN UALLEY, LA 92768

27

FREDRICK 6. KOMMRUSCH
3478 N. PARADISE LANE
MILWAUKEE, WI 53289

DR C. W. KREITZBERG
2311 N. FEATHERING ROAD
MEDIA, PA 19663

DENNIS L. LEPARD
128 5, ELLINGTON
DEPEW, NY 14843

A. LEWIS
PO BOX 228/ PARABURDOD 6754
AUSTRALIA

GOTE LILJEGREN
MARGARETAV 12 G/ 42 TABY
SWEDEN

FRANK M, LOCKE
2213 5SOLORWAY
LAS CRUCES, N4 88881

ROBERT C. LOVICK
88 HILLHURST LANE
ROCHESTER, NY 14417

RIC LCWE
88 CAWSTON ROADS ATTADALE 4154
WESTERN AUSTRALIA

TERRY LUND
43 EVERGREEN STREET
SPENCERPORT, NY 14559

RONALD MACKENZIE
1 BRIAN STREET
COMHACK, NY 11725

BLEN MANN
4882 - 152ND AVENUE NE
REDMOND, WA 78852

28

JAMES HANUELLE
138 SHALE DRIVE
ROCHESTER, NY 14613

JOHN H. MASCARENHAS
PO BOX 78
LEDYARD, CT 86337

ROBERT H, MASKREY
1841 MILL ROAD
EAST AURDRA, NY 14852

ALAN MATZGER
968 GUERRERD
SAH FRANCISCO, Ca 94118

ANDY Mab
3 ELDRIDGE STREET
NEW YORK, NY 18882

PAUL F. MCCARRCH
PO BOX 188
BELGRADE LAKES, ME 84918

FRED W, MCILROY, III
24424 29TH § STREET
KENT, WA 98031

HED/ASSIST DISTRICT AUDITORS
6815 WEST CAPITOL DRIVE
HILWAUKEE, WI 33216

ALAN MEGHRIG
2491 BUCKSKIN DRIVE E 13
LAGUNA HILLS, CA 92633

CARCLYN MEITLER
6118 MANSFIELD DRIVE
GREENDALE, W1 33129

BOB MENDELSON
27 SOMERSET PLACE
HURRAY HILL, NJ 87974

H. 0. METZLER
235 BELCODA DRIVE
ROCHESTER, NY 14417

ALBERT J. MILLER
179 WALTER HAYS DRIVE
PALO ALTO, CA 94323

JACK E. MILLER
BOx 208
CARSON CITY, W 89762

JOHN T, MINERD
BOX 191
YORKSHIRE, Ny 14173

DR, JAMES MINOR
22 BRYN MAWR ROAD
ROCHESTER, NY 14624

GEORGE C. MDENCH, MD
1952 49TH STREET SOUTH

ST PETERSBURGH, FL 33767

THIHAS W, MONTEMARANG
1321 SWAN DRIVE
ANAPOLIS, HD 21481

EARL H. MOORE
2112 BANCROFT
LAKE CHARLES, LA 78483

BRUCE R. MOREHEAD
3468 W, KIRBY
TAMPA, FL 33414

- EIKE MUELLER

12117 COMANCHE TRAIL
HUNTSVILLE, AL 35883

T NAPIER
12 BIRCH STREET
MONSEY, NY 18932

JOHN E. NEWBY
4532 - 147TH AVENUE SE
ISSAQUAH, WA 98627

JOHN NEWMAN
9 HILLCREST DRIVE/ DARLINGTON
WESTERN AUSTRALIA 4878

DAVID C. NORMAN
3883 SAN MARCOS COURT
NEWBURY PARK, CA 91328

JOSEPH H. HDRRIS
19 WEST SECOMD STREET
MOORESTOWM, NJ 88857

LT COL DAVID NOWLIN
1183 SOUTH GRANDVIEW
PAPILLION, NEBRASKA 63846

Ho T. 0D
2184 N 9TH AVENUE
BAINESVILLE, FL 32483

BRIAN E. O“HEARN
78 COLUMBUS AVENUE
SOMERVILLE, MA 82143

WILLIAM PARKER
2812 BERKLEY
FLINT, M1 48384

ASHOK S, PATWARDHAN
4268 CLAYTON ROAD APT #22
CONCORD, CA 94521

A.PAREIGIS
4411 S0UTH CROSS STREET
DOWNERS GROVE, 1L 48313

STEVE PERRIGO
16925 INGLEWQOD ROAD NE B-386
BOTHELL, WA 98811

SEP/OCT 1984 COLORCUE

DULIN B. PERRY
584 HILLHURST DRIVE
BAYTGAN, TX 77521

LARRY W. PETERSON
8323 ELEANOR AVUNUE
0AKDALE, CA 95341

MICHAEL J. PETREYCIK
11 STAG LANE
TRIMBULL, CT 86411

MELVIN F. PE20K
1381 IGNACIO BOULEVARD
NATO, LA 94947

ALEX V. PINTER, PC
PO BOX 238
COLUMBUS, GA 31962

RALPH J. FORTER
4157 SOUTH 746 W
MURRAY, UT &4187

WILLIAM J, POWER
g PETER COOPER RCAD
NEW YORK, NY 1881

THIMAS PRICE, JR
129 HOMESTEAD AUENUE
0F BARY, FL 32713

J. RAMSEY
3115 S, ATLANTIC AVE #3084
£oCoA, FL 32931-2137

CARL E. REMLEY
149 BAYWOOD ROAD
BILOXT, MS 39332

HERBERT RICHARDSON
9885 ANTIONE ROAD
MOBILE, AL 34489

COLORCUE SEP/OCT 1984

DAVID R. RICKETTS
188 BRYCE AVENUE
RED BAHK, TN 37415

ALBERT RIDNER
CENTRD ATOMICO BARILOCHE
8486 BARILOCHE, ARGENTINA

JACK RIPPLE
¢35 APPLECROSS CIRCLE
CHALFONT, PA 18914

R. H. ROCKWELL
235 BELMONTE ROAD
WEST PALM BEACH, FL 33485

HERBERT ROSE/ WILCOMP OFF SVCS
443 WILSON AVENUE
DOAVSUTEW, ONTARID M3K 179

HOWARD ROSEN
PO BOX 434

HUNTINGTON VALLEY, PA 19884

MICHAEL J. ROUSSE
13 SOUTH OWEN DRIVE
HMADISIN, Wl 53785

WALLACE R, RUST

333 BRITTON ROAD

GREECE, NY 14414
I

BENJAMIN R, SAGE
14688 EAST STANFORD PLACE
AURORA, CO 88615

WILLIAM J, SEMBER
PHILIPS ECG, INC/JOHNSON ST
SENECA FALLS, NY 13148

ROY A, SHAFFER
538 SPRINGSIDE LANE
BUFFALO GROVE, 1L 40898

WILLTIAM SHANKS
1345 WEST ESCARPA STREET
MESA, AZ B3261

DONALD E. SHAUB
4294 HIGK STREET
EAST PETERSBURG, PA 17528

ROMALD D, SHOOK
168 ANDOVER STREET

WILKES-BARRE, PA 18782

PHIL SIMIN
8273 CARY AYENUE
CINCINMATI, OH 45224

GARY SIPPLE
27758 GOLFVIEW STREET
SOUTHFIELD, M1 48834

BOB V. SHITH
498 BROWN STREET
MAPA, CA 94358

BYRON E. SHITH
1189 LOCKE AYVENUE
SIMI VALLEY, CA 93843

DAVID R, SMITH
3851 DIERKER ROAD / APT Ad
COLUMBUS, OH 43220

MEL SMITH
NSSA/STIN
DANDAN, GU 94919

RALPH 5. SHITH JR MD
5488 MAC CORKLE AVE SE SUITE 9
CHARLESTON, LN 23384

DR. JACK M. SPURLOCK
293 INDIAN HILLS TRAIL
HARIETTA, BA 38867

RICHARD F. SGUAILIA
818 MAIN AVENUE

SCHENECTADY, NY 12383

PETER STANDEN
12 KENDALL STREET/ CHARLESTOWN
AUSTRALTA 2298

BILL J. STANTIN
8113 HELM COURT
COLORADD SPRINGS, CO 88913

DAN STIEFLER
S 3468 FULLER STREET
BLASDELL, NY 14219

JOSEPH STRATMAN
52829 US 32 NORTH
SOUTH BEND, IN 46637

DANA G/ STREBECK
2834 SHADY ARROR LANE
HOUSTON, TX 77048

TED STUCKEY
BOX 428/ CAMBERWELL, 3124
VICTORIA, AUSTRALIA

DAVID SUITS
49 KARENLEE DRIVE
ROCHESTER, NY 14418

DICK SWARH
12789 GREENHALL DRIVE
WOODBRIDGE, VA 22192

JAMES P, SWEENEY
1544 UIMACK ROAD
DLNADODY, GA 36338

ARTHUR TACK
1127 KAISER ROAD Sd
OLYMPIA, WA 98382

29

BOB TALBOT
989 EXPLORER #2
RAPID CITY, SO 57701

RICK TAUBOLD
197 HOLLYBROOK ROAD
ROCHESTER, NY 14423

JOWN B, THIRTLE
185 CUIFER LANE
ROCHESTER, NY 14422

MR. D. 6. THOMAS
92 GROVE LAY/ WEMBLEY

MIDDLESEX, ENGLAND HAY &JT

Ty THYSTRUP

VIRKELYST 28/ NR. SUNDBY 7448

DENHARK

J. P. TOOHEY

24 HOSKEN STREET. HORTH BALWYN

MELBOURNE 3184/ AUSTRALIA

STEFFAN TOTH
PO BOX 1779, GTN &
KELDWMA, BC VIY 8PZ

T. R ACPS,

- PO BOX 8297 STATION *F*

EDMONTON, ALBERTA TéH 446

MARKE UNDERIDOD
1758 DYSON DRIVE NE
ATLANTA, GA 38387

pOUG VAN PUTTE
16 CROSS BOW DRIVE
ROCHESTER, NY 14624

CHRIS VERBEEK
14721 35TH AVENUE SE
BOTHELL, s 98812

RICKT ANDREW VICK
782 WEST HOLLY AVENUE
STERLING, V& 22178

JAHES DL WARNER
11447 YUBA RIDGE DRIVE
NEWADA CITY, CA 95939

ROY WEISENBARGER
1281 CHESHIRE ROAD
MAITLAND, FL 32731

ROBIN WERNICK
9514 CARROLL CANYON DRIVE
SAN DIEGD, CA 72128

MAYNARD WILCOX
{87 EAST AVENUE
FRANKFQRT, NY 13348

MARD A, WILLIAMS
3 AMES STREET
CAMBRIDGE, MA 82139

WAYNE C. WILLIAMS, DIR

S0H GF MED/EAST CAROLINS 0.,

GREENVILLE, NC 27834

WIS SURMEY RESEARCH LAR

4% LANGDON STREET/ 169 LOWELL

MADISON, Wl 53783

THIHAS R, WOOLF
88 BUJEN ROAD
CHURCHVILLE, NY 14428

STEVE WOOTTEN
135 BARINGTON STREET
ROCHESTER, NY 14487

DAVID R, WRIGHT
1385 N EIRE / APT 23
LEXINGTON, NE 48858

WILLIAM B, WRIGLEY
4931 REBEL TRAIL, N
ATLANTA, GA 38327

DAJID ZAUISLAK
3729 N CALIFORNIA AVENUE
CHICAGO, IL 4B459

CHRIS ZERR
18932 - 134TH COURT NE
REDMOND, WA 98832

ANTHONY ZIVLTS
1117 SEQUDIA
FORT COLLINS, CO 68525

(S50

BASIC PRECISION

“Subscriber Wallace Rust, of the
Rochester User Group points out that In-
tecolor computers, including the CCIi,
can store numbers up to 16777216,
While BASIC truncates and rounds them
to six digits for display, if still stores them
internally with at least 7-digit accuracy,
and with 8-digit accuracy to the
number stated above. You have
nothing to lose, therefore, by entering
constants with 8-digit accuracy. This will
guarantee highest accuracy in com-
putations before the rounding, prior to
display, takes place. You can prove this
rather easily with some simple ex-
periments, perhaps using Pl. [See some
exploratory examples below. ED]

30

14
26
kL
44
LE
4é
ge
]

faf

1
}.Xﬂ

ss0 numerical precision

SiH

432,389

SEP/OCT 1984 COLORCUE

A ‘no—echo’ patch without assembly language!!

Here’s one from Tom Devlin—a new version of the no-echo
patch that uses no machine language! And it works!

Most users are familiar with the ESC USER jump loca-
tion (if not, see Rick Taubold’s detailed explanation in Col-
orcue). There is also a user-defined input flag vector which
may be used to produce a deviation from the ‘normal’ flow
of computer processes. Normally, the CCII performs its 1/0
with BASIC, FCS, the serial port, etc., according to default
settings of the various flags. These settings are initialized
by FCS at turn on time to prepare the computer for ‘nor-
mal’ operation. The programmer holds the power to alter
this normal state of affairs. If the input flag at 33221-33223
(81CSH-81C7H), for example, is set to any of a group of
special values, input is directed to a special jump vector (user
defined), just like ESC USER. This jump vector can transfer
operations to an unusual place, determined by the
programmer.

As an example, the keyboard flag is at location 33247
(81DFH). This flag value is normally ‘0’ and input keyboard
characters are sent to the CRT. When it is ‘13’ they go 10

00010 REM
00020 REM
QOOZ0 REM
O00O40

DONE EBEFORE

DO0OLO0
OOO70 REM
0080 IF FEEK
QOO0

00100 REM
00110 IF FEEE
Q0120
01230 REM
00140 REM

G0O1&0
Q0170
00180 REM
00190 REM
QOZ200 REM
Q0210

O0O2E0

QO240

00250 FOKE Z3278,0
00260 E=FEEK
00270 FRINT K3

OO280 IF E=8 THEN END
0O290 GOTO ZS0

COLORCUE SEP/OCT 1984

GOOS0 POFE 33221,195:REM FOKE

FOR v8.7%9 (OR
(1)=186 THEN FOKE I33222,1:PO0EE Z3223,10

V.80

FOR MO ECHO FOFE
TO RETURN T0O ECHO FOKE 12. (AM INFUT STATEMENT
00150 REM OR THE END OF THE FROGRAM WILL ALS0O DO IT)

(3Z278) : IF E=0 THEM 260

FCS, which might send them back to the CRT or to a disk
drive. When the flag is ‘12°, the keyboard input is ignored.
But if the flag holds any of the values 10, 11, 15-17, 19-22,
24, 26, or 28-31, then a jump to the memory location stored
at address 33221-—33223 occurs. If these addresses hold
8355H, for instance, then program execution continues at
that location.

The routine below proceeds in just this way. The value
‘307 is placed in the jump vector address, 33221—33223.
What we place in this address is the address of the routine
that gets and stores the next keyboard press, but rather than
allowing it to print, we trap these values for our own use.

Program lines 250-290 access the keyboard character, now
in location 33278. From here on, Basic may do as it likes,
we we have controlled the timing of this event to suit our
needs. The following listing will demonstrate this technique
for you. Type it in, and play with the variations that are
possible. [

FIRST WE HAVE T0 LOAD THE FROFER ADDRESS
INTO JUMF VECTOR
TNO ECHO® IS REQUIRED

PINFCRT" LTHIS MUST RE

TIMETOINTO FIRST BYTE

FOR V&6.78 THE ADDRESS IS ZFAOH
(1)=108 THEN POFE Z3222,1635:FOKE 33223, 632

IT'S 0OAO01H

F0Q INTO "INFFLG" (33247),

THE FOLLOWING FROGRAM IS FOR DEMO ONLY
IT ECHOS THE ASCII EQUIVALENT OF THE
FEY YOU FRESS.

FRESS "HOME" TO END

00220 POEE 33247,20:REM TURN OFF ECHO

31

CCII Color Adjustment Wallace Rust

Compucolor users often have trouble distinguishing cyan
from white, and yellow from green. The culprit is the green
CRT phosphor, which emits not only green light, but also
unwanted energy in the yellow, orange, and red regions of
the spectrum. Thus, cyan images contain some unwanted
red which makes them look white, and green images con-
tain some unwanted red which makes them look yellow.

The trick to getting better colors is to adjust the green chan-
nel brightness so that its unwanted emissions are significantly
weaker than the red emission of the red channel.

Page 6.06 of the Compucolor Maintenance Manual (ISC 216
978 999208) explains how to adjust the three screen grid con-
trols R1 (red), R2 (green), and R3 (blue) located at the top
of the circuit card at the base of the CRT. A similar pro-
cedure is outlined in the 3651 Manual, described here.

CAUTION: HIGH VOLTAGES ARE PRESENT IN
THIS AREA OF THE COMPUTER. DO NOT
ATTEMPT THESE ADJUSTMENTS UNLESS YOU
KNOW EXACTLY WHAT YOU ARE DOING. NEVER
USE BOTH HANDS TO MAKE ADJUSTMENTS.
STAND ON AN ELECTRICALLY ISOLATED
SURFACE WHEN WORKING ON THE COMPUTER.
IF IN DOUBT, OBTAIN THE ASSISTANCE OF A
QUALIFIED SERVICE PERSON.

(A convergence and color purity adjustment should be made
first. Write to Colorcue for details of these adjustments.)

1. Erase the screen with a background color of white.

2. Turn potentiometers R1, R2, and R3 fully to their ‘off’
position. Turn the brightness control, mounted on the back
of the unit, on the 50 pin bus side, below the FOCUS con-
trol, to maximum brightness.

3. Turn the red control, R1, until the red retrace area is just
visable. Repeat the procedure for the green and blue con-
trols (R2 and R3.)

4. Adjust the brightness control until there is no visable
retrace line, and until brightness is at a comfortable level
with a minimum of saturation.

5. Vary the adjustment of these controls to obtain the best
white display at a comfortable level of brightness.

After following that procedure, do the following:

1. Put some test samples of each color on the screen at the
same time.

2. Confirm that the red/blue ratio is such that you get a
good magenta, which is neither too blue nor too red. Make
minor pot adjustments to meet this criterium.

3. Turn R2 (green) to reduce the brightness of the green
channel, until yellow becomes slightly orange (like KODAK
yellow), and white becomes pink, relative to daylight white.

That’s all there is to it!! [

UNCLASSIFIED ADS

FOR SALE: CCll, v6.78, lower case, 2 drives, full keyboard.
Computer is in excellant condition, and comes with most
issues of COLORCUE and FORUM, and many program disks.
$1000.00. Call or write Bill Stanfon, 8115 Helm Court, Col-
orado Springs, CO 80918; 303 599-4089.

FOR SALE: CCII, v6.78,32K, 1 drive. Maintenance Manual
and following software: Personal Data Base, Basic
Language 1-10, Formatter, Basic Editor, Screen Editor,
Assembler, Fortran, misceltaneous games and disk utilities.
All back issues of COLORCUE. Computer in good working
order, $700.00, money order or cerified check, prepaid.
Bill Anthony, 655 Wells Way, Camano Island, WA 98292, 206
387-1576.

FOR SALE: CClHl, v6.78, 32K, full keyboard, switchable lower
case, handshake option, printer cable, sound, dust covers.
Over 70 disks including Heim's Data Base, Screen Editor,
Print; Com-Tronics TERMII; income Tax Program, and many
more. Manuals and periodicals included. $1500.00,
prepaid. Phil Simon, 6275 Cary Avenue, Cincinnati, OH
45224, 513 681-8370

BASIC VARIABLES IN FILE STATEMENTS

FILE “*N*" and FILE ‘R’ statements in Basic use a4 combination
of string and numeric parameters to specify the file name and at-
tributes. It is not obvious that variables can be used to specify these
quantities in the course of a Basic program. The examples below
show the extremes to which variables may be used. Suppose you
have a RND file of 128 bytes containing some data for each week
in the year and want to read the file for a specific week. The follow-
ing coding identifies the week number as a ‘decimal’ version number
[1-52]:

428 INPUT “ENTER WEEK NUMBER "l

438 FILE "R™,Z,“WEEK.RND;"+W$,1;1,128,1
String concatenation may be used to construct a proper file name
as illustrated above. Note that the file name must be in string form.

We could alternately call the RND files ‘WKI1.RND’,
‘WK23.RND’, etc:

428 INPUT "ENTER WEEK NUMBER > *;us
438 FILE "R® 4, "WK"+W$+" .RND® ,1:1,128,1

As long as we assign string variables where strings are required,
and numeric variables where numbers are required, we can suc-
cessfully operate on files with variables. Consider this example:

128 AS="WK" : C4=".RND" : F=! : H=128
176 INPUT "ENTER WEEK NUMBER * ° ;%
280 FILE "R*,1,A84W84C8,1;F H,F
A final example is taken from a working business program of mine
(which has a well-documented file table in the manual!):
958 FILE "R® N,"CD"+D$4":"429(2)+ .
MID$(P$(2%CK) ,6H-5,T) ,F ;4P KL-6,C

As always, a few ‘controlled’ experiments will help give you a con-
fident grasp of the rules for using variables in this way. [JHN]

COLORCUE 19 West Second Street ¢ Moorestown, NJ 08057

P Ve S diFea Y o W o b i O S
N N ditl e die & O O e

A BI-MONTHLY PUBLICATION BY AND FOR INTECOLOR AND COMPUCOLOR USERS

L R SN TC W ol

“Collector’s Edition’’

wom The Intecolor Corporation

The COMPUCOLOR II.

with tributes by

John Newby, geologist Chris Zerr, experimenter
Doug Van Putte, miracle worker Bob Mendelson, 8000 specialist
w. S. Whllly, nuisance Tom Napier, groom.

Wallace Rust, astronomer Thomas WUIff, programmer

VOLUME VI
NUMBER 6

UNCLASSIFIED ADS

FOR SALE: CCli, v6.78, 32K, deluxe
keyboard, switchable lower case, hand-

shake option, printer cable, sound, dust

covers. Over 70 disks including Helm's

VOLUME VI, NUMBER 6 NOVEMBER/DECEMBER 1984 Data Base, Screen Editor, Print; Termlli,

CC’s Income Tax, plus many more.
Many manuals and magazines. $1500
postpaid. Phil Simon, 6275 Cary
Avenue, Cincinnati, OH 45224,

CONTENTS 513-681-8370.

FOR SALE: CCli, v6.78, 32K,
maintenance manual, all back issues of
Colorcue, and the following software:
Personal Data Base, Basic Language
Tutorial 1-10, formatter, Basic editor,
screen editor, assembler, Fortran, plus
) miscellaneous games and disk utilities.
A ngd DlSk for 1’he CC” JOHN NEWBY é The computer is stil in good Working
order. $700, money order or certified
A Commentary on the Hard Disk CHRIS ZERR 12, check postpaid. Bill Anthony, 655 E.
Wells Way, Camano Island, WA 98292.

“ASTRO” WALLACE RUST + o e e 18, (206) 387-1576.

“ o FOR SALE: CClI in good working con-
WATOR TOMINAPIER o 24. dition, v6.78, 32K, 1 internal drive, ex-

SEARCH Program for the 8000. BOB MENDELSON .. . 28. tEeanSiAlfey(?;iﬁowE Tslf,sy'c Ed't%;
Pascal, and Forth. Lots of utilities and
TRACE, a printing disassembler. THOMAS WULFF . . . 32. games, Maintenance manual, all Color-
cue’s. $500. Michael Burcham, 1707
A 'Bug’ in FASBAS PETER HINER v v v o, 31. Gleason, lowa City, 10 52240. 319
354-2131.

IDA'S Monitor WO SSWHILLY oo 33. FOR SALE: CCll, v6.78, 32K, 2 disk
drives, switchable lower case, 101 key
INDEX TO CClIl PERIODICALS JOSEPH NORRIS 37. keyboard, and two Soundware at-
tachments. In excellant condition. Pro-
grams include 10 Soundware games
and 35 additional games, 20 applica-
tions including Equity, Bonds and
EDITORIAL. 3 Tom Teaser 17, Securities, Statistics |, text and Basic
UNCLASSIFIED ADS 2. ICS NOTICE 27 editors, Personal Data Base, Basic Tutor,
HARD DISK SOURCES 9. INTECOLOR BBS 36. assembler. Manuals include the Pro-
gramming Manual, Maintenance
Manual, Colorcue H-1 through 11,6,
Assembler Operating Manual. $1095,
shipping prepaid. Mike Rousse, 15
South Owen Drive, Madison, WI

. 53705. (608) 238-1825, or leave
EDITOR: JOSEPH NORRIS COMPUSERVE: 71106, 1302 message at (608) 233-6751.

“What the dickens is ‘recursion’?” DOUG VAN PUTTE . 3.

PETER HINER, a biographical sketch, 4,

COLORCUE is published bi-monthly. Subscriprion rates are US$12/year in the U.S., Canada, and Mexico (via
First Class mail), and US$30 elsewhere (via Air Mail). All editorial and subscription correspondence should be addressed
to COLORCUE, 19 West Second Street, Moorestown, NJ 08057, USA. (609-234-8117) All articles in COLORCUE

are checked for accuracy to the best of our ability but cannot be guaranteed error free.

I suppose the greatest reward for an editor is the privilege
of producing an issue like this one. So many articles have
been submitted, and of such high quality and excitement,
that [feel a sense of having been renewed to meet the
challenge. Several people have asked me at one time or
another why I would want to take over a ‘dying’ publica-
tion. Well folks, I’m very suspicious of ‘death’ in the first
place, and tend to see it as only transitional in the second.
With this issue we pass our mantel to CHIP, and before star-
ting my next article for that august publication I have some
old business to complete.

Special thanks to the following: my friend and wife, Susan
Hardee Norris for tutoring and supervision in use of her
spectacular typesetter and showing me how to communicate
successfully on the modem, and for her forbearance; to Tom
Devlin for keeping me alive in desperate moments; to Doug
Van Putte for endless encouragement, moral support and
a steady stream of articles; to David Suits, Rick Taubold,
Chris Zerr, Peter Hiner and all of you who have submitted
materials to COLORCUE during my tenure; to FRIENDS
JOURNAL, in Philadelphia for their generousity in pro-
viding the typesetting facilities; to all of you who, through
your continued subscription, afforded me this enviable op-
portunity to know and work with you. I have made many
special friendships through COLORCUE, and I have not
know such a splendid collection of people as I have found
among CCII enthusiasts.

“Some assorted thoughts, thanks and numbers.”’

My thanks, too, to my employer, The David Hafler Com-
pany, for the opportunity to gain some valuable computer
experience on Intecolor products and for the motivation af-
forded by their utility of my computer output.

Some statistics: letters received, 387; letters written, 532;
subscription revenues, $3800; publication costs and ex-
penses, $5300; current subscribers, 205; pages in Volume
VI, in excess of 200; subscriber cost per page, about 10 cents.

I hope you will expend the effort to assemble Tom
Napier’s program in this issue. [t is simply spectacular, and
an extraordinary example of first rate programming. If you
would like a measure of his talent, read the article in Scien-
tific American and then look at his code. You may find it,
as did I, a very humbling experience. John Newby’s gift is
beyond value. Any subscriber interested in pursuing a hard
disk installation is encouraged to contact John or me for
all possible assistance.

Any materials submitted for publication that didn’t make
it in this issue will be forwarded to CHIP for their considera-
tion....and get your subscription into CHIP!

With my very best wishes,

5““'“ Novs,

A\

.. . .recursion?”’

“What the dickens is ‘recursion’?”’

When an object is defined by the application of a simpler
case of itself, we have a recursive definition. Recursion can
be useful in programming, as we shall see, but first let’s ex-
plore the definition further. Consider a recursive definition
of the factorial of the number 4. Ordinarily, we think of
the factorial of 4 to be

=443 %2%]
But the factorial of 4 could also be expressed as
4t = 4 » 3!
which is a recursive definition, since 3! is used to define 4!.

Another distinctive feature of a recursive definition is that
it must lead to a definite ending point. Let’s expand the
definition of 4! by continually repeating the above
definition:

COLORCUE NOV/DEC 1984

Doug Van Putte
18 Cross Bow Drive
Rochester, NY 14624

4! =4 % 3!
=342
20=23% !

1'=1 %@

8t =1

Our ending point is 0!, which is ‘1’ by mathematical defini-
tion. Now let’s compute the factorial by back-tracking from
the ending point:

g =1

h=txg=1xl=]
20=2%1l=2%1=]
P=3%21=3%2=4
§i=4%3 =4%d=2

We have computed our way back to the correct answer from
the ending point using recursion.

The BASIC program in Listing I uses this same scheme
to compute the factorial of a given number. After providing
for the entry of a number whose factorial is to be computed,

the main program stores this number in the first element
of a ’stack’, A(1). Then it successively breaks down this
number by subtracting one from the number until zero is
reached, each time storing the intermediate result in the next
available location of the stack.

As long as the number entered is not zero (0! = 1), con-
trol is now sent to the subroutine. The subroutine will begin
the factorial calculation by starting with the bottom element
in the stack, A(I) =1, and storing the factorial value of that
element in FA. Note that unless there is only one element
in the stack, the subroutine continues the calculation by call-
ing itself recursively. Then, by the scheme shown above,
when the first element is reached (our original number, at
last!), the last factorial is computed and control is transfer-
red back to the main program where the factorial of the
number entered is printed.

00010 REM J0KKIOKIOKICKROKIOKK LISTING 1 j00kkiokickok ook ik

00020

00030 REM ¥xx30OKK¥RECURSIVE ROUTINE TO COMFUTE NIkdokkiokx

00040

00050 PLOT 12:DIM A(20)IREM INCREASE DIMENSION FOR N>20

00060 INFUT "ENTER N " iNINN=N

00070 IF NN=0 THEN FA=1:G60TO 140:REM SIMFLE CASE OF N=0
00080 I=0iREM INITIALIZE STACK INDEX
00090 REM TAKE AFART N ONE BY ONE AND PUSH VALUES ON STACK

00100 I=T+1
00110 AC(I =N
00120 N=N-1

00130 IF N>0 THEN 100:REM DON’'T STOP UNTIL N=0O
00140 FA=1:GOSUB 200:REM 0i=1 IS WHERE FACTORIAL VALUE (FA)

00150 REM IS INITIALIZELs

00160 PRINTIFRINT *FACTORIAL "#NNi"

IS "#FAIFRINT

00170 GOTO &OREM LETS GO ARDUND AGAIN

00180 REM SUBROUTINE: FOFS A VALUE FROM THE Iih LOCATION OF A
00190 REM STACK & COMPUTES 1ITS FACTORIAL BY USING ACI)kA(I-1)!
00200 IF 1=0 THEN RETURNIREM ENDING FOINT TEST

00210 FA=A(1)XFAIREM FACTORIAL ACCUMMULATION

00220 I=I-1!REM RESET STACK POINTER

00230 GOSUB 200:!REM RECURSIVE CALL
00240 RETURNIREM END OF SUERDUTINE

PETER HINER:
A biographical sketch.

The editor has requested a brief
biographical sketch of all the Colorcue
authors. Peter Hiner has graciously respond-
ed and so we present this background on
such an extraordinary talent as the author
of a compiler must be.

Peter Hiner is 40 years old, married with two children,
a boy of four and a girl of 18 months. He is employed by
STC (Standard Telephones and Cables) as a System Design
Manager in the Switching Division, which supplies telephone
and data switching equipment, primarily to British Telecom.
His engineering background is in logic and switching design
for electronic switching systems. He claims his primary
source of experience with software has been through the

4

CCI1 which he bought in 1979. How did he get started?

““I followed what is probably the usual route of transcrib-
ing Basic games from magazines, to get used to our dialect
of Basic, and then (had) a go at writing simple programs
for games and graphics displays. From the beginning I had
always believed that Assembly Language programming was
the purest and most noble form of the art, so I soon started
trying to break into this area. I am sure the first hurdles
are the most difficult and the written materials now available
for the beginner (particularly on input and output routines)
must be of great help to those taking their first steps today.
I tried the impossible task (for a beginner) of getting the
required input and output routines from ROM, using a
disassembler. This exercise left me totally lost and confus-
ed, although it probably started me on the path to writing
a Basic compiler.

“I wrote a rudimentary sort of Invaders game—not very
thrilling—and then got hooked on the idea of writing a ver-

NOV/DEC 1984 COLORCUE

The problem with making a recursive call in BASIC is that
of preserving the values of the identifiers (e.g. the decreas-
ing integer values in the above example.) This is done in our
example by using a stack. The integer values are pushed onto
the stack before the recursive call, and later popped off the
stack in reverse order when executing the call. Some other
languages, such as Pascal and *C’, can simplify this pro-
cess considerably by ‘keeping track’ of the identifiers in a
less cumbersome way.

‘““Can this recursion do anything useful?”’, you might ask.
The answer is ““You bet!”’. For example, consider the binary
search program in Listing II. In this case we don’t need a
stack, just a scheme with a definite ending point. The scheme
looks for a given value in an ascending array (it could be
descending) and, if found, prints the index in the array where
a matched element is located. A zero is printed for the in-

dex if a matching element is not found. The subroutine
begins by comparing the middle element of the array with
our value. If a match is not found, the array is split in two
and only one half continues to be searched by the routine,
recursively calling itself. Each time, then, the remaining part
of the array is split until the middle element matches our
value, or until the ending point is reached with no match.
The ending point is reached when the lower bound of the
array to be searched exceeds the upper bound. In either case
(match or no match), control is returned to the main pro-
gram to print out an index value. The value of recursion,
here, is that it has been used to anchor a search method
which is far more efficient than a simple linear search.

You might experiment with these principles by develop-
ing your own recursive routine in BASIC to raise a number
to a power. I’ll send you the answer to that one on request.
i’d be interested in seeing any of your efforts.

00010 REM xkiGkiciookkkRkkdkk LISTING 2 kkkaokdokokiokkkk

00020 REM

00030 REM *¥kxkkikkkx BINARY SEARCH FROGRAM dokakdiokkkxk

00040 REM

00050 PLOT 1230IM AC21 DIBM=1TP=21IREM TP IS NO.
00060 FOR I=EM TD TPIREM READ IN ARRAY TO BE SEARCHED

00070 READ! ACT)
00080 NEXT I

00090 FRINTIINFUT "ENTER ELEMENT FOR SEARCH "X

00100 L=EMIH=TFIREM INITIALIZE SEARCH LIMITS
00110 GOSUE 130
00120 PRINT “ELEMENT INIEX IS "#B:GOTO 90

003130 IF L>H THEN E=0!RIZTURNIREM TEST FOR ENDINRG POINT
00140 M=INT ((L+H)/2)REN COHPUTE ARRAY MID POINT
00150 IF X=A(M) THEN E=MIRETURNIREM MATCH W/ MIDDLE ELEMENT?

IN ARRAY

00160 IF X<A(M) THEN H=M-1:GOTO 180:REM SEARCH BOTTOM 1/2 ARRAY

00170 L=M+1:REM SEARCH TOPF 1/2 ARRAY
00180 GOSUB 130:REM RECURSIVE CALL
00190 RETURNIREM RETURN TO MAIN

00200 DATA 113+51799r11113715:17519+21123 925927+ 29+31133+35537+39541

sion of the original adventure game to fit a 16K CCII
machine without repeated disk reads. This was a magnum
opus, using quite sophisticated techniques. The program
consisted of a small interpreter (about 2K) driven by a 4K
table of data. The huge amount of text (25K) for descrip-
tions and messages was compressed into about 10K using
a mixture of dictionary and other text compression techni-
ques. This huge task took about a year to complete, but left
me with a powerful tool for writing other adventures, and
1 was later able to produce a version of Scott Adam’s Pirate
Adventure in a few weeks.

‘‘After that, I started on my Basic compiler which grew
over a couple of years from humble origins to a complete
implementation. By-products of this process were a tokeniz-
ed form of Assembly Language to reduce file size, a pair
of programs for disassembly and assembly, and a program
for comparing files.

““l am approaching the end of the road as far as utility
programs is concerned and am now turning my attention

COLORCUE NOV/DEC 1984

to artificial intelligence. I am interested in some simple forms
of export system to assist in the process of reaching deci-
sions based on a mixture of fact, experience and opinion.
I don’t expect that a Compucolor would support much more
than a very simple system, but it should be an interesting
field for experiment.”’

(The disassembler Peter refers to is available from the
CHIP library. It permits entry of your own labels, and is
designed to give every programming aid when disassembl-
ing totally foreign code. ED)

Peter includes in his note this challenging invitation: ‘‘One
of the by-products of ZIP has been an Integer Interpreter
with built-in debugging aids. It would be a relatively simple
task to provide a similar disk-based version of normal Basic
with built-in debugging aids, or anything else built in, if there
is a requirement. The only limitation will be the reduced
space available for user programs. If you have any ideas on
this subject, let me know. I would intend to provide this
Basic interpreter as a free program for the CHIP library.”’

5

A HARD DISK FOR THE CCII

For vears | have operated with the limited storage capacity,
the read/write errors, and speed variations of the Com-
pucolor Disk (CD) drives. My CC11 is used for many func-
tions at work and I have an incredible amount of custom
software, most of which uses large data files. An increas-
ing disk problem has suggested a change of computer
systems, even with the necessary conversion effort. I have
always dreamed of a system with a Hard Disk (HD), but
never figured one for the good old CCII.

In the March, April, and May 1983 issues of Byte, there
appeared a series of articles by Cruce and Alexander on a
hard disk interface for S-100 systems. It did not seem to be
all that complex, with the exception of having to write an
entirely new CPM type disk operating system. However,
hard disk systems were going for nearly $2,000~—much too
much to sink into a CCII without even knowing if it would
work, Even so, I began to consider the possibility.

In April 1984, a Seattle surplus electronics outlet, United
Products Inc., advertised SM byte hard disk drives for $250.
I investigated and found they also had a nice controller for
only $200 and a suitable power supply for $40. I had to try,
so I purchased these two units.

For a week I pondered the construction of a disk operating
system that would keep a map of all sectors and could ran-
domly write to the disk as does CPM. This would eliminate
the FCS problem of having to move all following files in
order to delete a file. I could not stand to see the hard disk
drive sitting around, so I decided to construct an interface
adapter and write a short FCS compatible disk handler to
see if I could get the thing working. I have never looked
back.

Within two weeks, I put most of my floppy disks awav
and was having a great time. I discovered that FCS is not
limited to 64K byte files. Since it is block structured, the
actual file size limit is 64K sectors or 8.39M byte. Disk
read/writes are so fast that file deletes are not much of a
problem, particularly with a good file utility program. All
FCS commands are operational, and any program that does
not have its own disk routines will work with the HD. Other
software, like Jim Helms’ Data Base, requires some
modification. However, the hard disk makes the data base
much more effective. I regularly work with 250K to 300K
byte data files without touching a floppy disk.

I have read horror stories about disk crashes, and it would
take over 100 CD floppy disks to backup the hard disk. I
thought about a tape drive backup system, but it is fairly
expensive. I made another trip to United Products. This time
they had just received in stock remanufactured 10M byte
drives and were selling them for $275. Hmmm. The con-
troller and power supply on the 5SM byte drive will handle
two drives, so why not use the second for backup? Done!

6

John Newby
4532 167th Avenue SE
Issaquah, WA 98027

I am now operating a 10M byte drive (actually 11.90M bytes)
and using the 5M byte drive (actually 5.95M bytes) as a
backup. It takes about 12 minutes to fill the backup drive.
The hard disk system works very well and I do not think
I would again use a CCII without a hard disk system.

Here are some of the features of the hard disk system:

1. The FCS HD handler is located in the open ROM space
(4000-5FFFH), and only occupies 805 bytes. You will need
to have either a single rom board or Freepost’s bank select
ROM board. The FCS system ROM also requires slight
moditication.

2. The disk drive is logically configured as eight 1.49M byte
devices, HDO: to HD7: (four for a 5M byte drive).

3. Each device directory defaults to a 32 sector size (the max-
imum allowable in FCS); however, there is room for 191
tiles on each logical device.

4. There is no limit to file size since FCS can access up to
64K block (8.39M byte) files.

5. All FCS commands are operational, including copying
between CD and HD devices.

6. The system is fast. As a benchmark, a 32K byte write on
the HD takes 2.0 seconds compared to 30 seconds for the
CD. A 32K byte read is 1.5 seconds compared to 13 seconds.
When you load screens, they ‘pop’ right up. For disk inten-
sive operations, such as loading LDA files, data base sorts,
or Fortran compiling and linking, the speed increase is
greater.

This article describes the major elements of a hard disk
system consisting of the following items: a custom CCII
SASI Hard Disk Interface Adapter, a hard disk controller,
one 10M byte or 5SM byte hard disk drive, a power supply,
enclosure, and cable, and changes to the FCS operating
system. I suggest you also read the series of articles by Cruce
and Alexander.

You will need to write a utility program to format and
check the drives. If you use another drive as backup, you
will need to write an additional utility routine. This is not
too difficult, and all of the subroutines required are in the
HD handler presented here. If you wish, I will send you the
source for my utility routines.

As an aside, I also built an EPROM programmer which
plugs into the CCII fifty pin bus and will provide the cir-
cuit diagram and software required to anyone who asks. It
makes life as a CCII hacker much simpler.

THE SASI INTERFACE

The Shugart Associates Standard Interface (SASI) is an
industry standard interface for parallel data and control
signal transfers between a host computer and a hard disk
controller. The circuit diagram for the CCII SASI interface

NOV/DEC 1984 COLORCUE

861 D3IA/AON IN2JOT00

Figure 1. Compucolor Il SASI Hard Disk Interface Adapter
(30) 07 3 i 2 :: D7 (18)
(32) pe 4 1c11 4 ics P D8 (14)
(34) o8 g : ‘2 08 (12)
8] 1
(33) D4 Ta] 74L8373], 11] 7418240 D4 (10)
(28) Da " . D3 (8)
o o2 e -
(24) D1 . " D1 (4)
(22) Do 8 1 ir Do (2)
ics 741838
{8 S T 1] 19 7ars02 t 4, 9
a Ice |8 8 ACK (38)
120~ 11 4 10
10UF TALT. oY b) 2 3 |T4L874
+ 18 2 _a_{><,a_1_ s
18 4
(12) +5v ——r‘l—x—n—rn. 14| 160 |4 lcs
L o 7418240 1
B 2 L e SEL (44)
7 13 z
s 18
3 17
11 19 ica
74L810 74882 °{>c' 740814
(37) AT 9 Ics
s 4
(36) AS " =) . .
(20) As icr he__|s + % < .13 RST (40)
(31) As . " §1°“c 18 | 2
(20) A3 ——— 3] 7418138 8 N
_ 3] s o 1c10
(27) A2 " 2| H2 13 14 L]
(28) Al ——— 2 fic 12 8
(28) A0 1] ! o o | 74L8240 [REQ (48)
' TX) — : M8Q (42)
13
(4) -1/ow s s :7: (‘::)’
- 3
(14) -1/OR 17 1710 (80)
1] 1] 323 4.7K OHMS X5
k-4 S - r QND (ODD)
(10) RESET 1111 1
CCli BUS

SASI BUS

board I built is shown in Figure 1. To the best of my
knowledge, this interface should work with any SASI com-
patible hard disk controller.

The standard connector between the interface and con-
troller is a fifty connector ribbon cable. There are two eight
line groups, one for the data transfers and the other for con-
trol signals. The signals are active low and are defined as
shown in Table 1. All odd numbered lines are grounded to
improve noise immunity. In addition, the cable length should
not exceed twenty feet.

Signal Connector Descristion

-DB8 z Bi-girectronal trisfate dats s,

-DBi g

-{B2 4

-DB3 i

-0Ed 18

-bBs iz

-DBé 14

-GB7 1é

-BSY 34 Set sctive Ty Conirolier Juring eadh
COMMans SEQUEnce, A high ‘gue: MEans
ready for next command $EQUERCE.

-ACK 3k Set active by host in response to -REQ
from controlier Yo ocomplete handchake,

-RES 4 Set active by host to reset controiler.
Must be Tow for at Teast 148 5%,

M56 42 Set active by controlier to indicate
the command sequenCe 1= compiete,

-SEL 44 Set active by host to intiate & command
SEQUEnCE .

=L/ 44 Set active bv controller when a commang
15 on data bus. High means data.

-RER 48 Set active by controller to intitiate
a byte trancfer handehake,

-1/ 38 Set active by controiier to indicate

input to host.
WD 1-49 A1l odd signal tines are connected to
i common ground.

The interface board is accessed as a group of 1/O ports
from the CCII. Port address decode logic is located in the
lower lefthand portion of the circuit diagram. Five port ad-
dresses are allowed, as listed in Table 2. I never implemented
the software reset port but my hardwired reset has worked
very well. If a software reset is desired, a one-shot should
be added to provide the required reset pulse width.

The octal line drivers (74L.S240) on the interface board
invert the SASI signals so that the CCII receives normal,
active high signals. Therefore, the data lines are correct and
the control byte received from port 0ODAH is as shown in
Table 3. The controller latchs the data and control lines it
is transmitting or receiving. Data transmitted by the CCII
is latched by the 74L.S373. The -SEL and -ACK control
signals are latched by the flip-flops in the 741.874.

8

TABLE Z. PORT ASSIGNMENTS

Function

Port action

#lGH Head Read data from conirolier

goYH uWrite brite data to controiier

404H Read Read control sigrals

hBH Write Write setect byte to controiler

BDCH Urite Send reset signal (not implemented)

Each command sequence occurs as follows:

I. The CCII selects the controller by waiting until it is idle,
then writing a select byte to port 0DAH. The write sets a
flip-flop in the 74LS74 to send -SEL. The controller
responds by asserting -BSY. This clears the flipflop to turn
off -SEL. Then controller then activates -C/D to indicate
a command, but leaves -1/0 deasserted to indicate output
to the controller.

2. The controller requests a byte by asserting -REQ. The
CCII writes a byte to port 0ODSH. This write also sets another
flip-flop in the 741.S74 to send -ACK to the controller. The
controller reads the byte and deasserts -REQ, which also
clears the flip-flop to turn off -ACK. This handshake se-
quence is repeated until the entire six byte command is
transfered. All subsequent byte transfers use the same re-
quest/ acknowledge handshake.

3. If the command sequence involves a data transfer, the
controller will deassert -C/D to indicate a data transfer and
sets -1/0 as appropriate. Data is then transfered using the
same request/ acknowledge handshake as for the command
bytes, with either a CCII read from port OD8H or write to
port O0DSH sending an -ACK to the controller.

4. At the end of a command sequence, the controller sends
a completion byte which indicates if any errors occured. The
controller then asserts -MSG and a message byte (0)is sent
to the CCII. All control signals are deasserted and the con-
troller returns to an idle state.

The circuit shown in Figure 1 is comprised of relatively
inexpensive parts and is easy to build. As the CCII fifty pin
bus is not buffered, it is important that the interface board
be plugged directly into the CCII and that the CCII data
and address line lengths are kept to a minimum. The circuit
should be constructed on a board with a ground plane pass-
ing beneath each integrated chip, and ground leads should
be short. The power decoupling capacitors should be plac-
ed at regular intervals and should also have short leads.
Table 4 lists the integrated circuits and indicates their power
and ground connections.

Once you have completed construction of the SASI in-
terface, make sure that the power lines (or any others) are
not shorted. Connect the interface to your CCII and check
out all data lines by writing bytes out port 0D9H and reading
port O0D8H. If you do not read the same value, you pro-
bably have crossed data lines somewhere. To check the con-
trol lines, write a byte to port 0DSH and you should read
05FH on port ODAH.

NOV/DEC 1984 COLORCUE

Table 3. CONTROL BYTE

Bit Signal Leved Function

§ 1/0 é CCIT =¥ Controller

1 Controtler =3 LCII
H £/] Data on bus

1 Command on bus
2 BSY 2 Controtier idle

! Controller in command sequence
i M5B 8 Normai condition

1 Transfer compiete, status byie sent
4 RE@ 8 Ho request from controller

! Controller ready to send/receive
5] 5% i Select output confirmation
é A% ! Acknowledge output confirmation
7 RES £ Reserved - Forced to B

o R

The hard disk controller is an intelligent device which
operates hard disk drives (generally two to four drives per
controller). The controller is sent simple commands by the
computer and performs the required disk functions. The
controller is connected to the disk through another inter-
face. Most five and one-quarter inch drives use an industry
standard Seagate Technology ‘ST506’ interface. If you wish
to know more about this interface, please refer to the ar-
ticles by Cruce and Alexander in Byte. The controller
handles all of the signals required by the hard disk;
therefore, you only have to know how to connect the cables.

Most hard disk controllers which do not use a direct
memory access interface, use the SASI interface. This in-
cludes almost all inexpensive controllers. In selecting a con-
troller, you should be sure that it uses both SASI and ST506
interfaces and supports 128 byte sectors for compatibility
with FCS.

TABLE 4. INTEGRATED CURCUITS

Humber Type + 3 Volts Ground

It 74L582 2-INPUT NOR GATE 14 7
1€2 74L518 3-INPUT NAND GATE 14 7
it3 741514 SCHMITT INVERTER 14 ?
104 741532 2-INPUT OR GATE 14 7
ICS 741538 2-INPUT NAND BUFFER 14 7
1té 741574 DUAL D FLIP-FLOP 14 ?
107 7415138 1-0F-8 DECODER 15 8
1l8 7415248 OCTAL BUFFER 20 18
IC? 7415248 OCTAL BUFFER 28 18
IC18 74L5248 OCTAL BUFFER 28 18
11 7415373 GCTAL LATCH 28 18

COLORCUE NOV/DEC 1984

ST506 AVAILABILITY.

Here is a list of sources for the ST506 Hard disk drive (and
units that are compatible with the ST506) as well as other
components in the hard disk system. Prices are from May
1985. [*] indicates a possible source for contfrollers. These
sources are from COMPUTER SHOPPER. COLORCUE has not
checked any of these sources nor do we necessarily recom-
mend them. This listing is for your convenience only. Some
units may be new, others used and fested, still others ‘as
is.” Proceed with a clear head!

HARD DISKS AND CONTROLLERS.

Advanced Computer Products, Inc. 1310 E. Edinger, Santa Ana,
CA 92705. (800) 854-8230 or CA: (714) 558-8822. 6 MBytes: CHST506,
$199.00; Shugart SA604, $119.00. 10 MBytes: Seagate ST419,
$299.00.

*' W W Component Supply, Inc. 1771 Junction Avenue, San Jose,
CA 95112. (408) 295-7171. SMBytes: Shugart SA604, $ 149.00.
Walker Electronics Company. 3521 Hacienda, Dallas, TX 75233.
(214) 339-4916. ST506, $175.00.

* Steve, (513) 433-1501. STS06, with manual, $249.00. Call after 6
PM.

* Computer Products and Peripherals Unlimited. 18 Granite Street,
Haverhill, MA 01830. (617) 372-8637.

* Digital Search. (803) 877-9444. Source for many drive products.

* Met-Chem International Corp. 2911 Dixwell Avenue, Hamden,
CT 06518. (203) 248-3212, (800) 638-2436. Bulletin board {300/1200
baud] (203) 281-7287.

John Hanson. 1110 Pheasant Circle, Winter Springs, FL 32708. (305}
699-0124. ST506, $195.00.

(Unsigned) (916) 726-3294. ST506, $95.00.

POWER SUPPLIES

Jameco Electronics, 1355 Shoreway Road, Belmont, CA 94002.
(415) 592-8097. Kepro TDK $59.95 (12 volts at 2 A)

Nicorn Electronics. 10010 Canoga Avenue, Unit B-8, Chatsworth,
CA 91311, (8180 341-8833. Apple Power Supply (12 volts af 2.5A)

H. J. Knapp of Florida, Inc. 4750 96th Streeft, St. Petersburg, FL 33708.
(813) 392-0406. $29.95. (12 volts at 3.5A)

Computer Products and Peripherals Unlimited. (See address above)
Model A. $29. (12 volts at 3A)

B. G. Micro. PO Box 280298, Dallas, TX 75228 (214) 271-5546. (12
volts at 2.8A, 12 volts at 2A) Recommended. $37.50.

United Products, Inc. 1123 Valley Street, Seattle WA 98109. (206)
682-5025. TDK Model 21145, Recommended. $34.50. (12 volts at
2.8A and 2.0A)

INTEGRATED CIRCUITS

JDR Microdevices. 1224 S. Bascom Avenue, San Jose, CA 95128,
(800) 538-5000.

Jameco. (See address above.)

CABLES

Altex Electronics. 10731 Golfdale, San Antonio, TX 78216. {800)
531-5369.

COMPUTER SHOPPER also regularly advertises enclosures
which are suitable for a CCll hard disk instaliation. If you
wish to subscribe to this valuable publication, write to them
at PO Box 1449, Titusvilie, FL 32784, $45.00/year.

TABLE 5. OMTI 2BL COMMAND SUMMARY

Code Command Explaination

B8H SENSE STATUS Check for drive ready

81H RECALIBRATE Step out until Track 8

83H REGUEST SENSE Report detailed error codes

84H FORMAT DRIVE Format entire drive

85H CHECK TRACK Check entire track for errors

B6H FORMAT TRACK Format a single track

87H FORMAT BAD TRACK Write defective bit in 1D field
88H READ DATA Read ! to 234 sectors

8AH WRITE DATA Write 1 to 236 sectors

BEH ASSIGN ALT TRACK Set alternate track bit in 1D field
C2H ASSIGN PARAMETERS Assign hard disk variable parameters
EIH WRITE ECC To allow ECC testing

E2H READ ID To read 1D field

E4H REQUEST LOGOUT Read retry and error counts

EAH READ ECC To allow ECC testing

ECH READ DATA BUFFER Read buffer only, not disk

EFH WRITE DATA BUFFER Write buffer only, not dick

I used an OMTI 20L controller. Its general characteristics
include:

1. A 10K byte buffer to allow reading and writing of a full
track at one time by the controller.

2. Controller logic allows 128, 256, or 512 byte sectors.

3. A single ID field is used for each track, allowing for thirty-
eight 256 byte sectors (seventy-six 128 byte equivalents), as
opposed to standard formatting which results in only 32 sec-
tors. Therefore, the capacity is 5.95M bytes on a 5M byte
drive and 11.90M bytes on a 10M byte drive.

4. Four bytes of error correcting code (ECC) is written for
each 256 bytes. This allows automatic correction of up to
five bits per 256 bytes during disk reads.

5. Data written to the disk can be automatically verified.

6. Up to 256 sectors can be transfered in a single read or
write command.

7. Device size limited to 2 to the 15th power sectors (536M
bytes for 128 byte sectors) or 65K tracks (637M bytes).

8. The controller is on a single 5.75 by 8.00 inch PC board
which mounts directly on the hard disk drive. (I had to place
a copper PC board ground plane between the controller and
hard disk circuit boards to eliminate interference.)

Table 5 summarizes the SASI commands supported by
the OMTI 20L controller. If bad sectors are found on any
track, alternate tracks can be assigned during formatting;
from then on, access to these tracks is transparent to the
host computer. However, 1 have not encountered a bad track
in three hard disk drives, two of which were remanufactured.

The hard disk handler code described in this article should
work with minor changes, if any, on most any SASI com-
patible controller which supports 128 byte sectors. The
handler only uses the normal Sense Status, Request Sense,
Read Data, Write Data, and Assign Parameters commands.

10

A separate utility program must be written to format and
check the drive (and assign alternate tracks, if necessary).

OMTI no longer produces the 20L controller; however,
there may still be some on the surplus market (United Pro-
ducts is sold out). OMTD’s current comparable controller
is the 5200 series. This controller has the same, or better,
features and supports 128 byte sectors, but uses the stan-
dard thiry-two 256 byte sectors per track. However, it also
supports eight inch disk drives. OMTI is now part of Scien-
tific Microsystems, and their products are distributed by Ar-
row Electronics.

The industry standard controller is the Data Technology
Corporation DTC-500 Series. These are carried by Active
Electronics and others. However, [do not know if these con-
trollers support 128 byte sectors.

THE HARD DISK DRIVE

The hard disk drive is comprised of several sealed metal
media disks rotating at 3600 rpm. There is a read/write head
for each surface (two per disk). The ST506 drive has two
disks and four heads. Each surface has 153 tracks for a total
of 612. The ST412 also has four heads; however, later
technology allowed for 306 tracks per surface, doubling the
capacity. The ST412 also has a much faster head stepping
speed.

About the only requirement for hard disk selection is that
it should be ‘ST506 compatible,” and most five and one-
quarter inch hard disk drives are. The controller must be
assigned the proper parameters using the Assign Parameters
command. Variable parameters you will need to know in-
clude those shown in Table 6.

Seagate Technology hard disk drives have a 16 pin (8 con-
nection) option shunt block which must be inserted to set
customer options. This includes the drive select encoding.
For ST506 and ST412 drives, you should shunt pins 2-15,
4-13, and 8-9 (DS1) or 7-10 (DS2). Your drive supplier
should provide you with a description of how to set the op-
tions for your drive.

THE POWER SUPPLY, ENCLOSURE, AND CABLES

Most hard disks require power supplies which can provide
+ 12 volts at 3 to 4 amps peak (2 amps continuous) and + 5
volts at 1 amp. The peak 12 volt current is only required
while the drive is coming up to speed. | used a Kepro swit-
ching power supply which is generally available on the

TABLE &. DRIVE PARAMETERS WITH OMTI 28L CONTROLLER
Hame STaeé 57412

Step Pulse Width 3 u8 2 us

Step Fulse Period 3 ms 38 us

Step Mode normal normal
Number of Heads 4 4

Total Humber of Tracks 812 1224
Reduced Write Current Track 128 128

Sectors per Track 74 76

NOV/DEC 1984 COILORCUE

TABLE 7. PARTS COST FOR HARD DISK SYSTEM

5451 Interface Board and Parts 3 56.08
AlY Cables and Connectors 75.80
Kepro Power Supply 35.08
Heathkit Enclosure Parts 9e.88
Fan 25.88
OMT1 Controiier 280.08
Seagate Technology 57412 Drive 275,04

Subtotal 758.88

5T586 Backup Drive 230.08

Total 1066 .88

surplus market for less than $50. As lohg as [only power
up one drive at a time, this supply runs a ST506 drive, a
ST412 drive, and the OMTI controller.

I have used Heathkit H-77 disk drive enclosures for both
my two CD drives and my two HD drives. The cabinets ook
nice and have plenty of room for two drives and a power
supply. You can order the eleven pieces required from
Heathkit for about $90. [See parts list in Table 8.] You
should also put a fan on your enclosure to provide plenty
of ventilation. Hot components are not known for their
reliability or long life.

Connection cables are a significant item in putting
togeather a hard disk system. You will need the following:

1. A fifty line ribbon cable from the interface to the con-
troller, along with edge or pin connectors.

2. A thirty-four line ribbon cable from the controller to each
drive in a daisy chain manner, along with connectors.

3. An individual twenty line ribbon cable from the controller
to each drive, along with connectors.

4. A four wire connection from the power supply to each
drive and to the controller. The connector is an AMP
1-480424-0.

THE OPERATING SYSTEM CHANGES

All FCS routines access storage devices by setting up a series
of parameters and then calling a handler for the current
device type. There is a table in the FCS ROM which lists
the power up default device type and number. This is follow-
ed by a jump to the handler, a device name, and the max-
imum device number for each supported device. To support
the "HD’ drives, the disk lookup table in the FCS rom must
be modified as shown in Listing 1.

The hard disk handler can be located anywhere in the
4000-5FFFH ROM space. In order to support Freepost’s
multiple bank ROM board, the jump to the handler in FCS
goes to a patch (Listing 2) at the end of each ROM bank.
This patch jumps to the handler located in Bank 0. In this
manner, the hard disk can be accessed from any bank with
the patch at the end.

NOTE: There is a routine called ‘RESET’ which is called

COLORCUE NOV/DEC 1984

on entry to FCS. RESET sends a turn off function to each
device in the device table. If you are in a bank (including
the RAM bank) that does not have the patch in place, your
system will hangup. For the RAM board, you can CPU
reset; ESC W to Basic Reset; set the bank by OUT 255,7;
defeat calls to the hard disk handler by POKE 24542,201;
and then ESC D to FCS.

My hard disk handler code is presented as Listing 3. It
is for a Seagate Technology ST412 disk drive and an OMTI
20L controller. The modifications for a ST506 drive are also
indicated. If you use another drive, the code will need to
be appropriately modified. A good manual on the controller
you select is a must. The handler occupies only 805 bytes,
leaving plenty of room for your other utilities or programs.

There is nothing magic about the logical device size I
selected. You can easily modify the handler and device table
to support other numbers of logical devices. The number
of sectors per device should be an even division of the total
number of sectors on the hard disk, and must not exceed
64K sectors (FCS’s limit).

The only limitation with the handler, as I have im-
plemented it, is that you cannot read or write data directly
from a RAM card occupying the 4000-SFFFH memory area,
unless you load a copy of the handler in the RAM bank.
I get around this by either using a CD disk or by using a
simple utility program which loads the data in upper memory
from the hard disk, switches to the ram bank, and then
moves the data down.

CONCLUDING REMARKS

The total cost to setup my hard disk system is about $1000,
and can be broken down approximately as shown in Table
7. I have recently seen ST506 drives on the surplus market
for less than $175 and new Shugart 604 6.7M byte drives
advertised for $139.

When you sit back and consider having eight 1.5M drives
on line, very fast disk access, essentially unlimited file size,
full FCS compatibility, and not having to mess with CD disk
drives and limited capacity disks, it all seems well worth the
effort and price. My CCII is now so powerful and so much
fun to use I will probably stick with it for several more years.
Good old Serial No.16 is a lot different than when it rolled
off the assembly line in 1978. When I eventually move on,
the entire hard disk system (beyond the interface board),
which is industry standard, and can move on with me.

References.
Andrew C. Cruce and Scott A. Alexander. ‘‘Building a

Hard-Disk Interface for an S-100 Bus System’’, a three part
article in Byte: March, April, and May 1983.

Jim Thoreson. ‘“The Winchester Odyssey, from manufac-
turer to user.”’ Byte: March 1983.

““ST506 OEM Manual.”” July 4, 1983. Seagate Technology,
920 Disk Drive, Scotts Valley, California 95066.
408/438-6550

Scientific Microsystems (OMTTI). 339 North Bernard, Mt.
View, California 94043, 415/964-5700.

United Products Inc. 1123 Valley, Seattle, Washington
98109 206/682-5025.

11

Commentary on the HARD DISK

Wouldn’t you know it! Just as COLORCUE ends,
something new appears for the CCII to be shared with all
users—a hard disk system. When John Newby called me,
back in May of 1984, and told me about this I fell off my
chair! Amazing! So last February I splurged and bought a
ST506 Hard Disk, OMTI 20L controller and a power supp-
ly. The total cost was $506 {1}, including cables and wire.
I began to wire the SASI interface using a Radio Shack
epoxy board and point to point wiring.

It took me a week to wire, working a few hours every
night. Finally the big day arrived. 1 plugged it in
and...hmmm. I had a broken wire and one wire misplaced.
I corrected these and..Bingo..it worked. But this was only
the interface being tested. The next step was to connect the
interface to the controller and hard disk. This is so simple
that there isn’t much that can go wrong, right? All that re-
mained was connecting two jumpers, wiring a select strap,
and connecting a cable between the CCII interface and the
controller card.

I turried on the power and typed DIR HDO: . FCS ER-
ROR ENVE. Disk not initialized..whew! I next had to for-

Chris Zerr
10932-156th Court
Redmond, WA 98052

mat the hard disk and initialize each directory. The format-
ting takes only thirty seconds or so, and initializing is near-
ly instant. Once completed, the experience is wonderful. To
think, 6 megabytes online. Editing SRC files is a breeze. 1
do not have a second drive for backup so, for now, 1 only
backup files I have changed or that are really important.
As for software, I am currently using the Frepost bank board
with the HD driver in Bank 0. So far I’m enjoying all of
it. The CCII will keep me going for a few more years now.
Should it die, I’'ll know that the hard disk can move on to
another computer. Only the interface card, which costs
about $50.00 will be lost.

I would like to give special thanks to John Newby for his
time and effort in making this wonderful enhancement
possible.

[1] The cost could also be as low as this for subscribers who want
to investigate a hard disk for their CCll. See the list of possible
sources for the components in this issue. ROM chips are available
from John Newby. Joseph Norris might lay out a double sided PC
card for the interface. You may piace an order with him. The price
is not known, but is expected to be about $40.00.

H LISTING i. #CS ROM MODIFICATIDON
$

CDHD EQU B211CH 3 (1AC1)

HDHD EQU PSFDEH 5 (SFDE)
4

ORG #3688BH 3 (8640)
H
H INITIAL DEVICE NAME AND NUMBER
]

IDEVs DB *CD”

IUNIT: DB e

H COMPUCOLOR DISK HANDLER

HDVCT: JMP CDHD sVECTOR TO HANDLER
CDNM: DE ‘CD" 5 NAME
CDNU =z DE z sMAX. DEVICES
CDSEC: DB SOAH § BECTORS/ TRACK
CDK3 DE 85eH sUP TD SPEED TIME
bs 2 § SPARE SPACE
H
H INSERT HARD PISK HANDLER HERE
3
HDHDLs JMP HDHD §VECTOR TO PATCH AT END OF ROM
HDNM: DB "HD” 3 NAME
HDNUe [3)) 8 54 FOR 875864
bs 4
H
3 ROOM FOR STILL ONE MORE
i
OPNHD: DE @FFH
Ds S

»a‘i’

i
compucolan (8 ’
,“ CORPORATION N\ ‘\

'v
fu ’A’

12

H LISTING 2. BANF ROM PATCH

BFLAG EQU @8P42H 3 SPACE FOR CURRENT BANK

EANEK EQU 277H 3 THE CURRENT BANK

HDHAND EQU 8777?7H WHEREVER YOU WANT IN A08&-SFFFH

ORG @SFDEH
B
HDHD MvI1 A, BANK jTHIS ROM BANK
ETA BFLAG 35AVE IT FOR RETURN
XKA A 3 GOTO HANDLER BANI
ouT BFFH
CALL HDHAND ;DO THE HANDLER OPERATION
PUSH FP5W 5 SAVE STATUS
LDA BFLAG 3GO0 BACK TO PROPER BAl:
ouT @rFH
FOP FSKW s REETORE STATUS
RET
)
H OTHER BANK. ACCESS ROUTINES
¥
RRET: POP B 3GET BACK BANKS
POP H sGET ORIG. CALLERS RETURN
mov A,B 560 TO PROPER BANK
JMP RJMP

RCALL — USED TO CALL A ROUTINE IN ANDTHER BANK
HL = ROUTINE ADDRESS
B = CALLING EBANK
C = ROUTINE BANK
NOTE: ROUTINE CAN NOT ALTER STACK

e we we W W e

RCALL: PUSH B 3§ SAVE BANKS
LXI D,RRET ;SET UP RETURN
PUSH D
MOV A,C sGET READY TO GO
H
H THE NORMAL MINIMUM PATCH REQUIRED
H
RIMP3 ouT OFFH $G0 TO BANK
PCHL $SHOULD BE AT @SFFFH

NOV/DEC 1984 COLORCUE

Y861 DIG/AON IND2¥OT10D

€1

T N T

wr e

AN A RN ¥ Caw ex cmE ae e A5 4% % AV AT AE ae

o ar

-

LISTING

COMFUCOLOR 11

FCS ROM
VERSION

VERSION 6.78

1.¢
2.6

2.1

- BEAGATE TECHNOLOGY/ OMTI1 2ét DISH HANDLER

5/1/84
7/1/84 :
4/1/8S =

SYSTEM ROUTINES &.78

CRLF
LEYT
OSTR
MOVDH
CMFPHD
SUBHD
FSFAC
FCOLN
FS5TR
FSTR
BCZRK
ERMSG
HDNAM

EQU
EQU
EQU
EQU
EQuU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

@I38BH
GIZPBH
AE3F4AH
GI4TIRH
A344DH
A3I459H
@I4E3IH
BI4R8H
@34RDH
A34CHAH
ABISABH

3&31H
AZ49BH

(g.79)

STS5¢¢6 DRIVE. 4 % 1.49M BYTES
ST412 DRIVE, 8 % 1.49M BYTES., TRAILERS
FIXED POWER UF ERROR, INTERRUFT MASH

B WK av A W ap et we @v ocan we

8.79)

(17C1>
(17D1)
(182a)
(1871)
{1883)
(188F)
(189E9)
(1BEE)
(18F3)
{18F&)
(19DE)
(1ARL7)
(PESA)

EXNERNRXRNRARNKANERXAXNNNINRN

CR AND LF TO SCREEN

LIST HEX BYTE TO SCREEN
SEND STRING TO SCREEN

MOVE B BYTES FROM HL TO DE
COMFARE DE TO HL

SUBTRACT DE FROM HL

FRINT A SPACE

FRINT A COLON

PRINT A SPACE AND STRING
FRINT A STRING

CONVERT BYTE COUNT TO BLOCKS
ERROR MESSAGE

*HD”

DATA AREAS XX XX iNIri st XX r sk X Xtk nk Ak sy

AREAS OTHERWISE USED BY CDHD

SgRC
CRC1
CRC2
ERTRY
RFLG
CRTRY
OSEC
SEC
TRE
TEMF2

AS USED

BFLAG
HALF1
HALFZ
HDFLG
SECTH
SECT1
SECTZ
LELE

BHCNT
ECGDE
RSFLG

EQU
EQU
EQU
ERU
EQU
EQu
EQU
EQU
EQU
EQU

ABB4A2H
A8A43H
28a44H
A8H8ECH
ABEE1H
BEGE2H
ABHEDH
ABETEH
AYBEFH
GE1F4H

BY HD HANDLEKR

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

#8634 2H
#ABE43H
A8A44H
@AB4EH
ABREBH
ABOE1H
PEAEZ2H
ABGEDH
ABAEEH
A9GEDH
¥81F4H

THESE ARE THE SAME FOR

TFCN
TRV
TBELK
THMEM
THC

EQU
EQU
EQU
EGU
EQU

57412 DISF

FLSEW
FLSEF
SMODE
HDHNU

NHEAD

EQU
EQU
EQU
EQU
EQU

ABOESH
ABAE 5H
ABAET7H
ABBEIH
ABAERH

FARAME TERS

A0 2H
AA1H
AAGH
o38H
BAIH

: CURRENT OFERATING BANK NUMEER

3 NO.

SECTORS TO READ/WRITE

:BALANCE OF SAME IF OVER 256
sMORE THAN ONE ERROR FLAG

s SECTOR ADDRESS MSE™S

3 SECTOR ADDRESS

$SECTOR ADDRESS LSE'S

sLAST BLOCK EYTE COUNT

; BLOCK COUNT FOR TRANSFER

s ERROR CODE

30 = CPU RESET PERFORMED

ALL HANDLEKRS

:FUNCTION CODE

3 DRIVE NUMBEK

; BLOCK NO FOR TRANSFER
;MEMORY BUFFER POINTER
:BYTE COUNT

(5TSes)

me my ae ge

(BpAT)
(OE0)
{@pEe)
(Oupa)
(@6@A3)

FEARAEIRIANRAXAXIARN NI RS 08

STEF FULSE MWIDTH; 1 uS EACH
STEF PULSE FERIOD; 56 uS EACH
STEF MODE:; @ = NORMAL

MAX. NUMEBER OF DEVICES

NUMBER OF HEADS / DRIVE -1

ar ar can Ay aw

ae e oy

ar wy

IR IE

ae as ae

s S en AV wr A s WS a1 WS ar A A aw

IR RER]

NCYL Ead G131H ;3 490?8) NUMBER OF TRACKS / DEVICE -1
RWCC EQU ABeiH : (89B8) REDUCED WRITE CURRENT TRACH
DRIVE EQU GBUH 3 (800) DRIVE TYFE

NSEC EQU 24CH s (@4l NUMBER OF SECTORS / TRACK
MELFK EQU ¢2D6CH 3 (2D6CY NOL. BLOCHS / LOGICAL DEVICE

FORT ASSIGNMENTS SXXSF X XSRS dXss s sy N AN s e e X e e sy

RXHD EQU @D8H :READ 5AS1 FPORT DATA
TXHD eQu ADIH :WRITE SAS1 PORT DATA
HSTAT EQU ADAH sREAD CONTROL DATA
SELHD EQU @DEH sWRITE SELECT BYTE

ERROR CODES XXX XX fXXX¥X Xy sy XAt exx s d XXt aasxyaxxsxsx

OMTI 2¢L DRIVE ERRORS

NOERK EQU aoH sNO ERRORS

NINDX EQU ¢1H sNDO INDEX

NSEEK EQU A2H iNO SEEK COMFLETE
WRFLT EQU #A3H WRITE FAULT

DRVNE EQU A4H
NTRE® EQU BELH

:DRIVE NOT READY
sNO TRACE 8@ FOUND

OMTI 2@ DATA ERRORS

IDECC EQU 16H ;ECC ERROR IN ID FIELD

DATEK EQy 11H s UNCORRECTARBLE DATA ERROR
NIDAD EQU 12H :NO ADDRESS MARK FOUND IN ID
NDAAD EQU 13H :NO ADDRESS MARE FOUND IN DATA
NOREC EQU 14H :NO RECORD FOUND

SEFEKR EQU 15H ;s SEEF. ERROR

CORER EQU 18H :CORRECTARLE DATA ERROR

BDTRK EQU 12H ; BAD TRACK FLAG SET

ALTER EQU 1CH s ALTERNATE TRACK READ ERROKR

OMTI 260l COMMAND ERRORS

IVCMD EQU 28H s INVALID COMMAND

ILSEC EQU 21H s ILLEGAL SECTOR ADDRESS
VOLOF EQU 23H 5 VOLUME QOVERFLOW

OMTI 28l HARDWARE ERRORS

RAMER EQU 2@H s kRAM ERKROR
DMAER EQu J33H s DMA TIMEOUT

HD HANDLER ERRORS

IVUNT EQU A7H s INVALID UNIT
IVFCN EQU a8H s INVALID FUNCTION CODE
NOFWH EQU aoH iNO FOWER TO OMTI 2@

THE HANDLEKR 1RSSR RN e SR RSN 023 3830888

WHEN CALLED HL => BLOCY OF 8 EBYTES, AS FOLLOWS:
FCN: DS sFUNCTION CODE
DrV: DS i DEVICE NUMEER
BLK: DS :FIRST BLOCY. NO. FOR TRANSFER

1
1
2
BUF: DS 2 MEMORY FOINTER FOR TRANSFER
XBEC: DS 2 :BYTE COUNT FOR TRANSFER

FUNCTION CODES:

TURN OFF NG ACTION
SUBTRACT USER NO ACTION

1
(2]
l

f

14

3N2Y070D $861 DIA/AON

e e e we wa wn

H
HDHAND =

DPAR:

OKDRV:

HDRET:

DERRK:

[T as s an

LOOP:

NO ACTION

SET TELK = MAX. NO. BLOCKS
READ DATA W/ ERROR CORRECTION
WRITE WITH AUTOMATIC VERIFY

= VERIFY DATA NO ACTION

;OR WHERE EVER YOU WISH

$MAX. NO. OF DEVICES

1GET PARAMETERS AND SETUF RETURN

;s BLOCKS PER LOGICAL DEVICE

3IT IS A READ OR WRITE FUNCTION

1 SAVE MAXIMUM RLOCKS

;STRIF ERROR RETURN

3 SET NGO ERRORS

sALL EXCEPT READ OR WRITE FUNCYIONS

TRANSFER DATA BYTES AND SETUP HANDLER RETURN 3 ¥¥rixsiiriy

- 2 = ADD USER
- 1 = GET SIZE

@ = READ DATA
1 = WRITE DATA
2

ORG B5088H

MV A, HDNU

CALL HDPAR

LXI Hy MBLEK

N REWKIT

SHLD- TBLK

FOP D

XRA A

RET

GET

POF 2]

LX1 D, HDRET

PUSH D

PUSH B

MOV C,A

Lx1 D.TFCN

MVI B, #68H

CALL MOVDH

FOF H

LDA TDRY

MV1 E, IVUNT

CHME C

RNC

LDA TFCN

CF1 2

Jc - OKDRY

MV E.IVFCN

CF1 -4

RC

MY E.@

aNA A

FCHL

;6GET HANDLERS RETURN ADDKR.
SET RETURN THROUGH ERROR ROUTINE

;s RESTORE RETURN ADDK.

sC = MAX. NO. OF DEVICES
:FOINT TGO FARAMETER STORAGE
sNO. BYTES IN FARAMETER ELOCH
sCOFY INTO STORAGE AREA
;sRESTORE RETURM ADDRESS

s DRIVE NO. ASHED FOR

s 5ET INVALID UNIT

s COMPARE TO MAX

3 IVU, RETURN TO ERROR

sGET FUNCTION ASHED FOK

sREAD OR WRITE

35ET INVALID FUNCTION
:LOWEST FOSSIBLE

:IVF, RETURN TO ERROK

s 5ET NO ERKRORS

; TEST FUNCTION CODE

s TRICKY RETURN TO HDHAND

RETURN FROM FROCESSING ROUTINE ¥ d i3 sasiisasiisxinasinsy

JNZ
LXI
SHLD
LHLD
SHLD
XRA
RET

ERRO

XRA
STA
sSTA
MOV
CP1
Jz

CP1
Jz

GET
MVi

LXI
CALL

HDERK
H, @
TRC
BECNT
TELE
a

R REFORTING ROUTINE

a
HDFLG
ECODE
a.E

IVUNT
HDREX
IVFCN
HDRE X

sERRDRS 1P ti

s SUCCESSFUL TRANSFER

siNO BYTES LEFT

sGET NEXT ELOC: AFTER TRANSFEF
sAND POINT AHEAD FOR NEXT FASS
$SET NO ERRORS

1322322220002 00200 20220082801

:SET NO ADDITIONAL ERKRORS
:S5ET NON VALID SECTOR ADDRESS
: CHECK FOR IVU

:CHECK. FOR 1IVF

ERROR CODE FROM CONTROLLER

A, BE3H
R, B@2H
COMND

;REQUEST SENSE
s ERROR CORRECTION OF,RETRY Oi.
;DO IT

T oar ae

DREX:

HDER®#:

HDER1 :

NOSEC:

E
DATOR.:

o a

CALL
sSTA
CALL
5TA
CALL
5TA
CALL
sTA
CALL
sSTA
LDA
ANI
MOV

DATOK
ECODE
DATOK
SECT@
DATOK
SECT1
DATOK
SECTZ2
REASM
HDFLG
ECODE
AFH
E.A

sGET ERROR,

SECTOR VALIDITY

:GET LOGICAL ADDR 2
s SAVE ERROR SECTOR ADDRESS

:READ STATUS
s INDICATE MORE ERRORS, IF SO

i STRIF SECTOR VALIDITY
s ERROR CODE IN E

FRINT ERROR CODES TO SCREEN

LXI
LXI
MOV
AN
Ji

CHMF
JZ

DAD
JMF

INX
FUSH
LXT
cAaLL
FOF
M1
Chil
LX1
MV I
CALL
LX1
MOV
INX

IN
CF1l
JNZ
IN
RET

ERROR CODE THELE

H, ERTHL
E,4
AL

A

HDER1

E

HDER1

B
HDER#

H

H

H, ERMSG
05TR
H

E, 2
FSTR
H, HDNAM
B,2
PSSTR
H.TFCN
B, M

H

fi, M
LEYT
FCOLN
Ak
LEBYT
ECODE
286H
NOSEC
FSFAC
SECT@
LEYT
SECT1
LEYT
SECT2
LBYT
CRLF
HDFLG
A
ELOOF

HSTAT
A15H
DATOK
RXHD

;:FIND ERROR CODE IN TAELE
: TAELE ENTRY S5IZE

3 USE UNENOWN 2

;600D ERROR CODE

s TRY NEXT CODE

sFOINT 1O E
s SAVE FOUINT
:SEND LEAD

;POINTER EA
; SEND ERROR

$SEND NAME

RROR M&G
ER
MESSAGE

CH
MESSAGE

;FUNCTION CODDE

;UNIT NO.
sLIST UNIT
: COLON

s LIST FUNCTY

10N

s VALID ADDRESS 7

3 NO
;s SFACE

s PRINT SECTOR ADDRESS

:MORE ERRORS 7

1 YES

s INDICATE ERROR
sRETURN TO CALLER

sRER, BSY,

1/0 MEANS READ DATA

861 DIA/AON 3INDJOTOD

9 |

ERTBL:

T e e as e

EWRIT:

FROCS:

FRERR:

NSEEX, °
WRFLT,
DRVNR, °
IVUNT,
1VFCN,
NOFWR, °
1DECC,
DATEK,
N1DAD,
NDAAD, “ DAAT
NOREC, >NRF”
SEKER, " SKF”
CORER, ’COR"
BDTRE, >RBTE”’
ALTER, "ALT"

1LSEC, " ILS”
VOLOF , “VOF~
e, TUNE?

READ AND WRITE ROUTINES

SETUF FOR READ/ WRITE

1IN
ANI
CF1
MVI
Jz
XRA
sTA
STA
STA
STA
CALL
LHLD
MOV
ORA
RZ
CALL
MOV
87A
SHLD
MoV
STA
LXI
CALL
Jz
JC
CALL
MOV
sSTA
LHLD
XCHG
LHLD
FUSH
DAD
SHLD
LX1
calL

MVI
POF
POF
XRA
STA
STA
JMF

HSTAT
P1FH
G1FH

E , NOPWRK
PRERR
A
SECT®
SECT1
SECTZ2
HALF 2
IPARMS
TEC
ALH

L

BC2EHK
A,C

LELK
EHCNT
a,L
HALF 1

D, A9168H
CMFHD
PROCS
PROCS
SUBHD
a,L
HALF 2
EHCNT

TELK

H

D
EBKCNT
D, MBLK
CMPHD
FROCX
E,B823H

HDFLG
ECODE
HDRE X

s NO SEEK COMFLETE B
sWRITE FAULT H
:DRIVE NOT READY

: INVALID UNIT

s INVALID FUNCTION

sNO POWER TO OMTI 200

sECC ERROR IN 1D FIELD

;s UNCORRECTAERLE DATA ERROR

s NO ADDRESS MARK. IN 1D

:NO ADDRESS MARKE IN DRTA
sNO RECORD FOUND

s SEEF. FAILURE

; CORRECTABLE DATA ERROWR

s BAD TRACK FLAG SET

s ALTERNATE TRACE READ ERROR
s ILLEGARL SECTOR ADDRESS

s VOLUME OVERFLOW

s ALLOW OTHERS =

FROCY:

FROCL:

FROCZ:

FARRRRERAIRXIXTEIIRRRETRANRAXD

:SEE 1F POWERED uF
sCONTROLL INPUTS
sALL HIGH 727

s ar e
Pl
Q
o
A

:YES., NO POWER TO CONTROLLER

sCLEAR DI1SK SECTOR ADDRESS

PROCA:
$SET NO MORE THAN 256 SECTORS
;SET PARAMETERS IF CPU RESET
36ET NO. OF BYTES 70 TRANSFER

sNO BYTES,
s CONVERT HL = NO.

1IGNORE BUT NO ERROR
BLOCKS

H
E
3
:SAVE LAST ELOCK EYTE COUNT WCODE :
:SAVE TOTAL ELOCKS
:FIGURE EBLOCKS TD TRANSFER
;LOWER 32K BYTES
iDE = 256

32546 EBLOCKS EXACTLY
sLESS THAN 256 ERLOCKS., Ok
s SUBRTRACT 256 ELOCKS

RCODE

pal

;s REMAINDER FOR SECOND PASS
sGET TOTAL BLOCKS TO READ

sGET BLOCK TO START

i1 SAVE START BLOCK

;ADD BRLOCKS TO READ

sNEXT HLOCK AFTER TRANSFER
sMAXIMUM ON DRIVE

sMORE THAN MAXIMUM 7

;0K !

3 VOLUME OVERFLOW

:STRIP START BLOCHK

s STRIFP NORMAL ERROR RETURN

- ar

TNEXT:

s INDICATE THIS ERROR ONLY
: INDICATE INVALID SECTOR ADDRESE
s SFECIAL ERROR EXIT

ALJUET

FOF
LDA
ANA
Jz
DAD
JNC
FUSH
LXI
INK
FOF
DER
JNZ
MOV
S5TA
MOV
STA
LDA
ANA
JINZ

READ/ WRITE LAST FASS

LDA
CF1
Jz
LDA
DCR
5TA
J2z
{HLD
LDA
MOV
LDA
ANA
Jz

MV I
MVI
CALL
CALL
RNZ

H
TDRY

A

FROC2

D

FROC1

H
H,SECT®
M

H

A

FPROCS
ALH
SECT1
AL
SECTZ
HALF 2

A

FROCA

LELK
@aaH
PROCA
HALF 1
[2)
HALF 1
DOLAST
TMEM
HALF 1
C.A
TFCN

A
RCODE

SECTOR FOR RIGHT LOGICAL

DEVICE

s KRECOVER START RLOCH

:GET DRIVE NUMEE
sCHECK. FOR UNET
sHL = CORRECT SE

[N
ZERD
CTOR ADDRESS

s ADD MBLE TO NEXT UNIT

3 NO1T OVER &4k SE

iMSE™S OF DISH S

s SAVE SECTOR ADD

: TWO PASSES REQU

:MORE THAN 32,

:LAST EBLOCK BYTE
DO A FULL BLOCK
s SAVE ONE FOR SP

sONLY ONE ELOCK

:GET MEMORY POIN
s BLOCKS TO READ/
sGET FUNCTION CO

;D0 A READ

WRITE WITH AUTOMATIC VERIFY

B.@10H
A, 6BAH
COMND
WRITX

TNEXT

sENABLE VERIFY
:WRITE CODE

3 SEND COMMAND
sWRITE THE RLOCK
;ERROR, RETURN <
sSEE IF SECOND P

READ WITH ECC AND AUTOMATIC RETRY

B, 00@H
A, @0BH
COMND
READX

sECC AND RETRY

s READ CODE

s SEND COMMAND

s READ THE BLOCKS
s ERROK

SETUF FOR SECOND FASS IF NECESSARY

SHLD
LXI
MOV
ANA
JZ
SThA
MVI
LXI
INK
RNZ

TMEM
H, HALF 2
AM

A
DOLAST
HALF 1
M, @
H,SECT1
™

sHL =3 NEXT MEM
$SEE IF ANY MORE

;WAS LESS THAN 3
s SAVE NO. OF REA
sNO MORE AFTER T

CTOKS

ECTORS

RESS

IRED 7

DO TWO FASSES

COUNT

ECIAL TRAILING BYTES

T0O DO
TER
WRITE

DE

S ouT
NZ >
ART

LOCATION
BLOCKS

2h
MINING
HIS

s INCREMENT SECTOR POINTER

s RBY 256 SECTORS
s NO CARRY OUT

91

INDYOI0D 861 DIA/AON

e = ae

OLAST:

DOL1:

£ o ow

RITL:

WRLO:

WRL1:

WRLZ2:

) e

EADL ¢

REL@&:

REL1:

RELZ2:

DCX
INK
JMP

READ/ WRITE TRAILING BYT

LDA
CPI
MVI
RZ
MOV
LDA
LXI
ADD
MOV
JNC
DCX
INK
JINZ
DCX
INR
LHLD
MVI
LDA
ANA
Jz

WRITE LAST BLOCK

MVI
MVI
CALL
IN
CPI
JNZ
MoV
INX
ouT
DCR
INZ
IN
CPI
JZ
IN
CP1
JINZ
XRA
ouT
JMP

READ LAST BLOCK OF FILE

MVI
MVI
CALL
IN
CrP1
OINZ
IN
MOV
INX
DCK
JINZ
IN
CF1
Jz
IN
CFI

H
M
PROC3

LELK
28aH
E,®

E,A
HALF 1
H, SECT2
M

M. A
DOL !

THMEM
C,1
TFCN
a
READL

B,310H
A, BBAH
COMND
HSTAT
B14H
WRLG
ALM

H
TXHD

E

WRL &
HSTAT
A17H
REAS®
HSTAT
#14H
WRL1

A

TXHD
WRL?Z

B, @00H
A, BOBH
COMND
HSTAT
@1SH
REL®
RXHD
M, &

H

E

REL®
HSTAT
B17H
REASE
HSTAT
A1SH

s POINT TO SECT?

3 AND INCREMENT

s RETURN TO READ/WRITE
ES IN LAST BLOCK

;WAS LAST BLOCK FULL 7

FARMS :
:DONE, NO ERRORS
sSAVE NO BYTES TO READ/WRITE
;GET NO BLOCKS MOVED
:ADD TO SECTOR COUNT
s INCREASE NEXT BITS
:DID NOT ROLL PAST ZERO 3
sGET BACK MEMORY POINTER DTEL:
:ONLY ONE SECTOR TO READ/WRITE
;READ OR WRITE 7
:READ
IN A FILE WI1TH TRAILING ZEROUS
sENABLE VERIFY
;WRITE CODE
sSEND COMMAND :
:REQ, ESY MEANS WRITE DATA :
;
sWRITE DATA :
: COUNTER ;
:REQ, BSY, C/D, 1/0 MEANS DONE ;
COMND s
:READ STATUS AND RETURN
;REQ, BSY MEANS WRITE DATA COMNE s
3WRITE A ZERD
1GNORING TRAILING EYTES
;ECC AND RETRY
;READ CODE
3 SEND COMMAND
;RE@, BSY, I/0 MEANS READ
:GET BYTE
s PUT IN MEMORY REQOF :
REQO®:
; COUNTER
:REQ, BSY, C/D, 1/0 MEANS DONE

sREAD STATUS AND RETURN
sREG, ESY, 1/0 MEANS READ DATA

Nz

JMF

INITIALIZE CONTROLLER

LxI
XRA
CHF
RNZ
INK
LXI
MVI
CAaLL
LXI
JMF

DISk

DE
DE
DR
DE
DE
DE
Die
DE
DE
DR

SEND COMMAND TO CONTROLLER

A
SECT@
SECT1
SeCT2
B

DI
FUSH

ANI
JINZ
DCR
ouT
FOF
CALL
< DA
cAaLL
LDA
CALL
LDA
CALL
MOYv
CALL
MoV
FPUSH

CFI
JINZ
FOF
ouT
RET

REL1
RXHD
RELZ

; READ AND IGKNORE

1S 2SR 223N SRR RS RS SRR RSS!

H,RSFLEG :HAS CFU RESET DCCURED 7
A
M
s NO
M s RESET DONE
E, ¢86H
AL,PC2H ;s ASSIGN PARAMETERS CODE
COMND
H,DTRL s PARAMETER LIST
WRITX sWRITE THE DATA

FARAMETER TABLE

PLSEW sFULSE WIDTH

FLSEF sPULSE PERIOD

SMODE s STEF MODE

NHEAD s NUMBER OF R/W HEARDS

NCYL SHK 8
NCYL AND @FFH

sMAX. TRACKE ADDRESS HIGH
;MAaX. TRACK ADDRESS LOW

RwCC s REDUCED WRITE CURRENT TRACK
DRIVE sDRIVE TYPE

NSEC s SECTORS/ TRACK

BEEH s RESERVED

L3S 2223022082020 20228224

COMMAND CODE

MSE™S OF SECTOR ADDRESS
SECTOR ADDRESS

LSE"S OF SECTOR ADDRESS

THE CONTROL FIELD

NUMBER OF SECTORS

;DISABLE INTERRUFTS
PSW s SAVE COMMAND

HSTAT :CHECK TO SEE IF BUSY OFF
opaH

COMNG

a :SELECT CONTROLLER @FFH
SELHD

PSW

REQO} :SEND THE COMMAND

SECT@ :MSE"S OF ADDRESS

REGOK

SECT1 sHIGH ADDRESS

REQOH

SECTZ :LSE"S OF ADDRESS

REQOF

A.C ;NO. SECTORS

REQOH

ALE s CONTROL FIELD

PSW :SAVE THE RYTE

HSTAT :REQ., EBSY, C/D MEANS WRITE COMMAND
616H

REROG

PSW

TXHD

b oae e e

READX:
READD:

READIL:

WRITX:
WRITd:

WRITL:

3
REASM:

REASA:

REASL:

READ DATA 2322333352111 7333 7
HL =3> MEMORY LOCATION FOR DATA

IN HSTAT iREQ, BSY, C/D, 1/0 MEANS DONE
cPr B17H

Jz REASA ;GO0 GET STATUS AND MESSAGE

N HSTAT sRER, BSY, [/0 MEANS READ DATA
cPI S1SH

JINZ READ@

IN RXHD

MOV M, A

INX H

IMP READ1

WRITE DATA (2333032222302 33222222228222 2

HL => MEMORY LOCATION WITH DATA

IN HSTAT :REQ@, RBSY, C/D, I/0 MEANS DONE
cPI B17H

Jz REASY :G0 GET STATUS AND MESSAGE
N HSTAT ;RE@, BSY MEANS WRITE DATA
CPI @1aH

InNZ ARITE

MoV A sWRITE DATA

INX H

ouT TXHD

Jmp WRITL

READ STATUS AND MESSAGE L2222 2322222223232 020N

IN HSTAT :REQ, BSY, C/D, I1/0 MEANS DONE
CPI BL7H

JNZ REASM

IN RXHD :GET THE STATUS BYTE

MOV E,A 3SAVE IN E

IN HSTAT 3REQ, MSG, BSY, C/D 1/0 MEANS READ
CPI FLFH ; THE MESSAGE BYTE

INZ REAS1

N RXHD 3GET THE MESSAGE BYTE AND IGNORE
Mav ALE ;TEST STATUS

ANA A

EI :ENABLE INTERRUPTS

RET

‘Tom Teaser’ (Solution)

Tom Napier

Here was the puzzl'e; without using an MVI instruction or
making any preconditions, load 06H into the A register us-
ing only two bytes.

This odd puzzle arose from my observation that though
I have always used SUB A to clear the A register, nearly
all the published programs I have seen use XRA A, At first
glance the effect of the two instructions is exactly the same,
but there is a subtle difference. Both instructions clear the
Carry and Sign flags, and set the Parity and Zero flags. The
difference lies in the Auxiliary Carry flag. XRA A clears
it, but SUB A sets it. This is not a dramatic difference unless
a DAA instruction follows. The sequence XRA A : DAA
sets A = 0 and sets the zero flag. The sequence SUB A :
DAA sets A = 6 and clears the zero flag. The prior content
of the A register is immaterial.

This little exercise shows that the 8080 instruction set can
still have some surprises. This particular one has been hid-
den from me in ten years of programming experience.

COLORCUE NOV/DEC 1984

[y

BASIC
TRAINING

for
COMPUCOLOR
COMPUTERS

LAST CHANCE!

Alimited number of cop-
ies of these two great
books is available from:

Doug Van Putte
18 Cross Bow Drive
Rochester, NY 14624

Price: $ 6.00 (USA)
$ 8.00 (overseqs)

You haven’t mastered
your CCll if you have not
worked through both
these fine tutorials!

HURRY!

Cotor Graphics.

for

INTECOLOR 263! and
COMPUCOLOR 11 compurers

by David B. Suits

17

S TR®

The ASTRO program, presented here,
calculates the celestial positions of the
sun, moon, and all eight planets. The
sun and planets are located to within a
few minutes of arc, and the moon within
a degree or so. Writing such a computer
program presents a number of in-
teresting challenges, and ASTRO meets
these with surprising results.

Most of the necessary constants and
equations have been obtained from the
excellent book by Peter Duffett-Smith,
‘““Practical Astronomy with Your
Calculator.”’ (See full reference in pro-
gram listing, lines 130-150.) This book
presumes a scientific calculator or a
computer with double precision
arithmetic, and so a principle challenge

Sample Printout of "ASTRO"

gKY POSITIONE FOR 1984 WED JUN 6

LOCAL STANDARD TIME:

22 HOURS,

® MINUTES

FOR LAT. 49.72 LONG. WEST 74,02 ELEYV, 1@ METRES (New York City)
DAYS SINCE JAN @ THIS YEAR: 138
TIMES IN HOURS: LMT = 22 GMT = 3
LST = 13,0463 GST = 19,985
ECLIPTIC ECLIPTIC RIGHT DECLI-
LONG, LAT, ASCENSION¥* NATION%
BODY (OEG) (DEG) (HOURS) (DEG)
SUN 76,3728 @ 3,91324 22,7443
MQON 169,316 J3,00973 11,4339 8.23356
MERCURY 39,1972 -1.36543 3.82274 18,4519
VENUS 73,8518 -, 130447 4,8336 22,3159
MARS 223,043 -1.,3173¢ 14,6783 ~-17,01@9
JURPITER 280,602 . 117435 18,7681 -22.5%e14
SATURN 221,261 2,33943 14,6425 -12.7943
URANUS 231,933 0240663 16,6969 ~-22.2016
NEPTUNE 269.816 1.23014 17,9887 -2z2.2116
PLUTO 211.28 17,1477 14,3354 4.19362
HOUR ANGLEX AZIMUTHxX ALTITUDEX* PHASE
BODY (DEG WEST) (DEG) (DEG) (@ 70 1)
8UN 150,496 330.918 ~20,8613 i -
MOON 34,1332 231,446 32.2 523819
MERCURY 168,333 347,243 -29,8434 , 764606
VENUS 153,19 333,211 -22,2139 999087
MARS 5,51894 186,229 32,0417 , 964916
JUPITER 304,173 129,689 7.948735 .998402
SATURN 6.03631 187.325 36,1923 ,99913
URANUS 333,24 155,87 22,9982 999996
NEPTUNE 315,893 138.181 14,9048 , 9999835
-PLUTO 1e,6632 197,538 52,2351 999842
* MOON POSTITIONS ARE CORRECTED FOR PARALLAX,
THE ABOVE ANGLES IN RADIANS:
1.33296 @ 1.31246 , 396963 2,62664 5,77361 -,364102
2.98312 , 0874366 2,99392 144032 .9435186 4,38836 361996
1,03319 ~-.e@273z2g22 1,00079 322047 2.93831 6.06037 ~. 5209
1,286896 -2,623BE-93 {,26343 , 389486 2.67367 5.81563 -.387703
3.89284 ~,02299% 3,84278 -,296897 ,@963237 3,2303 , 559233
4,89744 2.04963E-@3 4.91348 ~.3997¢4 3.30881 2.26349 138732
3.86174 0443214 3,8334 ~,223302 103703 3.,26943 ,631673
4,39743 4,2004E-04 4.,37124 -,38749{ 3.,83103 2,70e78 401393
4,70917 192147 4,709892 =, 387666 3.31337 2.4117 ,2601328
3.,887353 .299283 3.733 10731926 186109 3.44768 911674
18

Wallace Rust
523 Britton Road
Greece, NY 14616

has been to maintain accuracy while us-
ing Compucolor’s single-precision
BASIC.

Julian date is generally used by
astronomers to refer to the time of
events because it neatly avoids the
peculiarities of the civil calendar. The
Julian date is the number of days that
have elapsed since January 1, 4713 B.C.
If we want a precision of a few seconds
per day, we will have Julian dates such
as 2445538,1234 to work with.
Therefore, in ASTRO we use an epoch
(reference) of A.D. Jan 0,0 1980 in-
stead, and count days forward or
backward from that. Another way of
preserving precision is to work in ra-
dians as much as possible, and convert
radians to time or degrees only for the
output.

Let us take a walk through the
features of the program. At line 310 we
dimension arrays for holding the orbital
elements of the planets (PP), sun (SP),
moon (MP), names (R$), and the
calculated results (R). Lines 340-397 ex-
plain the subscripts.

Constants are defined in lines
400-450. They are entered to eight-digit
precision because the Compucolor
works to that precision internally. In
lines 500-950 we load the arrays.

At lines 2000-2310 we input the obser-
ving site. You can add your own loca-
tion to the program here, or you can
type it in when the program runs by
choosing “1°’ at the line 2200 prompt,
which causes a branch to the input
routine at lines 2400-2500. The date and
time of observation are entered at lines
2505-2630.

ASTRO begins its calculations at line
2640, and they take about thirty
seconds. Great care must be taken in
calculating arctangents. The routine at
lines 4100-4150 was written to do this
correctly for all quadrants. You may
have to modify the routine at lines
5000-5030 to suit your own printer; the
routine in the listing is for the Radio
Shack DMP-110.

NOV/DEC 1984 COLORCUE

Calculation routines are headed by
remarks and by references in brackets
to the Duffett-Smith book. In the
routines at lines 16500-16960 we take in-
to account the parallax caused by the
nearness of the moon. (The only factor
not taken into account in this program
is the precession of the earth.) At lines
17140-17300 we calculate look-angles

for the chosen observing site.

At line 20000 we output the results to
the screen as three pages of tables. At
the user’s option (line 20760), results can
also be directed to the printer. The
routine at line 60000 permits a printed
listing by typing “GOTO 60000’ in ‘im-
mediate’ mode.

The sample output for a particular
time and site will allow you to debug
your program. If any reader wants a
listing of the 107 variables and their
meaning, send me a 3 by 9 inch SASE.
Ten dollars (US) will purchase both the
list and a diskette in CCII v6.78 format.
This program uses about 12K of RAM.

CAMBRIDGE UNIVERSITY PRESE, (C)

LAMBDA, BETA = ECLIPTIC LONGITUDE,
DELTA = RIGHT ASCENSION, DECLINATION

CALC & PRINT ASTRONOMICAL POSITIONS,
WALLACE R, RUST, 3523 BRITTON ROAD,

GREECE,

BY PETER DUFFETT-SMITH,
1984,

LATITUDE

100 REM "ASTRO",

1e3 REM

119 REM VERSION: 9 JAN 1983
123 REM

139 REM REF:

140 REM 2ZND EDITION,

145 REM

159 REM ©SECTION REFERENCES IN [],
169 REM

170 REM

171 REM ALPHA,

172 REM EPOCH JAN 9.0 1989
173 REM

180 REM

185 REM

19¢ REM

200 REM I--- TITLE PAGE

202 CLEAR 209

205 PLOT 6,3,12,14

219

PRINT TAB(28)1tPLOT 6,381PRINT " > ASTRO < "

NY 14616,

"PRACTICAL ASTRONOMY WITH YOUR CALCULATOR”,

CHANGE LINES 5090-3110 TO SUIT YOUR OWN PRINTER!
ENTER YQUR FAVORITE STATIONS AT LINES Z2000-2390!

AND PLANETS,"

220@ PLOT 6,3,15:PRINT

23Q PRINT "THIS PROGRAM CALCULATES POSITIONS OF THE SUN, MOON,
249 PLOT 6,3(PRINT "TURN ON THE PRINTER!"

300 REM I--- HOUSEKEEFING

310 DIM PP(B,6),SP(5),MP(7),R$(9),R(3,7)

33@ REM

346 REM PP(I,J):

335¢ REM =9 EARTH J=¢ PERIOD

332 REM 1 MERCURY 1 LONG, AT EPQOCH
354 REM 2 VENUS 2 LONG., AT PERIH.
336 REM 3 MARE 3 ECCENTRICITY

338 REM 4 JUPITER 4 SEMI-MAJ AXIS (AU)
360 REM 3 SATURN 3 INCLINATION

362 REM 5 URANUS & LONG. ASCEN. NODE
364 REM 7 NEFTUNE .
366 REM 8§ PLUTCO

368 REM

38@ REM R(I,J)1¢

382 REM I=@ SUN Ja@ LAMBDA

384 REM . { MOON 1 BETA

386 REM 2 MERCURY 2 ALPHA

388 REM 3 VENUS 3 DELTA

399 REM 4 MARS 4 HOUR ANGLE

392 REM 3 JUPITER S AZIMUTH

394 REM & SATURN 6 ALTITUDE

393 REM 7 URANUS 7 PHASE

396 REM 8 NEPTUNE

397 REM 9 PLUTO

398 REM

409 Pl= 3.1415926,P2= 6,2831B331DR= 57,293781HR= 3,8197186

410
429
430
440
430
509
319
320
.521

KAz
KE=
Kl=
KM=
KR=
REM
RESTORE 3520

6.28861KI=

DATA_23.441884

COLORCUE NOV/DEC 1984

3601KB= 365,24221KC= 13,17639661KD=
«@329539:KF= {,2739:KG=
2141KK=
001 1KN= ,@65709822:1KQ= 1,002738
.9966471KS= £37B1401KT= 6378, {61REM
I--- SUN ELEMENTS [F. B82;44)

1114041
18381KH= 37

63831KL= 16
[#33,36]

DATA 278,83334,282,596403, .916718,1,493935E8, , 533128

19

20

52¢

324

330
629
630
700
703
710
720
730
75@
760
770
775
780
783
g8eo
969
910
92@
921
930
949
9350
2099
201e
2020
2030
2040
20350
ce60
2070
2089
209¢
2iee
2ile
2120
2200
2210
2220
2239
23e2
2303
2304
233
2306
2307
2308
2309
2310
2399
2400
2410
2429
2430
2440
2430
2470
2480
2500
23503
2519
2329
23530
23540
235@
2560
2370
2380
2399
2600
26le
2620
2630
2649

DATA 278,83354,232,596403, .016718, 1,495985E8, , 533128
DATA.23,441884 ,
FOR J= @TO 5;READ P (J) tNEXT
DATA 64,975464,349,383063, $31.950429, 5, 145396, , @549, . 5181, 384461, . 9507
FOR J= @TO 7:READ MP(J)1NEXT
REM I--- EARTH, MERC, VEN, MARS-PLUTO ELEMENTS [P. 1@@]
RESTORE 710
DATA 1,00004,98.83354,102,5964,,016718,1,0,9
DATA ,24085,231.2973,77, 144213, ,2056306, , 3870986, 7, 0043579, 48, 094173
DATA ,61521,355,73352,131,28958, . 0067826, . 7233316, 3,394435, 76, 459752
DATA 1,88089,126,30783,335,690816, , 9333865, { . 5236883, 1.68498611, 49,4032
DATA 11,B6224,146,966365, 14, 009549, , 0484658, 5, 202561, 1,3041819, 10@. 25202
DATA 29,4577{,165,32224, 92.655397, . 0556155, 9. 554747, 2, 4893741, 113, 48883
DATA 84,01247,228,07085, 172, 73633, . 9463232, 19, 21814, , 7729895, 73, 876864
DATA 164,79358,26@.3579,47.867215, . 0050021, 30, 10957, 1,7716017, 131, 56065
DATA 25@.9,209.439,222.972, .25387, 33, 78453, 17,137, 103,941
FOR I= @TO 8:FOR J= @TO 6iREAD PP(I,J) INEXT (NEXT
REM Z--- NAMES
RESTORE 920
DATA "SUN", "MOON", "MERCURY ", "VENUS", "MARS ", "JUPITER"
DATA "SATURN", "URANUS", "NEPTUNE", "PLUTD"
FOR J= @TQ 9iREAD R$(J) |NEXT
W$= "SUNMONTUEWEDTHUFRISAT"
M$= " JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC "
REM X--- INPUT SITE
PLOT 6,2:PRINT 1PRINT "AVAILABLE SITES":PLOT 6,6
PRINT " {, —-USER’'S CHOICE-"
PRINT * 2. GREENWICH (LONDON)"
PRINT * 3, NEW YORK, NY"
PRINT " 4. MIAMI, FL"
PRINT " 5, ERIE, PA"
PRINT “ 6., GREECE, NY (RUST‘S HOME)"
PRINT * 7, SAN DIEGO, CA"
REM ADD #8 HERE
REM ADD #9 HERE
Egu ADD #1Q HERE
PRINT (PLOT 6,1:INPUT "ENTER YOUR CHOICE (1 TO 6): *;Q
IF Q< {0R Q> 1@THEN 2200
ON QGOTO 2400,2302,2303,2304,2305,2306, 2307, 2308, 2309, 2310
REM SY=LATITUDE; SX=LONGITUDE; SE=ELEV IN METRES; T2=TIME ZONES WESTWARD
SYs 51,%:5X= @:SE= 10:1T2= 0:GOTO 2500
SY= 40,7215X= 74,Q21SE= 10:T2= 5:GOTO 2500
8Y= 25,7715X= B80,2/5E= 5:1T2= 5;GOTO 2500
SY= 42,131SX= 80,0615E= 200:T2= 5:GOTO 2300
SY= 43,2362516X= 77.638941SE= 113:T2= 3:G0T0 2500
SY= 32,7615%= 117.22:SE= 1@:7Z= 8:GOTD 2500
REM ADD #B HERE
REM ADD #9 HERE
REM ADD #1Q HERE
REM
PRINT {PLOT 6,3
INPUT "ENTER LATITUDE IN DEGREES: ";SY
IF 8Y< - 9Q0R SY> 9@THEN 2410 -
INPUT "ENTER LONGITUDE IN DEGREES WEST OF GREENWICH: ";SX
IF 5X{ @OR 5X» 36@THEN 2430

INPUT "ENTER ELEVATION IN METRES ABOVE SEA LEVEL: ";SE
INPUT "ENTER TIME ZONE NUMBER (@ TO 23): ";72

T2= INT (T72):1F T2< @OR TZ> 23THEN 2470

LA= §Y/ DR

REM I--- INPUT DATE & TIME

PLOT &, 31PRINT IPRINT "ENTER DATE OF INTEREST:":PLOT 6,3
INPUT "YEAR (1383 TO 240@0)t ";TY

TY= INT (TY):IF TYC $5830R TY> 2400THEN 2520

INPUT "MONTH (! TO 12): UL

TM= INT (TM);IF TM< 1OR TM> 12THEN 2540

INPUT "DATE (1 7O 31): “4TD

TD= INT (TD)+IF TO< {0OR TD> 31THEN 2560

PLOT 6,3tPRINT "ENTER LOCAL STANDARD TIME OF INTEREST:":PLOT &,3
INPUT "HQUR (@ TO 23} "1 TH

TH= INT (TH)1IF TH{ @OR TH> 23THEN 2599

INPUT "MINUTE (@ TO €@.@)1 “1TN

IF TN @0R TN> G@THEN 2619

LM= THY TN/ &0

PRINT "IWAIT,.,"

NOV/DEC 1984 COLORCUE

270¢ REM I--- CALC DAYS SINCE JAN @.,90 1989¢

2701 REM [COMPUCOLOR ‘BIORHYTHMS']

2710 Di= TH/ 24+ TN/ 1440

2720 M9= (- ()% INT (((14~ TM)/ 12)+ KM)

2730 Ji= TD~ 2447095+ INT ((1461% (TY+ 4800+ MI)/ 4)+ KM)
2740 J2= Jit INT ((367% (TM=- 2~ 12% M9I)/ 12)+ KM)

273@ Ji= J2~ INT ((3% (TY+ 4900+ M)/ 400)+ KM)

2760 WD= Ji=- 7% INT ((J1/ 7)+ KM)+ 11WD= INT (WD+ KM)
2770 DE= Ji1- 29219+ D1

2800 REM Z--- CALC WHOLE DAYS SINCE JAN @.0 THIS YEAR
2801 REM [W. RUST)

2810 D§= "000O310590930120151181212243273304334"

2820 DJ= VAL (MID$ (D$,3% TM~ 2,3))+ TD

2830 LY @1]F TY/ 4= INT (TY/ 4)THEN LY= |

2840 IF TY/ 4@@= INT (TY/ 4@9)THEN Lv= @

283¢ IF TM> ZTHEN DJ= DJ+ LY

3009 REM X=~-~ LMT TO GMT [#9]

3010 GM= LMt TZ:I1F GM> = 24THEN GM= GM- 24

3039 REM g--- CALC GST AT JAN @,@ THIS YEAR [#4,12]
3033 Y= TY~- L:ia= INT (Y/ 10@):B= 2- A+ INT (4/ &)
3040 C= INT (385.23% Y)1S= B+ C~ £93597.5:T= S/ 36525
3943 R= 6,6460656+ 2400,0312652% T+ .00002581% T T
3047 B= 24% TY- 45576~ R

3050 REM I--- GMT TO GST [#12)

3070 Te= KNk DJ- B

3680 X= T+ KQX GMIGOSUB 40850:GS= X

3100 REM I--~ GST TO LST [#14)]

3119 L5= GS- SX/ 191IF L§< @THEN LS= LS+ 24

3999 GOTO 1o00ee

4080 REM I--- SUBR X=MQOD(X, 360}

4019 IF X< @THEN X= X+ KA;GOTO 4010

4020 IF X» = KATHEN X= X- KA:GOTO 4020

4930 RETURN

403¢ REM X--- SUBR X=MOD (X, 24)

4960 IF X{ @THEN X= X+ 24:GOTO 4069

4070 IF X> = 24THEN Xs X~ 24:;GOTO 4979

4080 RETURN

4100 REM X--~ SUER A=aATN(Y/X) RADIANS

4110 IF X< » QTHEN 414@

4120 A= P/ 211F YC QTHEN A= 3% PI/ 2

4130 RETURN

4146 A= ATN (Y/ X)t1F X< QTHEN 4= A+ PI:RETURN

4136 IF Y< OTHEN A= A+ P2

4160 RETURN

42900 REM E--~ SUBR X=MOD (X, 2%PI;

4219 1F X< OTHEN X= X+ P2;GOTD 4210

4229 IF X> = PRTHEN X= X~ P2;GO0TO 4229

4230 RETURN

430 REM X~~~ SUBR OUTPUT PAGING

4319 1F Q%= "P“THEN RETURN

4320 INPUT "IPREZS I{RETURN> IFOR MORE,.,";A%:FPLOT 6,3:RETURN
3000 REM 3--~ SUBR SELECT PRINTER

3o1@ POKE 33289,80:PLOT 15,27,18,4,27,13:0UT 8,4
50z@ PLOT 3@,19,27,28,27,19:REM PRINTER FONT
303 RETURN

Jie9 REM I--~ SUBR SELECT CRT

3119 .0UT. 8,253:POKE. 33265, @:POKE 33289, 641RETURN
9939 REM

10000 REM I-~- SUN CALC [#42]

10010 X= KAx DE/ KB1GOSUB 4008:iN= X

10020 X= N+ SP(@)~ SP(1):GOSUB 4@@Q:SM= X/ DR
16039 E= KAk SP(2)% SIN (SM)/ PI

10040 X= N+ E+ SP(@):GOSUB 4000:5L= X/ DR
16630 R(@,8)= SLi1R(Q,1)= @tREM SUN LAMBDA, BETA (RAD)
10069 R(0,7)= 1

11900 REM I-~- MOON CALC ([#61)

11010 X= KC* DE+ MP(@)GOSUB 40@@:L= X

11020 X= L- KDk DE- MP(1)1GOSYB 400@:MM= X/ DR
119239 X= MP(2)- KE% DE:GOSUB 49@0:iN= X

11040 C= L/ DR- SL(EV= KF¥ SIN (2% C~ MM)
1103@ AE= KG¥ SIN (SM)1A3= KH% SIN (SM)

1106@ X= MM+ (EV- AE- A3)/ DRiMM= X:iREM CORRECTED ANOMALY
1107@ EC= KI% SIN (MM)

11088 Ad4= KJk% SIN (2% MM)

11932 L= L+ EV+ EC~- AE+ A4

COLORCUE NOV/DEC 1984

y

22

D= L/ DR- SL

V= KKk SIN (2% D)

Le L+ V

N= N- KL% SIN (SM)

Ji= (L= N)/ DR

Y= SIN (Ji1)% COS5 (MP(3)/ DR)
X= C0S (J1)

GOBUB 410@:X= A+ N/ DR:GOSUB 4209:R(1,8)= X:REM MDON LAMBODA (RAD)

J2= SIN (Ji)% SIN (MP(3)/ DR)

R(1,1)= ATN (J2/ SGR (i- J2K J2)):REM MOON BETA (RAD)

REM [#63]

R(1,7)= (1= COS (D))/ 2iREM MOON PHASE

REM' I--- EARTH CALC [#50]

X= KAX DE/ KB/ PP(2,@):G0SUB 4200:NE= X

ME= NE+ PP(@,1)- PP(0,2)

X= NE+ KA PP(,3)% SIN (ME/ DR}/ PI+ PP(0,1)GOSUB 4000:LE= X
VE= LE- PP(@,2)

RE= (I- PP(,3)% PP(,3))/ (i+ PP(2,3)% COS (VE/ DR))

REM Z--- BEGIN MERCURY THRU PLUTO CALC [#30]

FOR J= 170 8

X= Kk QE/ KB/ PP(J,®)1GOSUS 4080;:NP= X

MP= NP+ PF(J,1)=- PP(J,2)

X= NP+ KA% PP(J,3)% SIN (MP/ DR)/ P1+ PP(J,1):GOSUB 4900:LP= ¥
VP= LP- PP(J,2)

RP; PP(J,4)% (1- PP(J,3)% PP(J,3))/ (1+ PP(J,3)% COS (VP/ DR))
RE

JS= (LP- PP(J,6))/ DR

Ji= §IN (J9)% SIN (FP(J,5)/ DR)

PS= ATN (J1/ SER (i- Jik J1))

Y= SIN (J9)% COS (PP(J,S)7 DR)

X= COS (J9)

GOSUB 41001LP= A% DR+ PP(J,6)

RP= RPX COS (PS)

IF J> 2THEN 15000

REM I--- CONTINUE MERC & VENUS CALC [#50] -)(—
J9= (LE~ LP)/ DR

Y= RPX SIN {(J9):X= RE- RP¥ COS (J9)

GOSUS 4100

X= 180+ LE+ A% DR;GOSUB 4000:L0= X/ DR

R(J+ 1,0)= LD:REM PLANET LAMBDA (RAD)

D= LD-'LP/ DR

Y= RPX TAN (PS)¥ SIN (D)

X= REX SIN (- J9)

A= ATN (Y/ X)iR(J+ 1,1)= A:REM PLANET BETA (RAD)

REM [#54]

RUTE 1,7)= (14 COS (D)/ 2iREM PLANET PHASE

NEXT

REM I--- CONTINUE MARS-TO-PLUTO CALC [#5@]

J9= (LP- LE)/ DR

Y= REX SIN (J9):X= RP- REX COS (J9)

GOSUB 4100:X= A% DR+ LP:GOSUB 400@

LD= X/ DR;R(J+ 1,0)= LD:REM PLANET LAMBDA (RAD)

D= LD~ LP/ DR

Y= RPX TAN (PS)¥ SIN (D):X= RE¥ SIN (J9)

A= ATN (Y/ X)iR(J+ 1,1)= AIREM PLANET BETA (RAD)

REM [#54]

R(J+ 1,7)= (14 COS (D))/ 2:REM PLANET PHASE

NEXT J

REM WE NOW HAVE LAMBDA & BETA FOR ALL BODIES

REM I--- CONVERT (LAMEDA,BETA) TO (ALPHA,DELTA) [#27)]

EP= SP(5)/ DR

FOR 1= 870 9

Ji= SIN (R(I,1))& COS (EP)+ COS (R(I,1))% SIN (EP)% SIN (R(1,0))
R(I,3)= ATN (J1/ SQR (i- Jik J1)):REM DELTA (RAD)

REM

Y=.5IN ¥ COS (EP)- TAN (R{I,1))% SIN (EPF)
2)= AtREM ALPHA (RAD)

NEXT 1

REM X--- CALC H

R(I,4)= HA:REM HOUR ANGLE (RAD)

NEXT 1

(R(I,9)
Xs COS (R(1,9)
109:R (1
OUR ANGLE [#24]
FOR 1= @70 9
REM 3--- MOON PARALLAX [#63]

(1,
(1,
9:R
A

GOsuB 4
X= LS~ R(I,2)% HR;GOSUB 4@30:HA= X/ HR

NOV/DEC 1984 COLORCUE

1631¢ Y= {- MP(4)% MP(4)

16311 X= 1+ MP(4)% COS (MM+ EC/ DR)iPA= Y/ X

16320 PK= PA% MP(G):1PH= MP(7}/ PA/ DR

168@9 REM EZ-~- MOON PARALLAX [#335]

16810 U= ATN (KR% TAN (LA))iH= 52/ K5

16820 PB= KR% SIN (U)+ H¥ SIN (LA&):PC= COS (U)+ H%x COS (LA)
16900 REM I--- MOON PARALLAX [#38]

16910 HA= R(1,4):R= {/ SIN (PH)

16920 Y= PCk SIN (HA):X= Rx CO3 (R(1,3))~ PC* COS (HA)
16930 D= ATN (Y/ X)iHi= HA+ D

16935 R(1,4)= H{IREM CORR. MOON HA

1694@ R(1,2)= R(1,2)- D:REM CORR. MOON ALPHA

16936 Y= R¥ SIN (R(1,3))- PBiX= R¥ COS (R({,3))% COS (HA)- PC
16960 R(1,3)= ATN (COS (H1)% Y/ X)iREM CORR, MOOM DELTA
17140 REM I-~- CONVERT (ALPHA,DELTA) TO (AZ,ALT) [#25]
17150 FOR I= @TOD 9

17135 HA= R(I,4)

17160 Ji= SIN (R(I,3))% SIN (LA)+ CCS .3))* COS (LA)X COS (HA)
17170 AL= ATN (J1/ SQR (1~ Ji% J1))IR(ALIREM ALTITUDE (RAD)
17189 REM

17190 Y= SIN (R{I,3))- SIN (LA)% Jt

17200 X= COS (LA)% COS (AL):J2= Y/ X

1721@ A= ATN (3QR (1- J2% J2)/ J2)

17220 1F J2< @THEN A= A+ PI

17221 IF HAC PITHEN A= PZ2- &

1723@ R(I,3)= AIREM AZIMUTH (RAD)

17300 NEXT 1

20000 REM 3-~- PRINT RESULT3

20010 PLOT 12

26029 Q%= "S"iREM RESULTS TO SCREEN FIRST

200390 IF Q%= "P"THEN GOSUB 5S¢0

20089 Wig= MID$ (Ws,WDx 3~ 2,3)

20090 Mig= MIDS (M$, TM% 3- 2,3)

201908 PRINT "SKY POSITIONS FOR";TY;" "yjWi$;" ";Mi$;" ;7D
290119 PRINT

20120 PRINT "LOCAL STANDARD TIME: ";TH;" HOURS,";TH;" MINUTES"
20130 PRINT

2014@ PRINT "FOR LAT, ";3Y;" LONG. WEST“;SX;" ELEV, ";SE;" METRES®
-.2013@ PRINT . .

20169 PRINT "DAYS SINCE JAN @ THIS YEAR: *;DJ

20179 PRINT

20180 PRINT "TIMES IN HOURS: LMT =";LM;TAB(3&); "GMT =";GM

2919¢ PRINT LST ‘";LS TAB(326);"GST =";GS

20200 PRINT (PRINT

20219 PRINT " ECLIPTIC ECLIPTIC RIGHT DECLI-"
2022@ PRINT LONG., LAT, ASCEMSION® NATIOM%"

20239 PRINT "BODY (DEG) (DEG) (HOURS) (DEG) "
2024@ PRINT ‘

20300 FOR I= @T0 9

20318 PRINT R$(I);TAB(12);R (, @)% DRy
20320 PRINT TAB(36) R(I,2)% HR;TAB{ 4
20339 NEXT I

20300 PRINT :(PRINT

26319 GOSUB 4300

20520 PRINT HOUR ANGLE* AZIMUTH#% ALTITUDE%* PHABE"
2933@ PRINT "BODY (DEG WEST) (DEG) (DEG) e T0 1)
20549 PRINT

2060¢ FOR I= @T0 9

20610 PRINT R$(1);TAB(12);R(1,4)% DRyTAB(24);R(I,5)% DR;
. 2@620@ PRINT TAB(36)3R(I,B)% DR;TAB(48);R(1,7)
' 20650 NEXT 1
2066@ PRINT :PRINT "% MOON POSITIONS ARE CORRECTED FOR PARALLAX.";PRINT
20670 GOSUB 4306
29700 PRINT "THE ABOVE ANGLES IN RADIANS:"|PRINT
20719 FOR I= @T0 9
20720 FOR J= @TD 6
2@73@ PRINT TAB(J* 11.5)R(I,VJ);
2074@ NEXT JiPRINT :NEXT I;PRINT ;PRINT
20750 IF Q%= "P"THEN 30000
20760 INPUT "IDO YOU WANT ABOVE RESULTS SENT TO PRINTER? (ZY 30R EN3) *;AS
20770 1F A$= "Y'"THEN Q%= "P":GOTO 20030
20000@ GOSUB 3100:GATO 2000
30010 END

£Q0Q0 REM I--- LIST ON PRINTER (:zz:25§fi§>
£001@ GOSUB 5@00:L18T iPRINT ;GOSUB 51@@:END !

COLORCUE NOV/DEC 1984

W ator

A spectacular assembly language presentation.

This program is an assembly language implementation of a pro-
gram suggested by A. K. Dewdney in the December, 1984 issue
of ““The Scientific American’’ (pp 14). The toroidal planet, WA-
TOR, is populated by sharks and fish. By establishing their initial
numbers, their breeding times, and the nourishment required by
the sharks, an ecological universe, having its own special rhythm,
is created. The computer program plots before you, on the CRT,
the evolution of this universe in terms of the populations of its
two species of inhabitants.

The assembly language code is commented sparingly and will not
take long to type. Assembly has been ORGed at 8200H. The
graphics character set is required. At run time, the following screen
display will be presented, and you must set up the initial parameters
for the ecology of WA-TOR. The numbers in parentheses are a
suggested starting point.

WELCOME TO THE WATERY WORLD OF WA-~TOR.

YOU MAY SELECT ITS POPULATION,

H SHARKS AND FISHES PROGRAM 22/12/84

H COPYRIGHT (C) 1984 T, M. NAPIER

H AN IMPLEMENTATION ON THE COMPUCOLOR 11 OF THE
H PROGRAM "WA-TOR® DESCRIBED BY A. K. DEWDNEY
H IN THE DECEMBER 1984 SCIENTIFIC AMERICAN.

i DISPLAY SIZE 44 BY 32

H 2K STORAGE, ONE BYTE PER LOCATION
H BYTE CONTAINS M F 9SS AmA

= 1 IF OBJECT ALREADY MOVED
= 8 IF FISH, § IF SHARK

55§ = TINE SINCE SHARK LAST ATE
AAA = TIME SINCE LAST BREEDING

N
F

H IF FISH, 555 IS NOT NEEDED 50 SSS := 188
i THUS A ZERD BYTE EQUALS AN EMPTY SPACE

H INITIAL FISK = 2XH, X = RANDON AGE
i INITIAL SHARK = 4XH

ORF B208H
WTOR: LXI GP,STK
WL A,195
§TA UINP
1 HINP
SHLD UINPHY
) SN
STA KBFL
AL STR
D8 6,2,15,12,18,18 8
ALL STR
DB *WELCOME TO THE WATERY WORLD OF WA-TOR,”,13,10,18,8
AL STR

08 ‘YOU MAY SELECT ITS POPULATION.,13,18,18,8

24

Tom Napier
12 Birch Street
Monsey, NY 10952

ENTER NUMBER OF FISHES ? (508)

ENTER NUMBER OF SHARKS ? (28)

ENTER FISH BREEDING TIME <1-7) ? (3)
ENTER SHARK BREEDING TIME (1-7) ? (4)
ENTER TIME TO STARVE A SHARK (1-7) ? (4)

Now the display begins. Upper left numbers show the number of
fish, followed by the number of sharks. Fish are in cyan, sharks
in red, all on a blue background. The screen redraws itself about
once each second.

The suggested starting parameters appear at first to quickly
diminish the fish population, but, within the first minute, you will
observe that Nature has a way of striking a balance. In order to
appreciate the operation and theory behind the concept
demonstrated in this program, you should read the article by Mr.
Dewdney, who presents a lucid and informative description of its
performance. You will also share my admiration for the rendition
that Tom Napier has presented. (ED] []

CALL STR
DB ‘ENTER NUMBER OF FISHES /,0
CALL NUMB
SHLD NOF
LALL STR
08 /ENTER NUMBER OF SHARKS B
CALL NUMB
SHLD NOS
CALL STR
DB /ENTER FISH BREEDING TIME (1-7) /.8
LALL NUMB
STA FBA
CALL STR
D8 “ENTER SHARK BREEDING TIME (1-7) /,8
CALL NUMB
STA S8
CALL STR :
DB ZENTER TINE TO STARVE A SHARK (1-7) *,8
LALL NIMB
A A
A0 A
AD A SHULTIPLY 8Y B
sS4 S%A
AL STR
DB 6,34,12,0
1
STA KBFL
ALl SETU
WTRI: CALL DIsP
CALL SCOR
AL FSCA
CALL SSCA
LA ROY
T
NI uTRY
(XI SP,BA42H
T H,38H
PUSH H
X1 H,KBFL
MP ESCD

NOV/DEC 1984 COLORCUE

INP: X1

ICR: MOV

IBS: MOV

NUMB: X1

NME: LDAX

NUH2: INX

NM3: MOV

SETU: LDa

COLORCUE NOV/DEC 1984

H,1BUF

ICR

f,2

H, 1BUF

=X
o=

z

iWAIT TILL NUMBER INPUT

gw

DT XD E OO F h O
—

H SHL = 103HL
30H {DIGIT TO NUMBER

RaM sRANDONI 2E
A9
ROYC iRANDOMIZER CYCLE COUNT

FILL:
FLLL:

CLR:

CLRI:

EMPT:

INDX:

FSCA:

F5C1:

{CLEAR SEA

{BARE FISH

;LOAD SEA WITH FISHES

{BARE SHARK

;SPEED-UP RANDOMIZER

;FIND ENPTY RANDOM LOCATION

FOR ALL SEA, IF FISH MAKE RANDOM MOVE

LHLD NOF
NV BH
MV CL
W1 D,FBAS
L FeA
MV EA
AL FILL
LHLD NOS
MV BH
MV CL
Wl D,5845
LA S84
MV EA
CALL FILL
W a0
§T& RCYC
RET

CALL ENPT
CALL RAND
M7
™M E
N LU
oA D
MV NA
0X B
NV A8
oRa C

N FILL
RET

X1 H,SEA
(XI B,SEAL
WL N0
N H

KX B
MV AB
e C
N CLRI
RET

CALL RAND
MV LA
CALL RewD
M7
NV HA
ALl INDX
MV AN
M A

N BT
RET

PUSH D

XI D,SfA
MDD
PP D
RET

X1 H,5E
X] B,SEAL
MV AM
ML NASK
CPI FBAS
%) MV
N H
DX B
NV A,B
RAC

N FSCl
RET

;FOUND UNMOVED FISH

25

26

FHOV:

DTBL:

PICK:

PICI:

ORA
STAX
Wi
POP
RET

DB
DB
DB

]
B,
PICK
At
AN
A

7
B,A
F8A
B

A, FBASHNF
a2
M,A

iSAVE COLNTER
iSEARCH CONDITION

iFIND MOVE THAT HEETS COND.

iNCNE SO DO NOTHING
{FETCH FISH

1 INCREASE AGE

IMASK AGE

;BREEDING AGE
SMOVED FISH

{REJIVENATE FISH
iNEW FISH

;ADD AGE TO FISH
SRETURN TO SEA
iCLEAR OLD POSITION

SEARCH FDUR ADJACENT LOCATIONS
B = SEARCH PATTERN, HL = CURRENT LOCATION

BC, DE LOST. HL UNCHANGED. DE = FOUND LOCATION

ZERD FLAG IF NO MATCH FOLND

3FH
EA
A0

D,A
ACoH

£,A
A,D

SEA/254
D,A

MASK

P1C2

iDE = LNWASKED XY
i = RANDON BYTE
H=8703

iDIRECTION TABLE
;INDEX INTO TABLE

1SAVE XY POSITION

;DE = NEW SEA ADDRESS

JWHAT S THERE?

HASK NON-ESSENTIALS

jGET XY POSITION
;MORE DIRECTIONS?

PIC2:

S5(A:

55C1:

SNV

NEAT:

SAGE :

DIE:

SBRD:

N PI0

PP H sCURRENT ADDRESS
RET ;NOTHING FOLND
PP H sDISCARD XY

PP H {0LD ADDRESS
Wl Al

M A {SET NOT 2ERD
RET

MOVE SHARKS

IXI H,SEA

IXI B,SEAL

MV AN

AL 8CeH

CP1 SBAS sINMOVED SHARK?
v} MV SFIND SHARK MOVE
N

X B

MV A,B

R C

N2 ssCl

RET

SELECT HOVE FOR SHARK
BC = CURRENT POSITION, HL = SEA ADDRESS

PUSH B iSAVE COUNTER
Wl B,FBAS SMASK FOR FISH
AL PICK

3 NEAT iNO FISH

Wl 8 ;STARVE LEVEL
MP SAGE

Wl B, iMASK FOR SPACE
CALL PICK

I Nt N0 SPACE

MV AN {FETCH SHARK
Al B {STEP STARVE
ANl 3K

NV CA 1STARVE AGE

LA s

™ C

3 DIE s STARVE

MV AN {FETCH SHARK AGAIN
IR 4 {STEP AGE
M7

MV BA JAGE

LA SBA {BREED AGE

M B

W1 A,SBASHMF JMIVED SHARK

32 SBRD 1BREED

Ra B 1AGE

kA C ;STARVE LEVEL
STAX D ;LOAD NEW SHARK
Wl M iDELETE OLD SHARK
POP B {RESTORE COUNTER
RET

VM sNEW BORN SHARK
(S ;STARVE LEVEL
STX D {0LD HUNGRY SHARK
PP B

NOV/DEC 1984 COLORCUE

DISP:

DSP1:

05P2:

SCOR:

CENS:

CENI:

CEN2:

RET

DISPLAY SEA AND CONTENTS

H, 7808H
D,SEA
D

7FH

D

HASK
FBAS
B, BLNK
DSP2
B, 5514
05P2
B,FSN
M,C

H

M,B

H

0

AH
88K
0SPf

CENS

8I613ll
NOF

NDS
PRNT

H,SEA

CEN2

;CLEAR MOVED FLAG

;COUNT FISHES & SHARKS

! lela

iFISH COUNT

;UNCOLNT FISH
1SHARK COUNT

PRNT:

PRT{:

PRT2:

RAND:

RND1

RND2:

PRINT FISH AND SHARK COUNTS

"]
c

18

188

B
E
B
B
B
B
B
8,108
B
A

,B

B4
AL

C,A
B
A1
A

B
PRT2
B

B
Isl
E
Ial
PNT3
E
PNT3
A,
I
B
A,C
A
PRT1
AL
Ial
I
A9
0

RANDOM NUMBER GENERATOR

PUSH
PUSH

B
R
RCYC
€A
RANN
AM
H
BAGH
RND2
H

c
RND!

STR:

ORG

STK:
1BUF:
NOF;
NDS:
FBA:
SBA:
S%A:

RCYC:
0RG

SEAL

SEA:
ESEA:

FBAS
SBAS
HASK
MF

BLNK
SS™
FS™

ESCD
CRLF

ADHL

UINP
KBFL
TSEC
IN
RDY

END

SHLD
MOV
Pop
Pop
RET

IN-LINE STRING PRINT

POP
MOV
INX
PUSH
AV
RZ
CALL
JHP

BAERH

DS

EQu
EQu
EQU
EQU

EQu
EQU
EQU

EQu
Eou
EQU
EQU

EQu
EQu
U
EQU
EaQu

WTOR

RANN
Al
H

8

> xx > x
=

o~ o

— R = = e B PO O

806H

SEAL

28H
48K
48H
88H

2628H
21734
26784

16FFH
17CHH
17C8H
194EH

B1C3H
810DFH
81BAH
81B9H
B1FFH

;BASIC FISH
1BASIC SHARK
s IDENTIFICATION MASK
MOVED FLAG

+ BLANK
iSHARK SYMBOL
sFISH SYMBOL

$(16FFH)
$(17CHH)
$(17C8H)
1 (194EH)

NoTICE: Intelligent Computer Systems, Huntsville

| am sorry to report that the Muellers have moved back to Germany and ceased their
business activities in the United States. Before leaving, they discussed with J. Norris the
possibility of COLORCUE becoming their CCll software representative in the U.S. Nothing
further has been heard about such an arrangement as of this issue. This means that there
is no legal source for CCli software in this country. We hope to hear further from Irmgard
Mueller about this and will report any change in status in CHIP. In the meantime, please
contact COLORCUE about your software needs just in case we might be able to give

assistance.

COLORCUE NOV/DEC 1984

27

SEARCH

. 27 Somerset Place
A string search program for the 8000. Murray Hill, NJ 07974

This program searches for a given string ;STRING SEARCH
h . h ;
startmg at a glven address, bOI sBY R. MENDELSON, MODIFIED FOR COLORCUE
parameters set by the operator. It prints {VERSION 2-23-85
the start address of the found string
location followed by the full string and ;THIS ROUTINE SEARCHES FOR A GIVEN STRING STARTING

. : ;AT A GIVEN ADDRESS BOTH SET BY THE OFPERATOR
all the characters after the string until ;1T PRINTS START ADDRESS OF THE FOUND STRING LOCATION
a non-alphanumeric character is reach- ;FOLLOWED BY THE STRING AND ALL CHARACTERS AFTER IT,
ed' I[[hen prin[s [he el’ld address Of the sUNTIL A NON-—-ALFPHA-NUMERIC IS REACHED. IT THEN FRINTS
l . ;s THE END ADDRESS (OF LONG STRING.
ong string. ;

The nice feature of the program is JEQUATES, COMMON

that it prints out a long string while re- §rm e
L 2123 CI EGQU R1B3H ;CONSOLE INPUT
q_ulhng the operator to enter only the aLas co £au 21294 ICONSOLE OUTPUT
first few search characters. For exam- ?10F Lo EQu @10FH ;LIST OUT
ple’ names and addresses can be fOl,ll’ld 9FFF KEYBF} EQu RIFFFH ;KYEBED READY FLAG
. SFDF KEYBFZ EQU Q3FDFH sKEYBOARD FLAG
by typing only enough characters to v12A 0STR EQU Q@128H ;STRING OUTRUT
identify the required string. Even if QEE4 EXHL EQU QEE4H ;PRINT CONTENTS OF HL ON SCREEN
. : 2133 EXFR EQU R133H s INFUT 4 DIGIT HEX ADDDR
several locatlons. contain the same BORE, COLOR Eau oen lcc1 sTaTus
characters the string printout makes it a01@ BLACK EQU 16
easy to select the desired string. Q11 RED EQU 17
sy string 2013 YEL EQU 19
Here is how it works. The keyboard 216 CYAN EQU 2z
flags are first cleared. The program then 222D CR EQu 12
" QaA LF eQu 1@
asks for the start address of the search. 200C 32 EQU 12
If the operator knows the approximate QaeE BA7ON EQU 14
N . . aaoF BA7OFF EQU 15 ;ELINK A7 OFF
location it will save a bit of time, but 281D FORGND EQU =
even running through the full 65535 ad- 201E EKBND EGU 0
dress space takes only a few seconds. QOEF £0s Eou =39 JEND OF STRING
The program now asks for the key ;EQUATES, SEARCH
characters of the search string. When 3 i
this data is entered the search begins. 9E20 ADDRI EQU 9EE@H ;START OF SEARCH ADDRESS
The character at the search start ad?The 922 LEN1 EQU 9E2EH ;LENGTH OF STRING
_ QES4 ADDRZ EQU SEz4H sSTART OF 'SEARCH' ADDRESS
program then £0¢s baCk to the start ad 9ESE ADDR3 EQU 9EZ6H sEND OF STRING ADDRESS
dress and proceeds to check each 9E30 STR1 EQU 9EZOH 3STRING BEING SOUGHT
character to be certain each is
. : . o2eR . IFP1
alphanumeric (that is, having an ASQII "ERINT ' SEARCH FOR STRING'
value between 20H and 7FH.) If it is, .PRINT °*VERSION 3-85'
it Wlll be printed_ If not, the » PRINT TENTER ROUTINE ORIGIN ?*
LT . . INPUT RBEGIN
alphanumeric print will stop and the end ENDIF
address will be printed by the EDIT2
. Q02 ORG RBEGIN
routine.
: Food AF SEARCH: XRA A ; ZERO
The STR3 rou‘t}ne as.ks [l;l,e (‘)‘perator Fewal 32 FF 9F STA KEYBF 1 sKYBD FLAG 1
to chose among ““Continue’’, ‘‘Start a Foo4 32 DF 9F sTA KEYBFE ;KYED FLAG &

new string’’, or ‘‘End operation’’ op-
tions. This program has proven so
valuable that it is best stored on FOQA 06 13 QE ADDR: DB COLOR, YEL, BA70N, BKGND, BLACK, FORGND, EF
EPROM for immediate and easy use.

F2@7 CD 76 F1 SERCH: CALL MESS sPRINT MESSAGE

oC

FO1l 53 45 41 DB ' SEARCH~-* , BA7OFF
52 43 48
2D @F

28 NOV/DEC 1984 COLORCUE

Fa19

Fo2E
FozF
Fo32

F@35

Faza

F@3B
FQAZE
Fa41
Fa44

F@S3
FRS6
Fas7
F@3A

F@sSD
. 1=1"]
Foel
Foe2
FoesS
Fae8
Fo&B

Fa7a

F@7C ¢

Fa7F

Faaz
Faas
Foasa
FasE
Feac

FeaD
FoaF

Fa9z

F@94
Fas7
F@9A
Fa9D
Fana
Fan3

FOARD
FoB@
FaBl
FaB2
F@BS

COLORCUE NOV/DEC 1984

CD

A
11

47

1A
BE
cz

cA
13
c3

zA
a3
ez
c2

CD
16
2A
7E
23

D&
DA

D&

53

SD

45

76
2@
24

26
E4

F@

F@

F@

9E

SE
Fia

9E

Fo

9E
BE

STR:

BEGIN:
CONT :

sCOMPARE STRING

COmMP 3

;STRING

NOTEQ:

DB

DB
cAaLL
SHLD

LXI

CALL

LHLD
LXI
LDA
MoV

LDAX
Cmp
JINZ
INX
DCR
Jz
INX
JmpP

DID NOT

LHLD
INX
SHLD
JIMi

CR,LF,LF,CYAN, *START ADDRESS) ‘', RED

EQS
HEXIN
ADDR1

H, MSG1
INPUT
ADDR1
D, STR1

LENL
By A

H
;STORE ADDRESS OF SEARCH START

;LOAD STARTING ADDRESS
;LOAD STRING

;LOAD STRING LENGTH
;MOV LENGTH TO B

WITH MEMORY

EQUAL
D
comp

COMPARE,

ADDR1
H
ADDR1
CONT

sPATTERN DID COMPARE

EQUAL :
COUNT :

STOP:

EDIT1:

EDIT1A:

LDA
DCX
DCR
JINZ
SHLD
cALL
DB

DB
LHLD
cALL

CALL
DB
LHLD
MoV
INX

LEN1
H
A
COUNT
ADDRE
MESS

;LOAD STRING BYTE
sCOMFARE WITH MEMORY
$BRANCH IF NOT EGUAL

5 INCREMENT HL FPOINTER
sDECREMENT LENGTH COUNTER
sBRANCH IF DONE

3 INCREMENT STRING FOINTER
CONTINUE TESTING

ADVANCE MEMORY START FOINT

;LDOAD NEW START ADDRESS
;s INCREMENT

38SAVE END ADDR OF FIND
§START TEST AGAIN

sPOINT TQO LENGTH
sREDUCE ADDR AND COUNT

; ZER@?
iSAVE START ADDR OF FIND

CR,LF,LF, YEL, ' ADDRESS*, RED, ') °

YEL, EOS
ADDR2
EXHL

MESS
CYAN,? °
ADDRZ
A, M

H

§RECOVER THE START ADDR TO HL REG
5PRINT START ADDR OF STRING

, EOS

$BET START ADDR OF FIND
5GET STRING CHARACTER

;IS CHAR NON-ALFHA-NUMERIC?

EDITZ2:

SuUl
JC

Sul

JINC
cAaLL
JmP
SHLD
cAaLL
DB

LHLD
DCX
DCX
SHLD
CALL

20H
EDIT2

60H

EDIT2
co
EDITI1R
ADDR3
MESS

IS IT LESS THAN 20H?
5YES, END STRING FRINT

IS IT GREATER THAN 7FH?

5~6@H=7FH~-1FH, 2@H BECOMES 1FH BECRUSE-
§~——SUBTRACT IS COMPLIMENT + 1

5YES, END STRING PRINT

;LOOK AGAIN
{SAVE END ADDR OF STRING

YEL,' TO',RED,') ', YEL,EOQS

ADDR3

ADDR3
EXHL

;RECOVER END ADDR (1 RYTE AFTER STR +EF)
§ADJUST TO LAST CHARACTER ADDRESS

3
3SAVE END ADDR OF STRING
sFRINT ADDR OF END OF STRING

29

30

Fobas
FoBB

Face

FeCD

FaDe
FeD9
FoDE

FQDE
FREQ

FOE3

FOE4
FRES
FQES8
FREB
F@eC
FREE
FREF
FaF@
FarFi

FoF4
FoF?

FOF9
FoFC
FRFE
Fla1l
Flo3
F106
Fies8
Flap
FleD

Fiie
F111
Fiie
F113

Fi11e
F117
F118
Fi1B
F1l1lE
Fi2@
F123
F12s
Fi2e8

FlzB
Fi2D
Fl13a
F131
Fl132
F135

CF

77
z3

04

76
A
43

4E
57

F3

ag
aF

en
Fa

Fa

a1

Fa

9E

o1

F1

F1

Fi

Fi

Fi

F1
F1

a1

@l

Fa

21

21
Fa

STR3: CALL
DB

DE

DE

CALL
CPI
JZ

CPI
JZ

MESS

CR,LF,LF, RED, *C*', CYAN, * ONT, *

RED, * N7,

RED, *E?,

cI
1
CONT

‘NV
SERCH

CYAN, *EW, °

CYAN,*ND > *,E0S

;GET ANSWER

;IF ANS IS Yes THEN

;CONTINUE TO LOOK FOR SAME STRING FROM
;END OF ADDRESS OF LAST FIND

sIF ANS IS New THEN

JBEGIN AGAIN

;ANY OTHER CHARACTER WILL TERMINATE FROGRAM

RST

1

s INPUT ROUTINE

; INPUT ROUTINE:

s TERMINATE FPROGRAM

ALLOWS BACKSPACE (ERASES CHARACTER),

sERASE LINE AND ALSO LINE EDIT. BACKSFACE TO THE ERROR,
;CORRECT AND CURSOR RIGHT TILL END OF INPUTS. CURSOR
sWILL GO NO FURTHER

INPUT: PUSH
CALL
LXI
XRA
My 1

INPUTL: MOV
INX
CCR

;NONE OF THE

mayv
Y3: INX
INR
JmP

;COMES HERE

Yaz DCX
DCR
Jz
Jm
MVI
CALL

Y3: MV I
CALL
JmpP

AROVE

, A

<mI X

IF INPUT IS

H
B
YE
Yé
A, 20H
LD
A, 1AH
LD
vz

;SAVE POINTER TO STRING

JFOINT TO OUR INPUT BUFFER
$ZERO ' A?

;2ZERD 3z FLACES IN THE BUFFER

;POINT TO THE BUFFER
;"B AS A COUNTER
JINFUT 1 HIT OF KB

;IS 1T A BACKSPACE 2
$IF YES, Jump

;15 IT AN ERASE LINE 7
;IF YES, JUMRP

;15 1T A CURSOR RIGHT »
11F YES, Jume

;1S IT A 'RETURN' 2
;IF YES, JumF

sPUT INFUT IN BUFFER

3 INCREMENT BUFFER

5 INCREMENT COUNTER
;LO0OR till ONE OF AROVE

A BACKSPACE

;s DECREMENT BUFFER

s DECREMENT COUNTER

;IF RESULT OF BACKSFACE =) THEN..
s INFUTS, ERASE LINE & DO ALL OVER
S =
j...-».ERASE THE CHARACTER... .
jew===.BACK UF THE CURSOR.......

360 BET NEXT INFUT

;COMES HERE IF INRUT WAS AN ERASE LINE

YE: MY I
CALL
FOF
PUSH
CALL
JMP

A, OEH

;ERASE THE LINE

;GET FOINTER TO STRING
$SAVE 1T AGAIN

JREPRINT THE STRING

;GO DO IT ALL OVER AGAIN

NOV/DEC 1984

COLORCUE

;COMES HERE IF INPUT WAS A 'RETURN?

F138 AF Y7: XRA A
F139 B8 cHe B
F13A CA @B F1 Jz Y&
F13D 78 Y7A: MOV A, B
F13E 32 22 9E STA LENL
Fl41 3E EF My I A, 239
F143 77 May M, A
Fl44 3E @D My I A, 13
F146 CD OF @1 CALL LO
F149 3E @A Myl A, 10
F14B CD OF @1 CALL Lo
F14E E1 POR H
F14F C9 RET

s TEST FOR Cr W/0 INPUT

;IS COUNTER STILL ZERO ?

;IF YES, DO IT OVER

sNEEDED TO COUNT STRING LENGTH
sFOR SERRCH PRG.

3—-PUT AN 'EF' AT END OF——~---
s——INPUTS, MAKING A STRING OF IT
;Cr

5 SEND

;LT

5 SEND

;ELIMINATE POINTER TO STRING

;COMES HERE IF INPUT WAS A CURSOR RIGHT (_)

F150 7E v8: MoV a,n ;FETCH CHARACTER
F151 A7 ANA A ;1S MEMQRY A ZEROD ?
FiS2 CA 23 F1 Jz Ys ;1F YES, IGNORE CUR.RIGHT
F155 3£ 1A MVI A, 1AH ;MEMORY riot A ZERO
F157 CD OF ©1 cALL LO $BACK .CURSOR UF ONE
F1SA 7E MOV A, M ;FETCH THE CHARACTER
F15B CD @F @1 cALL LD sPRINT IT
F15E C3 11 F1 ImMp Y3 ;60 GET NEXT INPUT
F161 OE 1 HEXIN: MVI . C,1 ;COUNTS FOR FOUR EYTES OF ADDRESS
F163 CD 33 @1 cALL EXPR ;——=FETCH BYTES TO STACK, THEN-——
F166 E1 pop H ;~—PLACE DATA IN HL REG AS START ADDR.-—
F167 C9 RET
F168 ©D @A 16 MSGl: DB CR,LF,CYAN, *STRING > *, RED
53 sS4 s2
49 4E 47
2@ 3E 20
11
F175 EF DE E0S
;CALL FOR MESSAGE ERINT
F176 E1 MESS s S{n]=] H sFETCH POINTER TO MESSAGE
F177 CD 2A @1 cALL OSTR ;PRINT MESSAGE
F17A E9 PCHL s RETURN TO FROGRAM
F17E. REND :
F17B . IFEL
« PRINT " PROGRAM ORIGIN = ', RBEGIN
« PRINT ' PROGRAM SIZE = 7, REND-RBEGIN
« PRINT * PROGRAM END = ', REND
ENDIF
F17B Fooo END SEARCH
A BUG IN FASBAS! Peter Hiner Please check each entry carefully before hitting RET, and

I regret to advise those of you who have the latest version
(v12.24) of FASBAS that I have allowed a fatal bug to creep
in. This bug was not present in earlier versions, so the cor-
rective action outlined below should be applied only to
v12.24.

ESC W :+ to be sure of a clean start

ESC D to enter FCS
LOAD FASBAS.PRG irn response to FCS
ESC E to return to BASIC

POKE 39885,4
POKE 39234,53

to eliminate the bug
optional entry to change
display header to v12.25
ESC D ; back to FCS
SAVE FASBAS.PRG;25 82A8 173F
; save update to disk

COLORCUE NOV/DEC 1984

at the end, check the disk directory to be sure you have sav-
ed FASBAS.PRG;25 with the same values for size and load
address as for v12.24.

Columns
should read:

SIZE LBC
BO2F 3F

LADR
82A0

SADR
82A0

Credit for discovery of this bug goes to Doug Van Putte
who presented me with a BASIC program that appeared to
compile satisfactorily but caused the assembler (FBASM)
to crash. I discovered the reason for this to be an error in
the size of output buffer allocated within FASBAS. Runn-
ing on a 32K machine, FASBAS would overflow the top of
RAM if a medium to large BASIC program was being com-
piled. On a 16K machine not even a small BASIC program
could be compiled! I am sorry for any inconvenience caus-
ed. This debugged release of FASBAS will now be official-
ly called v12.25. [

3

TRACE

TRACE is a program that allows the
user to observe the operation of a
machine language program one instruc-
tion at a time. On each machine
language instruction, TRACE causes the
instruction to take place and prints the
results of the instruction on the screen.
The “‘results’’ include a printout of the
status of all the 8080 registers, the stack
contents, memory addresses, and the
program counter. TRACE differs from
other disassemblers in that the opera-
tions actually occur. Therefore, JMPs,
and CALLs are properly executed.
TRACE acts as though it were a
microprocessor but it only simulates a

A printing disassembler for the CCII.

Thomas Wulff
80 Bowen Road
Churchville, NY 14428

microprocessor, in a sense. For exam-
ple, if the code being traced places
characters on the screen, they will not
actually appear there, but the register
and memory contents will be accurate-
ly simulated.

The operation of TRACE is more clear-
ly seen in the accompanying printout.

TRACE requires a single disk, at least
16K RAM, and a printer connected to
the MODEM port. To operate the pro-
gram, a machine language auxiliary pro-
gram, PRO042.PRG;l is loaded into
memory. If PR0042 is on the same disk
as TRACE, it will automatically load

PAGGE 1
GAME .PRG (CHRIS ZERR)
START ADDRESS = 34834

CHD tSZAPCY A B Y C DY E Y H L
et e e o e e +t————— b mp e e e ———
346864 34 SHLD 164581 ! ! ' ! ! ! ‘ '
34887 172 XRA H ‘pgole! H! ' ! ! ! ! !
368468 55 STC ‘epe11! : ! ' ! ' ' !
34849 53 LDa 9328!6e0811! 69! ! ! ! ! ! !
34872 55 STC ‘eealt! ‘ ' ! ! ! ! !
———————————————————————— e et Tl e e it e e 2
36873 48 =xx UDF <« ! ! ! ! ! ! ' ' '
34874 5@ STA 34410 ! ! ! ! ! ' ! !
34877 32 =%x UDF << ! ! ' ‘ ! ! ! '
34878 @8 MOV D,B ' ' ! ' -y ! ! !
36879 83 MOV D,E ' ! ! ! -y ! ! '
———————————————————————— i e e D e el ok etk 3
34886 87 MOV D,A ' ! ! ! -ty ! ' '
34881 8 NOP ! ! ! ! ! ! ! ! !
36882 77 MOV C,L ! ! ! 178! ' ! !
34883 144 SUB B ‘getie! 3! : ! ! ! ! !
36884 202 JZ 21250 ! ' ! ! ! ! ! !
———————————————————————— e mm et m e e — e —— b —
34887 88 MOV E,B ! ! [! -y ! !
34888 172 XRA H ‘paelp! 75! ! ! ! ! : !
34889 189 CMP L t1ee11! ! ' ! ' ! ! '
34890 40 ®xx UDF << ! ! ! ! ! ! ' ! !
36891 83 MOV D,E ! ! : ! -y ! ! !
———————————————————————— tm——— e m b ——p ——— -t
34892 7& MOV C,H ! ! ! -1 ! ! ! !
34893 79 MOV C,A ! ! ' ¢ 75! ! ! ! !
34894 41 DAD H t1g0106! ' ! ! ' 11441152!
34895 144 AND H 'e11lp! B! ! ! ! ! ! '
34896 S8 STA 13877 ! ! ! ! [! ! !
———————————————————————— tmmm b m b — e —t e — b ——— — e
36899 144 AND M 'g1010! B! ! ! ! ! ! !
369808 189 CMP L 'eo@Bl! ! ! ! ! ! ! !
36981 48 **x UDF (K ! ! ' ! ! ! ! ' !
34992 83 MOV D,E ! ! ! ! -y ! ! !
346983 72 MOV C,B ! ! ! HR-1-3 ! ! ! !
———————————————————————— D ikt bl e e E el R e bt Kt]
36984 73 MQV C,C ! ! L Ty ! ! ! !
34905 41 DAD H 'geeol! i ! ! ! ! 33! 48!
36986 S8 LDA 9284'!08001'130! ! ! ! ! !
34989 4@ ®*%x UDF << ! ! ! ! ! ! ' ' !
36918 49 LXI SP , 10547! ! ! ! ! ! ! ! '
———————————————————————— t==—m—m—tm——t b —p—m—t —— =t —— et

32

DAaTa 5P ADRIMEM

+ -
i
f

before tracing begins. If, for some
reason, PR0042 becomes altered during
the run, it may be reloaded by inserting
the program disk and entering ‘RUN
4000’ from Basic.

The program prompts the user for
several replies at the start of the pro-
gram. The user must, at this time,
specify the following parameters:

1) the number of printer lines per page.
The default is 80 lines/page, although
most printer paper will require an entry
of 66 lines or less. The program will
generate a page command based on this
number. The title, page number, and

MRDF

NOV/DEC 1984 COLORCUE

start address are printed as a header on
each page.

2) the number of characters/line for
printout. The default width is 80
characters.

3) the title of the program. Any text
header may be entered here, and will be
printed at the top of each printout page.
The header must be restricted to the
number of characters/line specified
above.

4) the start address of the program. This
is the address at which TRACE will
begin disassembly. You must be certain
that the address vou supply is a logical
starting address of a program or inter-
rupt. The starting address is in decimal.

5) the printout destination, (S)creen or
(P)rinter.

6) the printer Baud rate. You will enter
the exact rate (ie: ‘2400’, or ‘300°).
TRACE does not recognize the familiar
1-7 entries here.

After this preliminary information is
entered, the program will ‘trace’ until a
HLT instruction is reached or the AT-
TEN/BREAK key is pressed. Since
TRACE uses a machine language pro-
gram, the registers and other processor
parameters are not destroyed when the
program is re-run, provided that
PR0042 has not been reloaded in the
meantime.

TRACE places PR0042.PRG im-
mediately after the Basic portion of
TRACE. If you alter the Basic portion,
in terms of its byte count, and get an
OM error, you do not have to reassem-
ble PRO042. At the beginning of the
Basic program you will see ‘A0 = 165°.
This is used to set the top of Basic RAM.
It is also used in placing PR0042 in the
appropriate memory area. Increasing
‘A0’ will provide more Basic memory
space and also load PR0042 to a higher
address. This load includes address
changes in PR0042. TRACE also iden-
tifies any undefined functions but does
not operate on them.

TRACE is available from the CHIP
library in the form of seven files, in-
cluding all source code and the assembl-
ed versions. The following printout
demonstrates a typical TRACE output
for the first few lines of code from Chris
Zerr’s GAME.PRG from the animation
article in COLORCUE, VOL VI, No 5,
pl2. [

COLORCUE NOV/DEC 1984

Assembly Language Programming, Part XVII: c?%—)

“Pesticidal Programming’’ Using IDA’s Monitor.

W. S. Whilly

As promised (last year!) we will continue with our explora-
tion of IDA, this time looking at the Interpret command
and a few esoteric facilities of IDA.

IDA’s monitor operates on a pseudo-8080 processor; that
is, the register contents are simulated on the CRT for readout
purposes. The best way to explore this marvelous instruc-
tional and debugging aid is with a short test program. Listing
I has an assembler printout of the program we will use. Type
it on your screen editor now and assemble it.

To explore a PRG file with IDA’s monitor, first RUN IDAE
(or IDA4). Next, I usually fill a good portion of memory
with 00H so I can tell exactly where my program begins and
ends. To do this type as follows:

1DAYF 8208 DFFF @0
Now we can load the PRG file from IDA:

IDAXXLOA MON.PRG

We do not specify a loading address, so IDA will use the
loading address in the directory (8400H). You may verify
the presence of the program by disassembling at 8400H:

10AXD 8268 15+

...and there it is! We will now step through the program
one instruction at a time, using the ‘I’ command. Clear the
screen with the ERASE PAGE key. Now type in this
command:

1DAX 18408 8480

In this command format the first 8400 is the address at which
you want to begin executing. The second 8400 is a break
point. Making the two numbers the same allows an examina-
tion of all the initial conditions without executing any of
the program instructions. What you should see is this line

on the CRT:
3480 2180080 LX1 H,@600H Faad
PC BC DE HL A CPAZSM SP SP+B SP+2Z SP+d 5P+
3400 CoLO BUUL VRVY W6 6 6 B @ @ C3 40D2 48DC C3I3E CS32 3281

The top line of the display shows the next instruction to be
interpreted, in the usual IDA disassembly format. On the
next line, from left to right, the display shows the address
in the program counter (8400), the BC, DE, and HL registers
(all 00H), the accumulator, five flag bits, the current con-
tents of the memory location held in HL (really the first byte
of the operating system, since HL holds 0000H), the IDA
stack pointer (40D2 in my computer, but your contents may
differ depending on what you have done most recently with
the computer and which version of IDA you are using), the
current stack contents (SP +0) plus the last three stack
entries.

33

Each instruction, in turn, is processed by IDA by pressing
the BLUE color key (or CTL T). Press this key once now.
The following line will be displayed:

8483 37 DaD SF [

PC BC DE HL A CPFPAZSSHM SP SF+d SP+Z SF+4 SPto
8403 DO0V6 BOUO VUUY @8 B V @ B B C3 40D2 4CFB C35& C532 3281
The program counter has advanced to 8403 because LXI
H,xxxx is a three byte instruction. You will notice a change
in the stack contents (at the star in the line above) because
IDA is using the stack as it runs the monitor. We are in the
process of assigning our own stack so it will reflect only our
own work and not that of IDA herself. Press BLUE again

and you will see the effect of DAD SP:

3dy4 220u9n SHLD FRBUH FF4
PC BC DE HL A CPHrZISHM SF SP+g 3P+2 SP+d SFré
84064 U6vw ©Vow 49D2 V8 v v © Y v EA 40D2 4CFs CIBE C532 3231

The HL registers now hold the current stack pointer address
(40D2 for me). You’ll notice that M has changed, because
the memory pointer has changed. M does not hold a byte
shown in the first stack position on the screen, as we would
expect, because 1DA is deceiving us a bit about the ‘real’
contents of HL. However, we will change all of that when
our own stack is clearly defined. When we press BLUE
again, we will be saving the IDA stack pointer at address
9A00H. You could leave the interpreter and use IDA’s Peek
provision to examine that address, but we’ve done a clever
thing. Press BLUE:

B4e7 31009A LX1 SP,7ADUH H 4
FC BC DE HL A CPAZESESHM SP SP+B SP+2 SPrq SFtS
8487 0008 QvEd 48D2 @@ 0 B @ © B EA 40DZ 4CF3 C3I3E 0932 3231

You’ll see the contents of address 9AO0H in the stack pointer
address (SP + 0), which is right where we placed it! The next
instruction, LXI,SP 9A00H will establish our new stack.
Press BLUE and see the following:

BaeA 918291 LX1 B,al9zH 3 777
FC BC DE HL A CPAZSEM SP GP+@ SP+2 SP+4 SP+4
390A @000 Q080 4902 Y6 © B 0 © @ EA $A00 4vD2 vEOY bOVL BOOY

The stack pointer is now 9A00H, and since we cleared
memory in that area, all the stack positions are 0000H ex-
cept for the 9AOOH we recently placed there. This makes
it easy to follow stack operations. Press BLUE:

346D 168F MVl 0,8FH ;U0 a3
PC BC DE HL A CPAZSM SP SP+d SP+2 SPrd SP+a
846D @162 000@ 48D2 60 0 @ 0 b @ EA PAVD 4802 06O YGOY LoBD

The BC register pair has some new visitors. Press BLUE:

84@F 1EFF MUl E,FFH e 255
PC 8C DE HL & CPAaZSM SP SP+b SP+2 SFr4 SP+o
B4BF 91982 GFB0 46D2 00 B B 0 6 8 EA 9H06 40D bodb GBOO DOLY

So does D. Press BLUE:

8411 2168¢0 LX1 H,60
FC B C DE HL A CPA
B4ll @102 8FFF 48D2 ve @ 9 ©

%]

6H i 277
28 M SP SPrb SP+2 SF+4 SFrs
9 @ EA 9n00 49D2 60Gb bbob veve

...and E. Press BLUE:

3414 86 ADD B P
PC BC DE HL A CPAZSM SP SPrg SP+2 SP44 SP+6
§414 8102 BFFF ©006@ 80 @ 0 @ ¢ 0 C3 9AB6 46D2 GBUE VVvs Boub

..as does HL. Notice that the old memory byte is back (C3).
Press BLUE:

34

8415 FS PUSH PSiW ;o
PC BC DE HL A CPAZSM SP SP+8 5F+r2 SP+4 3P+é
8415 6102 GFFF 9660 61 @ & 6 6 © C3 $A60 4602 BOBO BVDG BV

The accumulator now hold the sum of O0H and O01H
(A=A+B). ADD puts the sum of A + B in A. Press
BLUE:

8414 g1 ~DD c
PC B8 C DE HL A CPA
§416 8182 QFFF boee 81 0 6 o

A
SP SP+@ SP+2 SP+d SF+é

S M
8 C3 99FE 81902 49¢D2 vode 0oso

%]
We have PUSHed the accumulator and the flag register onto
the stack (0102). ‘01’ is the accumulator. What is the ‘02°?
I1t’s bit 1 of the flag register. Even though all the flags are
zero at this point, remember that the flag register is eight
bits wide but only five of these bits are used for flags. There
are three bits unaccounted for here, and I suspect they are
being used by the 8080 for something. If someone knows
‘for what’ please contact me at once! We know, at least,
that bit 1 is set, because that’s the only way to get ‘02’ in
the flag register. {1] Press BLUE:

8417 FS PUSH PSW oy
PC B C DE HL A CPAZSHM SP SP+@ SP+2 SP+4 SP+S
8417 Y10z SFFF bbue B3 @ | ¢ ¥ & C3 $YFE 0162 4802 eboy wewy

We have added C to A (A = A + C). The Parity flag has been
set. This happens when the number of binary ‘1’s in the A
register, following an operation, is an even number. The
binary representation of 03H is ‘0000 0011°. (‘0’ is an even
number also for purposes of parity.) Now watch the stack
as we interpret the next instruction. The stack pointer will
decrement, our old stack contents (0102) will be moved over
to the right, and the new contents put in its former place
on the CRT. Press BLUE:

8418 3200690 sTA y6b6

PC BC DE HL A CPA

6418 ©l92 SFFF boee 83 ® 1| ©

H ; 29P
ZSmM SP SP+0 SPr2Z SP+4 8P+¢
6 8 C3 9YFC 038o 01082 48DZ @ovwe

We have added to the stack. Notice that the PSW reflects
the flag changes we made. Next with STA 9000H, we will
save the A register at address 9000H. You won’t see anything
vet in IDA except the change in the program counter. You
could always Peek at 9000H to be sure it’s there. Press
BLUE:

©41B ez ADD D ;3 B
FC BC DE HL A CPA S M SP SP+@ SP+Z SPr4 SPro
B 1@ [}

4
8418 8182 BFFF B0OO ©3 8 C3 99FC 83066 6102 40D2 wbee

Now we will add D to A. Press BLUE:

g41C 83 ADD E ;o
PC BC DE HL A CPr2ZSH SP SPt+b SP+2 SP+q4 SFte
841C vlv2 SFFF b4eo 92 8 8 1| 6 1| C3 99FC 03ué 0102 4uDbz buie

A = 92H. The Sign flag has been set. This happens when
bit 7 of A holds a binary ‘1’. 92H is such a number (‘1001

0010’). We will now add ‘OFFH’ to 92H. Press BLUE:

841D FS PUSH PSW - HE!

PC BC DE HL A CPA S M SP SP+@ SP+2 SP+4 SP+s
841D v182 BFFF Boge %1 1 © 1 1 C3 99FC 83856 ©102 4002 vboo
What’s this?! It seems 92H + OFFH = 91H. Is IDA poor
in arithmetic? You will notice the Carry flag has been set,
indicating an A register overflow. The ‘real” answer should
be ‘191F but a single eight-bit register can hold no more
than ‘FFH’. So the 8080 has done what you and I do with
a column overflow in addition, it has generated a ‘carry.’
If your program were adding large numbers, some provi-
sion would have to be made for using this overflow to ad-

2
[}

NOV/DEC 1984 COLORCUE

just the higher portions of a large number accordingly. We
are going to PUSH this high number and its flags onto the
stack. Press BLUE:

841E EB XCHG I

PC BC DE HL A CPAZSHM SP SP+@ SF+2 SP+4 SP+¢
S41E 9le2 SFFF dvee %1 1 8 1 8 1 C3 99FA %193 6306 61062 48D2

Next we will exchange the contents of the DE and HL
register pairs. The numbers involved are not arbitrary for
we are preparing to verify our STA 9000H instruction from
line 13. Press BLUE:

841F 23 INX H i

PC BC DE HL A CPA S M SP SPt@ SP+2 SFr4 SPto
1 81 16

2
841F 2162 8880 8FFF %1 @ 0 99FA P1¥3 v30s 8182 4002

The next instruction will place 9000H in the HL registers.
Notice that the contents under ‘M’ will change. Press BLUE:

3428 77 MoV MyA Y
PC BC DE HL A CPAZSHM SP SP+@ SP+2 SP+4 SP+o
8420 0102 0000 7908 1 1 O 1 6 1 83 $YFA 7193 0306 wle2 4wDZ

‘M’ shows the 03H we placed there way back in line 13. Let’s
copy our new A value to M. Press BLUE:

g421 97 SUB A 3y oW .
PC BC DE HL A CPA S M 3P SP+@ SP+Z SP+4 SPr¢
1 014 19

2
‘8421 @102 600E Y808 91 8 1 99FA Y193 030& B182 406D2

Now we will subtract A from itself, which is a good way
to clear the accumulator. Press BLUE:

LISTING TI.

sMOM . PRG: Dema program

tor IDA‘s Interpret Command.

sNOTE: before loading this program, clear memary
; from 8288 to DFFF. [IDAMF 3288 DFFF @6l
Bage (8460 ORG 8460H
3486 2100809 BEGIM: LXI H,8808H ;jClear HL registers
2483 3¥ DD SF jDouble—add current
' ;7 stackK pointer to HL
3484 2298%A SHLD PhdEH ;Save stack address
; for end of program.
3987 3100%4 LX1 5P, ?ABEH iMew stack pointer
348/~ Bluzel LXI B,01 ;Set initial parameters
g4eD 183F MU D, 8F ; with both MUYD and LXI
s48F LEFF MUT E,aF
8411 Z2la064a LI H,aa ;Clear HL
3414 3@ START: ADD B A= A + B = dlH
3418 FS PUSH PSbt sLoak at stack contents!
3414 3L “DD [iR = A+ C = B3H
2417 FS PUSH =]
5413 3za67a STA FooaH ;Place zum in memory
3418 282 “DD L
3410 33 ~DD E
241D FS FUSH P3W
241E EEB HKLCHG ;Zwap HL and DE
341F 23 I H slncrement HL to P08dH, cur
y memory locaticn
2428 77 FACL M,
2421 27 suB & sHow & = @, note zerc tlag
g4z2z 77 MaLY MoA yZera M
3423 DS PUSH D ;Tricky way to get a iot
g424 DS PUSH D ; of zeros on the stack
8425 DS PUSH D
8424 F1I POF Sl ;Clear A and tlag regicter
8427 C1 FOP g 3Clear EC
5428 2ABBPA LHLD FABEH sMove contentsz of this
i location into HL
g428 F? SPHL sHow move it into SP
342C 2148800 LXI H,00 iClear HL
842F (B4@a> END BEGIN jPlus carriage return

COLORCUE NOV/DEC 1984

35

8422 77 MOV M,
FC BC DE HL A CFP
3422 0182 e0ee 9800 B3 b |

A HY
AZ S M SP SP+@ SPE+2X SFEr4
1 1 8 2t $7FA 9193 8386 Bl82

SFes
4dD2
Notice that the Zero flag has been set. This happens when
an operation causes the accumulator to go to 00H. We will
clear the memory location by PUSHing this new value of
A. Press BLUE:

8423 DS PUSH o
FC B C DE HL A
8423 0102 viod Yvbs Qo

Y

i

CPAZSM SP SP+@ SP+Z S5F+4 SPre
B 1 1 1 b 80 ¥9F&A PI93 03b¢ 01BZ 4ul2

To finish up, we will clear a few more registers from the
stack and restore IDA’s stack. Press BLUE and watch this
happen. When the first ‘NOP’ appears at program address

824F, you will be finished with this demonstration. Go
ahead.

4z4 DS PUSH D ;U

PC BC DE HL A CPAZSM SP 8P+B SP+2 3P+a SP+6
8424 91V2 BRLV PBRG BE O I 1} 1} @ BY YYFS OYLBY F193 ©3Bo vlBZ
8425 DS PUSH D ;U

PC BC DE HL A CPAZEHM GSP SPrb SFr2 SP+d SP+s
8425 2182 66O 5666 BE B 1| 1 1 & BB 99FS 6EEE LOEd VIPI 6Ive
8426 F1 POP PSW i 9

FC BC DE HL A CPAZSM SP SP+d SPr2 SF+d SP+é
8426 @102 @GO Y908 B8 © 1| 1 | © B0 YYF4 DEAD GBOO B0E0 Y193
8427 Ct POP B P A

PC BC DE HL A CPAZGSHM SP SP+vé SP+2 SP+4 3P+é
B427 @162 6U0E Y068 BB B @ 6 & b 6B YPFS WLBL BVEVY 1YI BILo
B428 ZABBYA LHLD $ROGH i *u2Z

PC BC DE HL A CPAZSM SP 5Prg SPr2 SP+4 SPs
5428 GlbE V0EE 7668 OB O 6 6 @ O VY YYFB @60 ¥1Y3 83bs 2182
G428 F9 SPHL i

FC BC DE HL A CPAZSHM SP GSP+d 3P+2 5Pr4 SPro
84ZB 6000 G0E6 46D2 6@ © b B B B EAH PYFD BEBL Y193 6306 BleZ
g§42C 210€e8 LXI H,6008H i 772

PC BC DE HL A CPAZSM SF SF+d SP+2 SP+d SP+o
84ZC 6660 BY6R 40D2 08 ® B © @ © EA 48DZ 4CF8 C3I3E CS32 3281
842F @@ NOP P9

PC BC DE HL A CPAZSM 5P SPré 3P+2 SP+d SPee
842F 6068 ©B0O 6808 00 @ 9 © ¢ & C3 49002 4CFB CE3E C532 3281

IDA will (Dnterpret in a variety of ways. In the format laaaa
bbbb, bbbb is a check point at which there will be a register
dump. This check point may be in ROM or in user memory,
and may be placed anywhere in the program. If bbbb is
omitted, the program will run until its end or a previously
set check point is reached. Such check points (up to eight
of them) may be entered, one at a time with the ‘C’ com-
mand (ex: C840A). IDA will print al} of these screen displays
to the printer if you preceed the I command with an ‘L’ (ex:
L18400 8400). (This is how 1 obtained the copy for use in
this article.)

I know of no better way to study the 8080 and its opera-
tion than writing simple programs (directly into IDA using
the ‘O’ command if you wish) and watching them perform
with ‘1",

Another of IDA’s special features lies in the ‘U’ com-
mand. ‘UA8200 8600’ will display all the ASCII bytes in
the memory range specified, ‘UB8300 867A’ all the data
bytes, and ‘UWS8477 AQ9A’ all the data words in the byte
range. You will be pleased with the usefulness of this feature.
See the IDA manual for more details.

More on restoring directories.

In my last article, we laborously discussed the restoration
of a damaged disk directory. I have ruined many directories
in my time, including the directory to the 1ISC SAMPLER
disk just yesterday. I was away from home and doing some
relatively urgent work. It was very, very embarassing! The
Good Spirit reminded me that I had a duplicate of the disk
on the reverse side so repair was very easy.

I placed the good disk in the drive and loaded IDA. I then
read the directory plus some file bytes into memory:

IDFeAREA WB SZ0W e
Now I put the bad disk in the drive and typed:
IADMRT B8 224§ 2w

My directory was restored! This only works if the two
disks are identical.

This completes our overview of IDA, the best software
ever written for the CCII. We have not explored all the prin-
ting and editing facilities of IDA and I hope you will do
this yourself. Hats off to Bill Greene. May he soon have
IDA ready for CP/M and make some money!

[1} An inferesting experiment for you. Try to defermine the bit position of each
of the flags by sefting them in turn and examining the results of a PUSH PSW

in IDA. The hex vailue shown on the stack will lead you to an exact deter-
mination of position for each of the flag bits. This chart shows the answers:

BIT NUMBER & 1 2 3 4 3 4 7
POSITION WALUE 1 2 4 & 14 32 44 128
FLAG DO S - T SR *

36

Intecolor Corporation has its own bulletin board
operated by George Price. It is called sPECTRUM
and the telephone number is 404-446-6931. The
board operates at 300—1200 baud.

NOV/DEC 1984 COLORCUE

The index in this final edition of COLORCUF covers published material
from October 1978 through this issue of COLORCUE in August 1985 —
eight years of user support. The following periodicals have been indexed
in their respective time spans:

COLORCUE —October 1978 to August 1985, complete,

FORUM —March 1981 to the single issue of 1983, complete,

DATA CHIP —January 1979 to December 1984, complete,

CompUKolour —April 1982 to December 1984

CUVIC —January 1982 to June 1985.

It is not known if all the issues of the last two publications have been
presented for indexing. If a few articles seem absent from the index I hope
it will be because of this kind of omission.

Designing an index is somewhat of an art form. Realizing it, in any useful
manner, is a most challenging occupation. As an intimate user of the CCll
for five years | have relied heavily on my instincts to guide me in the selec-
tion of the index keys. ‘Where would | look to find this?” has been my
primary question as | read and catalogued the material. Unfortunately, my
answer may not be yours in every case. | suggest that you scan the keywords
on occasion to familiarize yourself with their pattern, and trust that this
exercise will bear some fruit.

Most entries are made under more than one key. ‘Printer’, ‘Handshake’,
and "EPSON’ are by their nature intertwined, for example, as are ‘50 pin
bus’ and “interface.” All authors are listed by name with their articles follow-
ing. Authors are also referenced in each entry, in parenthesis, where the
authorship is known. (Some periodicals have been very careless about mak-
ing authorship clear.)

Abbreviations are used as follows:

The first letter of the source for each listing refers to the publication, 'C’
for COLORCUE, ‘F’ for FORUM, ‘D’ for DATA CHIP, ‘K’ for CompUKolour,
and V' for CUVIC. This letter is followed in turn by the volume, number,
and page, or a date of issue and page, as used by the several publications.
Several other abbreviations have been employed (somewhat inconsistent-
Iy | fear) such as (A), meaning an assembly language program or routine,
(B}, meaning Basic code, (F), meaning Fortran, and so forth. “Desc” means
‘description.’

COLORCUE NOV/DEC 1984

COLORCUE
CompUKolour

CUVIC
DATA CHIP

Prepared By Joseph Norris

Page numbering is not always obvious in all periodicals. | have done the
best I could under the circumstances. You may find several errors of a minor
sort in this area.

The index is presented in a somewhat unusual fashion. FORUM and COL-
ORCUE entries are grouped together in a single paragraph, as are Com-
pUKolour and CUVIC. CHIP is in a paragraph by itself. This idiosyncracy
is partially the result of a limited word processor capacity and the order
of indexing, but also as a function of the likelihood of distribution of
periodicals among readers in the United States and in other countries. At
any rate, if you have only one of the periodicals, you may see, readily, what
is available to you in your own library without reading the entire key listing.

There has been a considerable amount of reprinting and borrowing of ar-
ticles amoung these publications. When this has been clear, duplicate en-
tries for the same article will appear.

While COLORCUE will cease to exist with this issue, your access to the
literature from which this index was derived will continue. It any subscriber
wishes reprints of any article contained in this index, | will be pleased to
provide them in XEROX form. The cost for each mailing will be $2.50 for
the United States and Canada, and $5.00 in US funds for mailing outside
the North American continent. Several articles may be included tor the
designated fee.

I send my thanks to the editors and subscribers among all the participants
for their generousity and cooperation in this project. My special thanks to
Wallace Rust who took valuable time to comment on an early version of
the index and whose suggestions have improved it in great measure. | relieve
him, however, from the burden of my errors which number, | am sure,
as an early population of fishes in Tom Napier’s ‘watery world.’

Finally, I must add that | have been somewhat in awe of the monumental
work performed by our prolific authors, whose identity becomes very ap-
parent with the reading of the index. Their support and untiring dedica-
tion to us seems to me an extraordinary thing in this very commercial world.
With their help we have been able to share in the joy and richness of the
computer experience, and we have had the opportunity to sustain friend-
ships of a high order over the years. May you find the index useful as you
continue your exploration of the Compucolor II.

37

Abramson, Cathy. Interview with Peter Churnin Cv3n3p3
& Cv3n4p3.; “A visit with Huntsville’s Compunauts”’
Cv3n5p6

ACEY DUCEY. Modification (Johnson) Cv3n5p20

ACTION. Software description (Halliday) VNov84p2
addition. Multidigit accuracy in — (B) (Woods) Fvindp29
add-on. — RAM, see [RAM], {Devlin]

AIR RAID. Bug in — (Rust) Dnl8pl0

alignment. .Disk drive ., see [Devlin], {disk], [repairs]

Video — for the CCIl (Dewey) Dn26p2; disk—(Donkin)
Dn31p7

algorithm. Note on —(s), ref Pascal (Gould) Cv6n2pl8

Allen, Max. *‘Conversion of foreign drive to CCII use.”
VMay84p5

ALPOCH. See [Suits]
AND. Use of -command (B) (Yob) Kn2p22

Andries, Tom. “‘Quick decimal to hex conversion
subroutine.”” (B) Fv2n2p5; ‘‘Animated hourglass” (B)
Cv5n6p20

animation. Preserving screen displays during — (B) (Hud-
son) Cv3n5p3; ‘“‘Animated hourglass’ (B) (Andries)
Cv5n6p20; — in assembly (Norris) Cvéndp7, (Zerr)
Cv6nSpl2; also see [Suits}]

““An animated joke’’ (software) (B) (Suits) Dnl3p2;
developing characters for —, commentary {Kahkonen)
Dn21p5; moving a character on the screen (B) (Suits)
Dn23pl7

Anthony, Bill. ‘‘Keyboard expansion’ Cv5n2p23
append. —ing Basic programs, routine, Cv2n3p2, correc-
tion Cv2n5p6

APPLE. — to CCII graphics/program conversion
{Weisberg) Fv2n3p6

Discussion of features in — II and 11, conversion of —
programs to CCII (Bell) Dn30p8

ARKAY., — Engravers, key caps, desc Cvéndpl3

Arndt, Gavin. *‘Real time tips for gamesters.”’ VJan83p4;
corrections to AZARIA software VJan83p4

arrays. Instructions for using — (B) Cv2n6p6, correction
Cv2n7pl9; space saving — (B) (Hudson) Cv3ndp7

artificial intelligence. ‘‘COLORCUE contest: Artificial In-
telligence.” Cvén2p9

‘ASKME’ desc (Rust) Dnllp5

ASCIl. Conversion from —— to binary/ binary to — (A)
{Smith) Cv3n3pl6; — codes (Charles) demo (B)
Cv3ndpl4; tutorial on — (Norris) Cv6n2p5;—to hex con-
version on 8000 computers (Mendelson) Cvén5pS

- equivalents (CCII) Dnlp7; . chart in decimal, binary
octal, and hex (Van Putte) Dnl5p7

assembler. CTA — review (Steffy) Fv2n3pl7; Intecolor
— error codes, Cv2n4p2;

— error codes (Booth) Kn6p7, (Muldowney) VJun85pé

assembly language. — training, Muldowney software
review FvIn5p27; — programming, see [Matzger], [Stef-
fyl, [Linden], [Suits], [Norris], [Whilly}, [Taubold],
[Zerr}; — utility routines (CMPHD, MOVDH, SUBHD,
B2HEX) Cv3ndpl8; executing FCS commands in —
(unknown) Cv3nSpl3; printer driver in — (Greene)
Cv3n5pl5; math routines in ROM Cv3nép12; GLINE
routine Cv3n7p3 (Dec1980/Jan1981); using CALL in (B)

38

to load screen display from (A) (Steffy) Cv3n7p8
(Dec1980/Jan1981); — sort routine (Matzger) Cvan2p2];
protected fields in — (Raffee) Cv4n3pS5; typematic
keyboard (Pankhurst) Cv5n2pl3; — bar cursor (Good)
Cv3in5p22; ROM tables (complete, all versions) Cvon3pé;
using (B) subroutines in - (Hiner) Cv6n3pl4; merging (B)
and (A) programs (Taubold) Cvén4p26;, no-echo
keyboard reading Dndp3; use of DAA instruction
(Napier) Cv6v6pl7; also see [animation]

FCS keyboard input routines explained (Barlow) Dn8pl4;
routine to make programs v6.78 & v8.79 compatible (A)
(Dewey) Dn19p9; exchange a character with one on the
screen {software) (Taylor) Dn20p13; FCS read/write
commands (Minor) explanation, Dn29p4; adding escape
vectors (Steffy) Dn31p2; interrupts (Reddoch) Dn34p19;
introductory tutorial (Norris) Dn38pé

Using the bell in — (Pankhurst) VFeb82p7; tips on us-
ing ROM routines ADHLA, MULDH, etc (unknown)
VApr82p3; typematic keyboard routine (Pankhurst)
VNov82p6; index search routine (Smith) VJan83p6;
beginning tutorial (Winder) VAug84p2, VOct84p3 (Nor-
ris) VSep84p4; debugging tutorial (Muldowney)
VApr85p2, useful routines VMay85p6

astronomy. ‘‘ASTRO" (Rust) (B) Cvénépl8
Computerized star map {Schefe) VJan84p3

ATTN. Explanation of key operation, Dn24pl6

automata. Sce [Suits] (B)

AZARIA. Software, corrections to (Arndt) VJan83p4

B

Bailey, Gene. TECH TIP, CRT noise remedy Cv5nlp23

bank selector. Commentary {(Power) Fv2nip48; 64K multi-
bank board (Frepost) review (Peel) Fv2n2p7, review
(Zerr) Cv5n5p26;

bar. — cursor (A) (Good) Cv5n5p22

Barlow, Ben. ‘‘Talking to other computers.”” Cv3nlpl8,
correction Cv3n3p26; *‘The serial port”” Cv4nlp5; ““Serial
to parallel interface’ Cv4n3pl3; “CALL subroutine
linkage’” Cv4n6pl3; ‘“‘Big money in advertising’’
Cv5nép4

“No echo patch” (B)(A) Dn3p4; “How to do it to
yourself”” (programming ‘goblins’) Dn3p5; ‘‘Colorcue
bugs (not very bunmny)” in DISK DUP software,
Dn3pS5;‘‘Application’’, gear ratios on 10 speed bicycles,
Dnép2; ““Compucolor input routines revealed’’ Dn8pl4;
‘‘Basic versus assembly language’” Dn12p8; ‘“The cheap
modem’’ (hardware) Dnl5p5; “The cheap noise’’ (sound
hardware interface) Dnlép3; ‘‘Call for Parameter Mor-
ris’’, passing parameters in CALL statements, Dnl17p6;
““A cheap lower case option*”’, software keyboard filter
(A) Dnl8pll; ““Joysticks for the Compucolor II’’, with
Trevor Taylor, construction and software, Dnl9p3;
“Lower case y's’” discussion, Dn27p7; ““‘The case for
lower case’” Dn27p9; also see [Minor] for ‘Compupeek-
ing’ series.

Barlow, Bill. ‘‘The Final Frontier —another review”’
Cv5né6p9

Barlow, Jamie. ‘‘Factoring numbers.’* (B) Cv2n5p5, Dn4pS
‘Factoring numbers by computer’ (B) Dndp5

Barrick, Mike. ‘‘Repairing Basic line numbers.”” Cv5népl9;
“*Garfield hairy deal calendar’” Cv5nép25

8AS. ‘File list utility’, software (Minor) Dn28p8

BASIC. Software reinitialization from — (B), ESC W,
Fvinlp9; — program restoration after ESC W (Steffy)
Fn1n3p23; reading nonRND files from —, Fvln5p35,
(Norris) Cvénlpi3; — interpreter analysis (Linden) Part
1 Fvin5p73, Part 2, Fv2n4p5; — compilers for the CCII
(Peel) Fv3nlp9; generating — keywords, Cv2n4p4; ap-
pending — programs, Cv2n3p2, correction Cv2n5pé6;
keeping track of — variables (B) (Steffy) Cv3n3p24 soft-
ware; formatting table printout in — (Herman) Cv3n4p8;
— token listing program (Martin) Cv3n4pl5; — token
list (Manazir) Cv3ndpl7; transferring — files from other

computers (Taylor) Cv3nép4; — files (Matzger)
Cv4n5pl7; — speed and style (Norris) Cv5n3pll; con-
trolling keyboard input in — (Murray) Cv5n3pl7; port-
folio record-keeping program (Thirtle) Cv5n4pS;
multidigit accuracy in — (Brandie) Cv5ndpl1; dollar for-
matting subroutine (Ochiltree) Cv5ndp12; - disk utilities
(Napier) Cv5n5pl2; repairing line numbers (Barrick)
Cv5n6pl9; — variables, storage (Dinsmore) Cvénlpl6;
- compiler, see [Hiner]; review of books on—(Suits)
Cv6nlpl2 ; using — subroutines in assembly (Hiner)
Cvén3pld; merging (B) and (A) programs (Taubold)
Cv6ndp26; no-echo patch for — without assembly
language (Devlin) Cvén5p31;comments (Suits) Dn8p2;
precision of — numbers (Rust) Cv6n5p30; also see
[REM], [INT], etc.

Keyboard locations of — tokens, Dnlp6; — Ultilities
Disk, comments {Suits) Dn8p2; parameter passing to (A)
programs using CALL (Barlow} Dn17p6; structure of —
programs and use of addresses, etc {Minor) Dn21p2,
Dn22pl!, Dn23p8, Dn24p6, D25pl3; restoring — pro-
grams (A) (Moser) Dn23pl3; hiding — programs
{Manazir) Dn26p29; converting TRS80 — to CCII
(Taubold) Dn28p10; increasing execution of — programs
{Taubold) Dn29p15; converting APPLE II programs to
CCIT (Bell) Dn30p9; single character input routine
{Minor) Dn31p3; ‘“‘Advanced Basic and the system”’ Part
2 {Taubold?) contents conditional branching, functions
Dn33p3

Flight simulator for — (Holley) Knlpl2; program for
decision making (Whaley) Kn3pl2; a crossreference pro-
gram for Basic variables (unkown) Kn5p19; printing pro-
gram listings (Ochiltree?) VFeb82p4; using REM to in-
itialize CRT (Lewis) VMar82p4; routine to format
numeric variables (unknown) VApr82p4; format for
headers on — programs (Stuckey) VMay82p1; differences
in — INPUT command in v6.78 & v8.79 ROMs
VJui82p4; assorted utility routines (O’Sullivan)
VJan83p8; hints on — programming (Muldowney)
VJun83p7; conversion to CCII from other versions of
— (Stuckey) VJun83pll; introductory tutorial to —
(Osborn) VAug83p7; assorted — programming techni-
ques (Kerrison) VAug&3p12; getting keyboard input (Ker-
rison) VMay84p2; dataentry and validation program
{Kerlin) VAug84p5

BATTLESHIP. Bug in — (Dewey) Dni8pl0

baud. Setting — rate (A) (Steffy) Fv2nlpl3, (B} Dn10p6
Selectable — rate oscillator (Winder) VFeb84p2
see also [Dewey] TMS5501

bell. — parts and installation (Linden) Fvivlp8,

(unknown) Cv3n7plé (Decl980/Janl1981), {Zawislak)
Cv5nlp4

Adding a — to the CCII, hardware & schematic (Jenkins)
Dn23pl15; bug in FCS — routine (Dewey) Dn31pl3

Installing a — on the CCII (Pankhurst) VFeb82p7;
schematic for — installation (Winder) VDec82p6;
schematic and routines to use — (B) (Standen) VApr83p3
Bell, John. ““The Final Frontier, a review’’ Cv5nép8
““Compucolor survey results’” Dn30p5

Berzins, Bert. “‘The CCII in the Bureau of Meteorology.”
VApr83p4

bicydle. Computing gear ratios on 10 speed —(s) (B)
(Barlow) Dnép2

bibliography. Book reveiws (Suits) ‘‘Basic from the ground
up.’” (Simon), ‘‘Discovering Basic.”” (Smith), *‘Introduc-
tion to 8080/8085 Assembly Language programming.”’
(Fernandez and Ashley) Cvénlpl2; list of book for CCIH
Cvéndpl0

“‘Computerist’s bookshelf’” (Holt) VJan85p3
biography. Sketch on Peter Hiner Cv6nép4

binary. — number system, review (Linden) Fvln2p33; —
to ASCII conversion (Smith) Cv3n3plé

Tutorial on — number system, see [Suits] ‘ALPOCII’.
Also see [conversion]

NOV/DEC 1984 COLORCUE

Biorhythms. Bug in -, Cv2n4p9; — enhancements (Greene)
Cv3indp23

blind cursor. Bug in — (Clarke) Fvln5pl9

Use of — in printing large characters (B) (Suits) Dn8p10;
use of — (B) (Taylor) Dn20p10

books. See [bibliography]

Booth, John. “‘Fortran and the no-echo patch.”” Kn2pé6;
“The OPEN subroutine and how to make it work.”’

Kn3p6; ‘‘Random Fortran‘ Kn3p8; ““‘Improving your
power supply’” Knép4; ‘‘Replacement transistors’’
Knép6; ‘‘Assembler error codes’ Knép7; ‘‘Fun with

Basic compilation.”” VOct83p4

Black Arts.
Knipl4

Brandie, Neil. ‘Multidigit accuracy’ (B) Cv5ndpl1

Notes on disk drive alignment (Donkin)

“Multidigit accuracy (addition).”” VDec82p6
Bowltan, Tom. ‘‘Drawing simple graphs’’ Dn25pl

BREAK. Generating a — (Taylor) mechanical parts and
instr, Cv3n3pl2, commentary (Flank) Cv3n6p21

See also [Dewey] TMS5501 controller chip.

BROTHER. Review of —
VApr84ps

EP44 printer (Kerrison)

bubble sort. See [sort]
Buchwald, Art. ““Will this marriage fail?”’ (reprint}) Dn31p6

bug. “‘The Last Bug’” poem (Dewey) Dn28p2. See fixes
for bugs under software titles.

bulletin boards. Community access — (listing) (Miller)
Cv3n5p22; - listing Cv4nlpl7; ‘TARDIS’ BBS for CClI
Cv6n$5 (insert) and p18 Intecolor — (announcement)
Cvonéoploe

Burrows, Kevin. ‘‘Pseudographs on your printer.”
VMar83p10; Commentary on TEXMAN word processor,
modifications VApr83p5

l i

ll'lllil

lYiG /

C

CAD. A — program (Van Putte) Cv5n2p3

calendar. — printer (B) (Suits) CvSn2pl7 ; “‘Garfield hairy
deal’” - (Barrick) Cv5né6p25

— algorithm (B) (Peterson) Kn2p21

CALL. — functiom in (B} (Steffy) assembly routine to load
screen display, Cv3n7p8 (Decl1980/Janl981); —
subroutine linkage (Barlow) Cv4n6pl3

Parameter passing to (A) using CALL (Barlow) Dn17p6;
see also ‘no-echo’ [patch]

caps. — lock light (Winder) VOct83p6; selecting lower
case with — lock (Winder) VJan84p2

CAPTURE THE FLAG. Instructions for — (Suits) Dn37p6
Software instructions (Suits) VMar85p2

cards. Drawing playing — (B), Cv2ndp8; shuffling — in
(B) algorithms ((Woods) Fvin3p27

CASTLE QUEST. Review (Stuckey) VAug83p5

catalog. Software — of commercial materials Cv6n3p26
(May 1984)

CATLAB. See [Fox]
CCl. - color codes (Rebbechi) Cv3n2p16, (Rust) Dnlpl0;

— color chart Cv3n2p18; - codes, listing, Cv2n3pll; —
code (Linden) Fvin2p39

PLOT 6,x. . control code guide Dnlpi0

COLORCUE NOV/DEC 1984

CELLID. See [Suits] ‘One dimensional cellular automata’

Centronics. Driver for — 779 printer (A) Cv3n3pl8, cor-
rection Cv3ndp26

Chamberlin, H. ““Tone generating routine’’ (A) Dn16p$

character. Color — index, see [CCI]; — set, program-
mable switching (Bell) Fv2n3p20, (Newman PPI) adver-
tisement Fv2n3p51; large —, routine to print string (B)
Cv2n8p7; large — [Linden] Fvin2p37; — input routines
(A) Cv2n8p9; - string manipulations CvIn3p4; — set
[Linden]} Fv12p38; moving — in (A) (Steffy) Fv2nlpl3;
programmable — generator (Felvus) review (Holt)
Fv2nlp57; program selectable — set (Newman, PPI)
review (Grice) Fv2n3p4; custom — sets (Taylor) EPROM
Cv3n4p2l; also see [keyboard]

Large — display problems (B) (Suits) Dn8pl0; extra large
— set (van Putte) Dnllp6; exchange a — with one on
the screen (A) (Taylor) Dn20pl3; chart of graphics
characters (Rust) Dn25p7; also see [animation], [lower
case]

Charles, Joseph. ‘‘ ASCII codes’” demo, Cv3ndpl4; “Con-
verting Screen editor files to Comp-U-writer DOC files”
Cv5n2p20; ““A FORTRAN plot library’’ Cv5n3p2l
«‘Converting screen editor files to Comp-U-Writer DOC
files.”” VFeb84p3

CHECKBOOK. Software modification (ISC) (Redfield)
Cv2n7pl7
CHIP. See [DATA CHIP]

CHRINT. Character
Cv4n5p23

Churnin, Peter. Interview with — (Abramson) Part 1
Cv3n3p3, Part 2 Cv3ndp3

Cl. Character input routine {A) usage Cv2n8p9
Clarke, Capt. DeFrance. CONCENTRATION mod
Cv3nlp27; ““Turkey and Hunter’’ mod Cv3n2p9; single
key input routine (B) Cv3n2p24; ‘“‘bug report” (blind cur-
sor) x-ref of RAM/ROM calls, menu program, Fvin5p19

input routine, usage Cv2n8p9,

clock. Real time — (B) CvInlip2, corrections CvIin3pé,
{Matzger) Fvin3p29

— display routine (A) (Taylor) Dn20p14; time program
(A) (Reddoch) Dn34pl9

Colley, Pat. ‘“THE’" Basic Editor (review) Kn2p4

color. — codes chart (B) Cv3n2pl8; generating —,
Cv2n3p3, correction Vv2ndppl0; ‘stroop’ phenomenon,
Cv2n2p2; — adjustment (Rust) Cvén5p32

. demo (B) (Rust) Dn2p5; ‘‘eliminate Plot mode color
crossover’ (Van Putte) Dni6p9

COLORCUE. (USA) First issue v1, nl, Oct 1978. Last issue
v6 n6, Sep 1985. No disk library. Editors: Susan G.
Sheridan, Cathy Abramson, Ben Barlow, David Suits,
Joseph Norris. Back issues from Ben Barlow, 161
Brookside Drive, Rochester, NY 14618, USA; —
subscriber listing (February 1985) Cvén5p26

COLORCUE. (Australia) User publication. First issue Apr
1980, last issue Oct 1980. Editor: Brian Cruse.

COLORWORD. Software by Chris Teo. Review (Norris)
Cv6én3pl2, (Grant) Cvén5pli8

communication. — with other computers (B} A) (Barlow)
Cv3nlpl8, correction Cv3n3p26; teletype — (Greene)
Cv3nlpé6; data — (Power) Fv2nlp39; voice —, see
[VOTRAK], [DIGITALKER]; — between Compucolors,
Fv2n2pl8; — with IBM PC, Fv2n2pl8; also see
{modem], [RS232}

Using RS232 for — to other computers (TERM.TXT)
(Suits?) Dn10pé6; transferring files between CClls (Rusch)
Dnl18ps

compatibility. CCII disk — (unknown) Dn30p24
compiler. Basic —, see [Hiner], [FASBAS]

COMPIN. Software to calculate compound interest and
depreciation (Ferguson}, notes on VNov82p8

COMPUCOLOR. — maintenance, screen display
(Newman) Fv2nlp19; - turnoff prevention with disks in
drives (Green) Fv2nlp29; - review [North] in Creative
Computing, ref Fvin2pl4; also see [communications],

[maintenance], [dust cover} and peripherals by category.
Articles involving the —, ‘Mathematical modeling (Hicks)
Byte June 1981 p72; — assembly, photo tour of ISC
plant, Cv3n3pl0; — user groups (listing) Cv3népl4;
disassembling the — (Devlin) Cv4n5pl3; transistor
equivalents Cv5n2pl9; — screen alignment (Rosen)
CvSnSpl9; — interface with Morrow Microdecision
(Taubold) Cvén2pl4; — repair network, ref CvénSp24;
— color adjustment {(Rust) Cvén5p32

Survey of equipment amd software used by — owners
(Bell) Dn30pS

Schematics of —, Kn3pl5; tips on servicing (unknown)
Kn4pl0; cabinet design for — (Marshall) VNov82p5

CompUKolour.
Cv6n3p32

‘Compunauts’.

User group publication (UK) desc

See [Abramson}

‘Compupeeking’. Series of articles on (B) by Jim Minor.
See [Minor]

Comp-U-Writer. (Word processor) review (Rosen)
Cv4ndpls; see [Charles], [Steffy], [Scribe}; loading SRC
files into — (A) (Steffy) Cv6nip8

Converting screen editor files to — (Charles) VFeb84p3;
tutorial on — (Holt) VFeb84p4, (Hill) VApr84p2

Comtronics. {(Gordon Rusch) Software desc Fvin3p39
CONCENTRATION. (ISC) (Clarke) Cv3nlp27;
control. — codes {chart) related to keyboard VMay82p7

controller. — chip, see [I/0]; remote — for 50 pin bus
(Newman) Fv2nlp34

[repairs]

conversion. — from TRS-80 to CCII (Ungerman}
Cv3n2p23; upper to lower case — (Hennig) Fvln3pl3;
— using CAPS LOCK switch on keyboard, Fv2n2pl7;
— of numerical data between bases (A) (Steffy)
Fv2nipl3; decimal to hex — (B) (Andries) Fv2n2p5;
binary to ASCII/ ASCII to binary — (A) (Smith)
Cv3n3pl6; numeric base - program (B) (unknown)
Cv3n5pll; — program for HP33E (Hayhurst) ref
Cv3n5pl3; file — from other computers (Taylor)
Cv3n6p4; — SRC to DOC files (Charles) Cv5n2p20; SRC
to Compuwriter files (Steffy) Cvénlp8; trigonometric
identities (B) Cv6n2p21; hex to ASCII — (Mendelson)
(A) CvénSps

convergence, See [alignment] ,

— of numbers from any base to base 10 (B) (Jenkins)
Dn22p1; universal number — subroutines (B} (Jenkins)
Dn24p12; binary to decimal to binary — (B) (unknown)
Dn26p22; — of (B) programs from other computers, see

[BASIC], [APPLE], [TRS80], etc.

Program — to CCII from other Basics (Stuckey)
VJun83pll; Gregorian to Julian date (B) (Kerlin)
VSep84p3

COPY. Using the — command (Manazir) Cv3n5p2l;
(copy screen display, see [screen])

Bug in — command, v6.78 (Dewey) Dn31p

Creare. — Inc. ‘data directory’ (Durant) Cv3n2p4

cross-reference. — of RAM/ROM calls (Clarke)
Fvins5pl9; ROM tables (Steffy) Fvin5pd4; also see
[ROM], [RAM]

CPU RESET. Stiffening — against accidental
{Dinsmore) Cv5n2p4

CRT. — mode plotting (Smith) Cv4ndpl7; — maintenance
(Gould) Fv2n3pl8; — intensity control {(Johnson) ref
Cvén5p22; photographic exposure guide (Rust) Dn5pl;
also see [screen}, [controller], [drawing]

CTE. Screen editor (Comtronics) review (Steffy) Fv2n3pd0

cursor. Bar — (Good) Cv5n5p22
Also see [blind cursor]

‘CUTIES’. Cv4nlpl8, Cv4n2p20, Cv4ndps, Cv4n6pl7,
‘How did Sam die?’ and ‘Was Einstein correct?’ (Suits)
Cv5n2p10; CvSn6pl3; ‘Dynamic ellipse doodler’ (Napier)
Cvé6nlpl5; ‘Compucolor character display’ (Ramsey)
Cvéndpl3

press

Ccuvic, Newsletter,
January 1982 to present. Editors

Victorian user group. First issue
Cvén3p3l

39

ESfead/write commands, explained (Minor) Dn29p4
Tutorial on using — (Winder) VAug83p4

Ferguson, Bob. ‘‘Compound amounts.”” compound interest
and depreciation notes VNov82p8

fields. Protected — (Raffee) (A) Cv4n3ps

flags. Input — and input table, Cvin3p2; RAM locations
for — Cv3n7pl0 (Dec1980/Jan1981)

Flank, Howard. (Note on generating a BREAK) Cv3n6p21
FiLE ‘N’. Use of — (Norris) Cvénlp22
FILE ‘R". Use of — (Norris) Cv6n2p26

files. Variables in file statements (Norris) Cv6n5p32; see
commands for use in (B), and also [BASIC], [Assembly
language], [Matzger], [Norris]

Date stamping — (Barlow?) Dunép4; converting LDA to
PRG (Manizir) Dnl16p2; transferring — between CClls
(Rusch) Dni8p5

Indexed — (B) (Raffe) Kn2p8; also see [linked lists}

FINAL FRONTIER. Software (Taubeld) review (Bell) and
(Bill Barlow) Cv5n6p8-9

flight. — simulator (Holley) keyboard schematic amd
map, Dn25p6

Keyboard layout and map for — software

floppy. See [disk]
formatter. Modifications to — disk (Winder) VSep82p6

VIun82p7

formatting. — table printout in (B) (Herman) Cv3ndps§;
dollar - (B) (Ochiitree) CvSndpl2

Checking disk for bad areas (software) (B) (Johnson)
Dn4p2

FOR-NEXT. Tips on using — loops (Sprncer) VApr82p3

FORTH. ‘*Going FORTH’’ overview of FORTH (Norris)
Cv6nlp6; — screen editor (Napier) Cv6n5p8; also see
[Van Putte], [Pascal]

CHIP — course (Minor) Part 1 Dn37pl8, Part 2
Dn37p25, Part 3 Dn37p31, Part 4 Dn38p9; — handy
reference (FIG) Dn37p23; CCII-FORTH desc (Greene)
Dn38p13; — screen editor desc (Greene) Dn38pl4

Handy reference, list of commands, etc (FIG reprint)
VDec82p9

FORTRAN. “‘Introduction to FORTRAN’' (unknown)
Cv3n7pl7 (Decl1980/Jan1981); — PLOT library
(Charles) Cv5n3p2l; also see [Rosen}], [Van Putte]

“Fortran and the no-echo patch’’ (Booth) Kn2p6; mak-
ing the OPEN subroutine work in the CCII (Booth)
Kn3pé6; “‘Fortran programmig’’ overview for beginners
(Rosen) VDec82p7; ‘“‘Fumbling with Fortran.”” (Holt)
VJan83p3, VJan83p5s

FORUM. First issue vinl, March 1981. Last issue v3nl,
1983. Editor: D. Peel. Back issues from Arthur Tack,
1127 Kaiser Road SW, Olympia, WA 98502 USA. Disk
library: William H. Parker, 2812 Berkley Street, Flint,
MI 48504 USA. Subscriber list Fv3nip34

FREDI. (Greene) usage Cv2n8p3; special applications
Cv2n8p4; instructions Cv2n5p8; loading from (B) menu
(Linden) Fvin2pl6, (Hennig) Fvin3pl2; interpreting —
control character display (Linden) Fvin2pl6; program
to ‘reorg’ — (Devlin) Cv4n5pll

Commentary (Suits) Dn8p2

Freepost. — Computers, ad with summary of products,
Fv3nlp70; bank selector et al Cv4ndp5

(Ad) Mar 1983 Dn34ps

Fox, Milton. CATLAB & PRTLAB, commeniary on
CHIP library programs VOct82p4

function. — keys, substituting for (Winder) VIun85p3

COLORCUE NOV/DEC 1984

games. Tips for "gamesters’ (Arndt) VJan83p4; also see
entries under game title , and review listing in [FORUM]

gears. See [Barlow, Ben]

GEMINL. — 10X printer, review (Ricketts) Cvéndpld
geneaiogy. Description of CHIP — program (Van Putte)
Dn34p24

Bibliography of books on — VJan83p7, see [Holt],
[Kemball]

genetics. Description of program PEDIGREES (Power)
VAug83ipl5s
‘getkey’ routine. (Hennig) Fvln3pl4; see [keyboard]

GLINE. Assembly Cv3n7p3
(Dec1980/Jan1981}

Good, F. “‘Bar cursor” Cv5n5p22
Gould, Charles. ‘‘Maintenance trips for tired 3621s.”

Fv2n3pi8; ““A note on writing structured aigorithms™
Cvén2pl8
Grant, Doug. ‘‘A music tutorial using the Compucolqr I
and Soundware’’ CvSnlpl3; “COLORWORD’ (review)
Cvénspl8

language routine

graphs. Drawing — (Bowllan) Dn25pl
Using printer to make — (Burrows) VMar83p10

graphics. Rotational — (Hogan) FvIn2p!3; changing —
displays rapidly (Suits) Fvin3p35; high resolution — (B)
Cv3n2p6; — conversion from APPLE, see [APPLE];
“‘Kaleidoscope’ (Herman) software demo Cv3ndp25;
‘‘Bar graphs and scaler’” and ‘‘Layered design’’ (B)
(unknown) Cv3n7pi4 (Decl1980/Janl1981); *“‘SPHERE
PROGRAM?”’ (Fairbrother) (B) Cv4n2pl5; ‘Lissajous
figures’” (B) (Taylor) Cv4n2p18; three dimensional — (B)
(Van Putte) Cv4ndp7, correction Cv4nép3; — with FOR-
TRAN 80 (Van Putte) Cvinlp9; CAD program (Van
Putte} Cv5n2p5; ‘‘Animated hourglass’ (Andries)
Cv5n6p20; ‘“‘Dynamic ellipse doodler’” (Napier)
Cvénlpls; “WATOR” (Naper) (A} Cv6n6p24

Chart of — characters (Rust) Dn25p7; — generator
sampler (DeVito) (B) Dn37p1 also see [graphs]

‘Triangles’ program (B) (unknown) Kn3p; random pat-
terns (B) (unknown) Kn3p8

'DRAW’ to test out graphic shapes (B) (unknown)
Kn3p9; control character symbols related to the keyboard
(chart) VMay82p7; graphics characters related to
keyboard (chart) VMay82p8; ’A kirky kartoon’
(Kirkpatrick) VMar84p4; comments on screen dump pro-
gram from FORUM (Winder) VAug84p3

Green, Daniel. ““My Compucolor won’t turn off!”’
Fv2nip29

Green, Tom. ‘‘The RS232 Tx ready jump table.”” Kn2p27

Greene, Bill. FREDI Cv2n8p3; interview with —Cv3nlp4;
“Interfacing the Compucolor with the teletype.”
Cv3nlp6; ‘“‘Super monitor.”’ Software description,
Fvin2p28; ‘‘Biorhythm enhancements’’ Cv3ndp23;
““IBM bit banging driver’’ Cv3n5pl5; ‘“An Intel 8080 OP
CODE table” Cv3n6p9

CCII-FORTH (desc) Dn38pl13; FORTH screen editor
{desc) Dn38pi4

“IDA” description of capability VMay85p3

Grice, D.E. “‘Keyboard modification.”” Adding keys.
Fvin5p66; Program selectable character set (Newman,
PPI) review, Fv2n3p4

Grogono, A. W. “Photographing the Compucolor screen.”
Cv2nép2;

H

Halliday, Ray. “‘Action — Menu.”" VNov84p2

handshake. — mod, see [printer]

— modification (Pankhurst) VJan82p10

Hangman. — modifications, Cv2nlp3, correction
Cv2n2p6;

harddisk. See [disk], [Newby], [Zerr]

hardware. — for CCII, see [50 pin bus}], [synthesizer],
[soundware], [bank selector], [16K addon],
[DIGITALKER], [VOTRAX], [joystick], [lightpen],
[keycaps], {bell], [communications], [modem}, [RS232],
[1/0], [printer}, [ROM]

Haskin, David. ‘‘Stereo tape time program.”” VApr83p6
hatch. — character (Suits) Cv3n3p25

HEATH. Interfacing the H-14 printer with CCII (Warner)
Cv3nipl3

Connecting the — H14 printer to the CCIl (Mehrig)
Dnl5p2, correction Dnl6pl

Helms, Jim. ‘“The Okidata Microline 84A printer’’
(review) Cv5n4p24

Hendry, Scott. ROM data for 60 Hz to 50 Hz CCII con-
version VJan84p2

Hennig, Carl. ““The I didn’t know that corner.”” Loading
FREDI from (B) menu, Fvin3pl2; upper to lower case
conversion, Fvin3pl3; ‘getkey’ routine, Fvin3pl4; 3651
(review) Fvin3p3g

Herman, George. ‘‘Printing neat tables’”” (B) Cv3ndp8;
‘“Kaleidoscope”’ (graphics demo software) Cv3ndp25

Herold, Thomas. ‘‘First aid for Compucolor disk drives.”
Cv5n3plo

hexadecimal. Input — characters from keyboard (A) (Stef-
fy) Fv3nlp29; conversion to — from decimal (B) (An-
dries) Fv2n2pS; also see {conversion]

— conversion table Kn3pl0; — conversions using four-
function calculator (Winder) VJun83p4

hiding. — Basic programs (Manazir) Dn26p29
Hill, Des. “‘Comp-U-Writer revisited.” VApr84p2

Hiner, Peter. FASBAS instructions, Fv3nlp9; ‘‘Compil-
ing Basic’’ Part 1 CvSnépl0, Part 2 Cvénlp4, Part 3
Cv6n2pl0, Part 4 Cvéndp3; ‘Using Basic subroutines in
assembly language’ Cvé6n3pl4; ‘ZIP’ Basic compiler,
Cv6n5pd; biographical sketch Cvén6pd; biographical
sketch Cvéné6p4

‘‘Speed up your Basic programs with a compiler.
(FASBAS) Kn3p4; “‘Using Basic subroutines in assembly
language programs’® Kndpl2; ‘*Compiling Basic'’ Part
1 Kn5pl3, Part 2 Kn6pl7, Part 3 Kn7p3, Part 4 Kn7pl6;
““CREF — a cross reference program modified’” Kn6p8

Hogan, Brian. Randon numbers Cv3nlp26; ‘‘Pascal’s
triangle”” Cv3n2p7; ‘‘Rotational graphics.”” FvIn2pl3;
“Simple text editor.”” (B) Fv1ndp26; ““‘Computing in Col-
or”’, Programmer’s Manual supplement, Fvin2p8

Holley, R. Flight simulator keyboard schematic and map,
Dn25p6 See [Peterson]
Holt, Alan. ‘‘Genealogical computing.” VDec82p5

Holt, Barry. **CCII programmable character generator.”’
(Felvus) review, Fv2nlp57; “CCII three voice syn-
thesizer.”” (Hubbard) review, Fv2n1p58; “*50 pin bus ex-
tension.”” (Rhijn) review, Fv2n1p59

“Fumbling with FORTRAN.”’ VJan83p3, VJan83ps; ‘A
Comp-U-Writer tutorial.”” VFeb84p4; ‘‘Computerist’s
bookshelf.”” VJan85p3

hourglass. Animated — (Andries) Cv5n6p20

household. — inventory program format (Marshall)
VJun83pl2

Hudson, Tom. “‘Space saving arrays” (B) Cv3ndp7;

““Screen saver” Cvinsp3

Huntsville. See [Abramson]

41

maintenance. — of CCII, see [COMPUCOLOR], [repairs]

Manazir, Richard. ‘““‘DRAW: Advanced applications’ (A)
Cv3n2pl19; ““Compucolor IT Basic tokens’” Cv3ndpl7;
“The COPY command” Cv3nSp2l

Table of ROM addresses (v6.78) Dn15p9 and Dnlépll;
*‘Saving LDA files as PRG files” Dnl6p2; ‘“Hiding Basic
programs’” Dn26p2$

map. Memory —, v6.78, v8.79 Cvanlp2l:
Also see [ROM], {[RAM], [memory], etc.

Marshall, Bruce. ‘“‘Better than the kitchen table?”
VNov82p5; “*Householder’s hielper.”” VJun83p12; ““Cur-
sor control joystick.”” VMar85p7

Martin, Dennis. ‘‘How to poke without getting jabbed’’.
Cv3nipl6; “*Spectrum”, software (B) Cv2n3p4; ““Token
listing program’” Cv3ndpl5; *‘Dissecting a directory”’
Cv3n5p9

matrix. See [South, N.]

Matzger, Alan. ‘A way to use the user timer #2 jump vec-
tor’”. Fvin3p30; “Keyboard reading in Basic’’ Cv3ndpl1;
“Callable sort routine” (A) Cv4n2p2l; “Combining
record documentation with record access’’ Cvdn5pl7;
“‘Assembly language programming®’ basics of editor and
assembler FvindplQ, monitor, pseudo-ops, DB, DS &
DW, labels Fvin5p78, registers, general commentary
Fv2nlip4s

Mehrig, Alan. Connecting Heath H14 to the CCII,
schematic, Dnl15p2, correction Dnl6pl

membership. — listing, FORUM (1983) Fv3nlp34, COL-
ORCUE (1985) Cv6n5p26 , see publication listing
memory. See [bank selector], [16K add-on], [RAM],
[ROM]

Key — locations (Winder) VOct83p7, update VJul84p3;
— dump to printer (B) (Pankhurst) VOct83p8

Mendelson, Bob. ‘‘Disk salvage’” (A) (8000) Cv6ndp22;
““Hex to ASCII conversion”” (A) (8000) Cvé6n5ps;
“SEARCH"’ string search program for 8000 Cv6n6p28;
MENU. Using the — feature, Cv2nlp6; — program (B)
(Clarke) Fvin3p2l

menu. — program tor making directory selections (B)
(Jones) Kn2pl4

meteorology. See [Berzins]|

Michell, Peter. “'Computer insurance.”” VJan83p3; with
Steve Michell: reviews of disc library holdings V Aug83p8
Microcomputer Technology. Mutltiperipheral interface, ad,
Fv2n2p6

Micro Data Base Systems. Software Cv3inSp20. commentary
Cv3n6p22

Miller, Don. “‘Communiiy access bulletin boards”
(Listing) Cv3n5p22

Minor, Jim, “‘RAM map’’ Dni9pl6; “CompuPEEKing”,
structure of (B) programs, use of addresses, etc, Dn21p2,
Dn22pll, Dn23p8, Dn24p6; Dn25pl3, Dn28p3; “‘BAS
file list utility”’, software, Dn28p8, FCS commands
(READ/ WRITE/ SAVE/ LOAD/ RUN) Dn29p4;
*“‘Single character acceptance routine” (B) Dn32p3;
“CHIP FORTH course’”” Part 1 Dn27pl8, Part 2
Dn37p25, Part 3 Dn37p31, Part 4 Dn38p9

MLDP. Bug in — Cv4n2p3, (Norris) Cv5nlp25
Debugging with — (Muldowney) tutorial VApr85p3
also sce (assembly language)

MOD. Simulating the — function (B) (Barlow?) Dn9p4

modem. Getting started with the — (Norris) Cvénlpl3;
connection of — (Rosen) FvinS5p42; also see

COLORCUE NOV/DEC 1984

[communications]

““The cheap modem’’ (hardware (Barlow) Dn15p5; null
— connections (general) Dn28p15

Connecting a — to the CCll (Winder) VAug83iplQ,
(Pankhurst) VOct83p$

Monopoly. Notes on Super Monopoly’ in CHIP library
(Donkin?) Kn2p18; — "help’ sheet VJul82p7

Montemarano, Tom. “‘I/O port interface with digital
joystick”’, schematic and discussion, Dn23p22, additions
and corrections, Dn26p32; *“Use of Plot 24 or Control
X’ Dn24p9; ““ESC W, the first line of defense’” Dn26p28

MORROW. — Microdecision and CCII (Taubold)
Cvén2pl4d

Moser, Ben. ‘‘Restoring ‘lost’ Basic programs’’ Dn23pl3
MPI. — printer, commentary Fv2nip31

Mueller, Eike. ‘‘MicroSynth—three voice music syn-
thesizer” Fv2n2p27

Muldowney, B. SHOOT software mod Cv3népl9; ‘“‘Ad-
vanced keyboard reading”’ (B) Fvin5p64

*“The ethics of piracy.”” VApr82p8; **Advanced keyboard
reading.”” VMay82p3; ‘“‘Random ramblings from
Wangaraita.”” on Basic style and compiling VJun83p7;
“*Assembly language tutorial.”” The debugging process

VArp85p2, useful routines VMay85p6, appendix #1
VJun85pd4, appendix #2 VJun85p6, appendix #3
VJun85p6, appendix # 4 VJun85p7, appendix #5
VJun85p8

multi-bank. — board, see [bank selector]

Murphy. Murphy’s Laws, Dn24pl13

Murray, Dan. “‘Controlling keyboard input in Basic’’
Cv5n3pl7

music, — chip interface for CCII (Napier) Dn36p29; also
see [Soundware] , [synthesizer]}

Z {33
-%«
-

e
%myuﬂ!mm

Napier, Tom. “Two handy disk utilities” Cv5nSpl2;
‘*Cuties- Dynamic ellipse doodler” Cvénlpl5; ‘“A return
to FCS" (A) Cv6n2p4; ““A new FORTH screen editor’’
Cv6n5p8; “WATOR”" (A) Cv6n6p24; ‘Tom Teaser’ (puz-
zle} Cv6n5p25 (solution) Cvénépl7

“Compucolor music chip interface’ Dn36p29
“‘Dynamic elippse doodler” Kn2p34

NASA. — survival exercise, problem VJan85p6, solution
VFeb85p4

NEWBUG. Comtronics, review (Steffy) Fv2n4p3
Newby, John. ‘A hard disk for the CCII”” Cv6nép6

Newcembe, Lee. “‘Dollars and cents™ formatting (B)
Cv2n8p6; ‘‘Random files’” Cv2n2p4

Newman, john. ‘‘Printer hardware installation®
Fvin5p35; ““Cheap joystick for the Compucolor?”
Fvin5p36; ““How 1o get the best out of your Compucolor
display’” Fv2nlpl9; "‘Remote device controller for Com-
pucolor or Intecolor’ Fv2nlp34; ‘‘8 inch drives on a
Compucolor —another approach’ Fv2n4p3s; **Adding
a third disk drive to the Compucolor IT”> Fv2n4p53;
‘‘Disk drive improvements’® Cv5n4p20, update
Cv5n5pl8, Cvin6p9

no-echo. — keyboard reading (unsigned) (A) Dn4p3, (B)
(Suits) Dn22p4; — patch, see [patch], [Barlow, Ben]
— patch with Fortran (Booth) kn2p6; use of — Kndpl7;
also see [patches)

noise. Line — affecting computers CvinSpl6

Norris, Joseph. ““‘Another debugger bug” CvSnlp25;
“‘Some thoughts on Basic speed and style’” Cv5n3pll;

Assembly language programming: Part 10 Cv5ndpi3
“‘Disk operations””: Part 11 Cv5n5p4 program design and
parsing: Part 12 Cv5n6p5 opening and closing files: Part
13 Cvénlpl8 printing files, Part 15 ‘‘Animation’’
Cv6ndp6; *Basic’s file structure —a review”” Cvénip22
FILE *N’, ; “More blue skies” Cvénlpl4; “*ASCII,
masks and BCD’’ (A) Cvé6n2p5; “‘Product reviews’’,
serial to parallel converter, Radio Shack pen plotier
Cv6n2p24; “‘Product reviews” {IDA and COLOQOR-
WORD) Cv6nipl2; also see [Whiily] pseud.

“*A first assernbly language experience’” (A) Dn38p6

“A first assembly language experience.”” VSep84p4;
“IDA.” Review VFeb85p3

North Star. — computer Basic, see [Smith, Ken]
NOT. Basic — command (Yob) Kn2p22

numbers. Formatting — in Basic {Newcombe) Cv2n8p6;
review of number systems {Linden) FvIn2p33; transfor-
mations (B) (Suits) Cv5n6ép17; precision in Basic—(Rust}
Cvbn5p30; review of — systems (Linden) Fvin2p33

Factoring — (B) routine (Barlow) DndpS5; simulating the
MOD function (B) (Barlow?) Dn9p4; converting — from
any base to base 10 (Jenkins) Dn22pl; universal — con-
version subroutines (B) (Jenkins) Dn24pl2; also see
[random}

Formatting — in (B) (unknown) VApr82p4; compound
interest and depreciation notes (Ferguson) VNov82p8;
multidigit accuracy i addition (Brandie) VDec82p6; hex
conversions using four-function calculator (Winder)
VJun&3p4

o

Ochiltree, Keith. “‘Dollar

CvSn4pl2

“Tips 10 programmers’’ printing (B) program listings
VFeb82pd4; simulation of PRINT USING command (B)
VSep82p8

formatting subroutine’’

OKIDATA. Microline 84A (review) (Helms) CvSndp24
OPCODES. 8080 — (Muldowney) VJun85p4

OR. Use of — command (B) (Yob) Kn2p22

Orford, Ken. *‘The cheap 'y’ killer’”. FvIn3p20
Oshorn, Gary. ‘‘Basic Basic.”” VAug83p7

OSTR. Using — (A) tutor Cv2n7pl5

O'Sullivan, Brian. **Odds and Sods.”

Othello. — explained, Cvin2p4;
OUT. Using — for keyboard lockout, Cv2n2p3;

S
“Z

'4__ {2y

Pankhurst, Doug. '‘Typematic keyboard™ Cv5n2pl3

**The Compucolor IT sounds great.”” bell and Soundware
mods VFeb82p7; interfacing with 50 pin bus VMar82p§;
‘Writing in assembler.'” (DOCDIR program) VOct82p6;
““Keyboard handier for typematic keyboard.” (A}
VNov82p6; ‘*"THE’ word processor’’ review VMar83p9;
“Interfacing the CCII.”" Part | VJun83p6, Part 2
VAug83pll; “The family network.” VAug83pl4; ‘Com-
pucolor to modem connection.” VOct83p5; ‘‘“Memory
dump to printer.”” Software VOct83p8; “Eprom pro-
grammer.”" (B} VOct83pll

parallel. Serial to — interface (Barlow) Cvdn3p13; serial
to — converter, review (Norris) Cvén2p24

parameter. — passing using CALL (Barlow) Dnl7p6

Pascal. —'s triangle (Hogan) Cv3n2p7; algorithms
(Gould) Cv6nl; Tiny — for the CCII, note Fvln5p32,

43

update Fv2nlp4; also see [Van Putte}
password. Provision for — entry (B) (Kerlin) VSep84p3

patch. Machine language — (Taubold) Fv2u3p9; no echo
— in Basic without using assembly routine (Devlin)
CvénSp3l

Corrections to scroiling — article Cvlni (Suits) Dnl0p5

PEEK. Using — to determine screen character (van Putte)
Dnl9pl35, also see [Martin]

Peel, Doug. ‘‘Basic compilers for the Compucolor”
Fv3nlp9; review of (Suits) ‘Color Graphics..” Fvlndpl7;
“Epson is quietly making changes'’, commentary
Fvin5pls; ““‘Internal soundware kit for the CCII"" review
Fv2nlp28; '‘CHOMP’ review Fyv2nlp42; ‘64K multi-
bank EPROM board’ review Fv2n2p7

Add-on RAM (Devlin) review VApr82p6

peripherals. See listing under specific name, such as
{printer]. [VOTRAX] etc. Also see [interface], [switch]

Perrigo, Steve. “‘Plot 240 demystified”” Fvin3p33;
“‘Kevboard reading in Basic’” Cvdnépl7; “*A deluxe
keyboard aid’” Cvéndpl5; “*THE Basic editor’ review
Fvindp2d4; “*More on the joystick controller for the
CCI1”’ hardware, software, standards proposal
Fv2nlp6l: “Joystick standards for the CCIT™" Fv2n2p30

“Plotting program for MXS80 printer’” (printouts)

Dn33ps

PERSONAL DATA BASE. (ISC) Parch for — (van Putte)
Dnl10p4; mod (Squailia) Dnidps

Peterson. Larry. A note on R. B. Holley's Flight
Simulator.* (B Knlpl2; Calendar algorithm (B) Kn2p2l
Peterson, Larry & Cary. ‘‘Special menu for directory
loading'" (software) (B) Dn31pl2

photograph. —ing the CCII screen, exposure guide (Rust)
DnSpl

photography. Tips on photographing the CCII screen
(Grogono) Cv2nép2

Pinter, Vance. ‘*Software handshake for Diablo 630"
Cv5n2pll; ‘TECH TIP’ changing disk drives CvSn3p2,
making the assembler occupy less disk space CvSn5pl8
PLOT. — mode, checking for Cv3n2p23; reentering —
submodes (Suits) (B) Cv3n2pll; — 240 (Perrigo) desc
Fvin3p33; incremental — table (Smith) Cv4n2pli7; —
library in FORTRAN (Charles) Cv5n3p21

— 2 character strings (B) (Suits) Dnl1p3; — 24, usage
(Montemarano} Dn24p9

plotter. Pen — (review of Radio Shack CGP115) (Nor-
ris) Cvén2p24

POKE. Changing default drive with — (v6.78) Fvinlp9.
See [Martin}, [Barlow]

Using — to get large character displays (B) (Suits) Dn8p10
Commentary on use of — commaund (Winder) VMar$3p8

portfolio. See [Thirtlej

Power, Bill. ‘“*‘Random topics” data commiunications,
VOTRAX, directory library, printer underlines, sound
effects generator Fv2n1p39; bank selector comnientary
Fv2nlp4g8

Power, Ross. ‘‘Data communications.”” VJan85p5

Power, Wayne. *‘Pedigrees.”’ Software commentary and
usage VAug8Ipis; “‘Some implications of computer
technology — a psychological perspective.”” VNov84p7

piracy. Software -, see [Muldowney]
power supply. See [repairs]

PPI. Program Package
Cv6n3pl6, Cvéndpi2

precision. See [numbers], {conversion]

Installers, ads Fv3nlp68,

PRINT. Simulating the — @ function of TRS80 (B) (van
Putte) Dn10p3

printer. — handshake modification Cv3n2p25, correction
Cv3n3p26, correction Cvin7pl3 (Dec1980/Jan1981), ISC
mod bulletin Cv4nip10; — change output line length,
Cv2n5pl5; — sereen dump for Microline 80 (B) (Stuckey)
Fv2n2p14; interface of CCII with Heath H-14 (Warner)

44

Cv3n3p!3; — driver for Centronics 779 (A) Cv3in3pl8,
correction Cv3ndp26; — driver for IBM (A} (Greene)
Cv3nSplS5, and note Cv3n6p22; ‘Further hints on printer
problems” (Swank) using OUT and WAIT, Cv3n5p2l;
screen dump to MX80 — (Fairbrother) Cv4nlpl4; ‘CCI}
handshake mod’ schematic (Newman) FvIn3p35; -
underlines (Power) Fv2nip40: — forms (sources)
Cvénlp2l; also sec [Diablo], [EPSON], [MPI],
[OKIDATA]}, [parallel], [screen]. [‘y’ fix]

Connecting the Heath H14 to the CCII (Mehrig) Dnisp2,
correction Dnlépl; also see [switch]

Handshake modilicanon (Pankhursty VIan®2p10; using
— tor (By program listing (Ochiltree) VEebh&2pd:
using — with WORDKING (Stuckey) VDec82p8; com-
ments of use of — with Basic (Smith) VMar83p4; using
— 1o make graphs (Burrows) VMar83p10; — routines
(misc) (Fargquhar) VJun83p9; memory dump to —
(Pankhurst) (B) VOci83p8; comments on FORUM screen
dump program (Winder) VAug84p3; working with the
EPSON — to simulate a typewriter (B) (Farquhar)
VOci84ps

PRINT USING. Simulation of — command (Ochiltreey
VSep82p&

Pro, Stan. Publisher of ISC newsletter. See Cvén3p32.

programmable. — character set,—character generator, see
[character]

Programming and Reference Manual. (ISC) Index to —
Dnip8

PROGRAM PACKAGE INSTALLERS. Australian software
house, desc of products Cv6n3p30 (May 1984), also see
[PP1] for additional ads.

proportional. — control for joystick, Microcomputer
Technology, ad, Fv2n2p6

PRTLAB. See [Fox]

Q

Quality Software. For products see Fvinipl9

quicksort. See [sort]

Radio Shack. See [TRS80], [BASIC]

Raffee, Bernie. ‘‘Protected fields’ (A) Cv4n3ps

“XDISC programme.” Knlpll; “*Indexed file handling
in Basic.”" Kn2p8

RAM. — card (Devlin, ad) Fv2n4p28; 8K — card, instr
for building (Devlin) CvdnSps; system —Ilocations
Cv3n7pl0 (Dec1980/Jan1981)

— map for v6.78 (Minor) Dn19p!16; splitting a program
between two — cards (Steffy) (A) Dn33p8

Add-on — (Devlin) review (Peel) VApr82p6: reserved .
locations (Muldowney) VIun85p6

Ramsey,). ““Compucolor Il character display’ (Cuties)
Cvéndpl3

random. — numbers (Hogan)(B) Cv3nlp26, (A) (Suits)
Cv5n3p5; — rectangles Cvinlp4;

— numbers, discussion (Stafford) Dn2p, discussion
(Thompson) Dn5p3; extending — number sequence, note
(Stafford) Dnl0p4; - number generation (Taubold)
Dn25p10

— numbers in FORTRAN (Booth) Kn3p8; expanding a
— file (Kirkpatrick) VMay84p4

random files. Linked lists (Williams) Part 1 Cv2n3p6, Part
2 Cv2n4p5; (B) explanation Part 1 Cv2n6p9, Part 2

Cv2n7pl2, correction Cv2n7pl9, Cv2n8plS;
method’ (B) Cv2n2p4

‘Lee’s

READ. FCS — command, explained (Minor) Dn29p4
‘’Real apple of his eye’’. See [Faflick]

real time clock. Adjusting the — for S0 Hz operation
(Winder) VApr&4p5, (Hendry) VJan85p2

Rebbechi, Wayne. ‘‘Compucolor screen stationary
foreground colours codes.”” Cv3n2pl6 rectangles. Ran-
dom —, Cvinlp4

record keeping. (Stock transactions, see [Thirtie])
recoverv. — from ESC W, see [ESC], [Basic). [Steffy]
recursion. See [Van Purte)

Reddoch, Steve. ‘‘Assembly language screen dump to
MX80 printer’” Cv4n6p9

“Interrupts’”’ and TIME program (A) Dn34pi9
Redfield, Ed. Modification to CHECKBOOK Cv2n7pi7

refresh. Screen — memory, see [screen}

’Refresher Course’’. Reading nonRND files from Basic
(Norris) Cvénlpl2; trigonometric identities Cvén2p2l

reinitialization. — of Basic, see [BASIC], [ESC W]
relational. — commands in (B) (Yob) Kn2p22

REM. Using — to store short machine language programs
(Hennig) Fvindpl4; using — to store (B) program setup
(Gould) Fv2n2pl7

Using — in program listings (Rust) Dnép3

remote. — controller for CCII using 50 pin bus (Newman)
Fulnipdd

repairs. CCII —, Rochester service network CvénSp24;
also see [COMPUCOLOR]}

Notes on servicing the CCII (unknown) Kndpl0; power
supply (Winder} KnSpl0; improving the power supply
(Booth) Knép4: replacement transistors (Booth) Kn6p6;
disk drive — (Winder) VNov82p4: notes on analog board
component failures (Kerriso) VNov82p8; power supply
constderations and schematic (Winder) VAug83p&:
power-on problems (Kerrison) VAug83pl3

RESCUE. Basic program restoration (Steffy) Fvin3p23

. Rex, Martin. “‘The EPSON printer.” Fvindpl3

Richardson, Dusty. ‘‘ESKF errors’” Fv2blp26; ‘‘Epson
MX80 printers” Fyv2nip30

Ricketts, David. ‘‘The Gemini
Cvondpl4

10X printer’” (review)

RND. See [random]
robot. See [Kahkonenj

ROM. Basic —, analysis (Linden) Fv1ln5p73; system —
{Steffy) references Fvinsp45s; replacement — chips for
CCII v6.78 (Rusch) Fv2n2pl3; — table v6.78 Cv3n7p6
(Dec1980/Jan1981), complete for v6.78, v8.79, v9.80
Cvénlp6

Table of — addresses, v6.78 (Manizir) Dn15p9, Dnl6pli;
caution on selection of — chips for use in the CCII
{Dewey) Dni9p9; routine {or compatibility between v6.78
& v8.79 —, ‘jump table’ (A) (Dewey) Dnl9p9

Differcnces in (B) INPUT statement in v6.78 & v8.79 —
VJul82p4; key memory locations (Winder) VOct83p7, up-
date VJul84p3; bugs in FCS — affecting the directory
(Woods) VMay8&dp3: listing of CCII — contents (Winder)
VSep84p6; — contents for 60 Hy -~ 50 Hz conversion
(Hendry) VJan85p2; callable — routines (Muldowneyv)
VJun835p7; utility routines (Muldowney) VJun85p8

Rosen, Howard. ‘‘My hat’s off to David Suits’” (color
graphics) Cv3népl9; Compuwriter (review) Cv4ndpls;
“FORTRAN programmimg’’ CvSnlp7; ‘‘Tidbits for
Compucolor’ Cv5n5pl9; ““FORTRAN and the CCII
computer’ Part 1,Fvindp31: Part 2, Fvln5p59: Part 3,
Fv2nlp6; ‘‘“The modem’ connections Fvin5p42;
““Fingers walking through the keyboard like jelly” ten
ways to use a word processor FvinSpS0

NOV/DEC 1984 COLORCUE

Rosen, Howard.
“Subroutine to initialize T-matrix and Sl-matrix’’ (F)
(software) Dn32p7

“Fortran programming.’’
VDec82p7

Reprint from Colorcue

R$232, Connecting to IBM PC using —, Fv2n2pi8; —
interface, baud rate Cvln2p6; — interface (Barlow)
Cv4nlpS; serial to parallel interface (Barlow) Cv4n3pl3;
using — to connect two Compucolors Fv2n2p18; also see
[communication]

Using — for communications with other computers,
Dn10p6; using — to transfer files between CCIIs (Rusch)
Dn18p5; definitions and null modem connections (general
discussion) Dn28pl4; DSR implementation of — for
CCl1I (Wullf) Dn35p7

Use of interrupts with — bus (Green) Kn2p27
Rubik’s cube. See [Safford]

RUN. FCS — command, description (Minor) Dn29pl1
Rusch, Gordon. (Com-Tronics) *‘Directory management’’

(DIRMOV software (B)) Dnl2p7; ‘Down-loading
documentation’’, exchanging files between CClls,
Dnl8p5

Rust, Wallace. *‘Precision in Basic numbers’’ Cv6n5p30;
“*CCII color adjustment’” Cvén5p32; ““ASTRO”’ (seft-
ware) (B) Cvénépl8; ““ASTRO" software Cvénépl8

“*Color show’ (B) demo of CCII colors Dn2p5;
“Creating displayed remarks in program listings’’ (B)
Dnép; ‘‘Simplified screen poking’® Dn8p9; ‘‘ASKME,
Artificial Intelligence program’’ desc Dnl1p5; ‘Do you
have a bug in your Air Raid program?’’ Dn18pl0; chart
of graphics characters, Dn25p7

Safford, Roger. ‘‘Rubik’s cube demystified”” (B) Cv4n6p5

“All you really want to know about RND(X) but didn’t
care to ask’” Dn2pl; note on extending random number
sequence Dnl0p4

SAMPLER. Modification to (Shanks) Cv2n7pl9

SAVE. FCS — command, explained (Minor) Dn29p6é
SCAR. Single character input routine (B) (Minor) Dn32p3

Schefe, Neviile. **Computerised star map.’” VJan84p3

screen. Saving — displays (Taubold) Fv2n3p9; — editor
(Comtronics) review (Steffy) Fv2n3p42, update (Steffy)
Fv2ndp2; — editor, see [ISC]; — dump to Epson (Rex)
(A) Fv2n4p36, (B) (Stuckey) Fv2n2pl4; getting the best
from your — display, alignment (Newman) Fv2nipl9;
drawing on the — (A) (Manazir) Cv3in2pl9;
photographing the CCII — display (Grogono) Cv2n6p2;
saving the — display (Steffy) (B} Cv2n5pl3; — memory
(Linden) FvlIn2p33; changing — displays (Suits)
Fvin3p35; — ‘saver’ (Hudson) moving characters non-
destructively (B) Cv3n5p3; loading screen display by
assembly language CALL from (b) (Steffy) Cvin7p8
{Dec1980/Jan1981); — memory problems and cures
(Devlin) Cv5n5pl7; — alignment (Rosen) Cv5n5pl9; —
editor in FORTH (Napier) Cvén35p8; — display ad-
dresses, character memory locations, large chars, alter-
nate char sets, CCI (Linden) FvIn2p36; ‘Quick change
artistry’ (Suits) Fvin3p35; — editor for small keyboards
(Linden) Fvinip9; — memory (Linden) Fvln2p33;

Copying — display to disk, software (B) (Johnson)
Dn5p2; drawing on the — (B) (Barlow?) Dv7p4; —
display utility software (B) (Suits) Dn8p5; — memory ad-
dress table (Rust) Dn8p9; changing — displays rapidly,
“Quick change artistry’’ (A) (Suits) Dn16p7; — refresh
memory, explanation of duplicate addresses, Dn17p3;
determining screen character with PEEK, simulation of
TRS80 IF POINT statement {(van Putte) Dnl9pl5; —

COLORCUE NOV/DEC 1984

alignment (Dewey) Dn26p2; — editor with MX80
(Thompson) Dn30pl7

— editor by Doug Pankhurst (review) VSep82p5

Scribe. (Word processor) see [Steffy] SCRIPT;
SCRIPT. see [Steffy]

scrolling. ‘““How to use the scrolling patch’” (B) Cvinlp2,
correction Cv2n3p35; — patch in (B) (Linden) Fvindp4,
analysis of — patch, begins Fvln35p52, see [Taubold
‘Ram batterings’}

Corrections to — patch article in Cvinl (Suits) Dn10p5

search. — string software (Mendelson) Cvénép28

serial. — to parallel converter, review (Norris) Cv6n2p24;
- port, see [RS232], [Barlow]

Shanks, Bill. Modification to SAMFLER (ISC) Cv2n7pl9
Shell-Metzner. See [sort]

SHOOT. Software modification (Muldowney) Cv3népi9
Program variations to — (Suits) Dn3p2

shufﬂing..— in (B) (Woods) Fvin3p27; also see [cards]
Card — (Taubold) Dn26p23

Smith, Bob. ‘‘Incremental plot table’” Cvdn2pl7; ‘“‘CRT
mode plotting” Cv4ndpl7

Smith, Graeme. ‘‘Binary to ASCII/ ASCII to binary”
Cv3n3pl6

Smith, Ken. ‘A summary of some North Star Basic dif-
ferences.' VSep82p4; ‘A simple index search program.””
VJan83pé6; ‘‘Dictionary of Useless/Useful routines.”” (B)
VMar83p4

Smithy’s Bulletin Board. Instructions for access (Australia)
VMay84pS, VMay84p4

software, Catalog of commercial — for CCII with some
reviews (Norris) (May 1984) Cv6n3p26; additional sources
Cv6n3p30; some software references under their name
(such as [IDA]) Library holdings CHIP Dn38p6, recent
additions Dn38pl5: CUVIC VIun85, holdings in CHIP
library Dn38p3: FORUM (source) see [FORUM]; Com-
pUKolour Kn7p24; the following are reviews or
references from FORUM (caps omitted for clarity):

Alien Invasion (review) Fvin3pl0; Assembly language
data base (Helms) review Fv2n1p73; CHOMP (Pacman)
review (Peel) Fv2n1p42; Colorcalc & Colorgraph (review)
Mueller Fv1n5p38; Compucon Ltd Fvinlpl6; Foolsmate
(chess) Fvin5pl13; Galaxian (review) Fvin3pl19; Invaders
{review) FvIn2p22; Super monitor (Greene) desc
Fvin2p28; ‘THE’ Basic Editor (early review) Fvlnip22,
(Perrigo) Fvindp24, update Fv2nlpll; Tracer, tracing a
Basic program, desc Fvin5pll; Trigonometry, Metra
Instr Fvln3p6

sort. Bubble —, alphabetical, numerical (Davis)
Fvin2p24, and Fvin4p20; see [Davis] for general
algorithms; Callable — routine (.*) (Matzger) Cv4n2p21

— routine (B) (Barlow?) Dn7p2, /B) (Jenkins) Dn27p4

sound. Interface for — production (Barlow) Dn16p3; also
see [Chamberlin}

Soundware. Commentary on kit (Winder) Fvin5p3i,
Fv2nlp27; review (Peel) Fv2nlp28; — from MicroSynth
(Mueller) review Fv2n2p27; work on — (Power)
Fv2n1p40; see [Grant], [synthesizer]

— mod to CCII (Pankhurst) VFeb82p7; commentary
(Standen) VFeb84p2

South, N.
VNov82p9

SPECTRUM. Program listing (Martin) Cv2n3p3

“Generalised inverse of a matrix.”” (B)

speed. Increasing — of (B) programs {(Taubold) Dn29p15
Spencer, John. Tips on using FOR-NEXT loops
VApr82p3; ‘Programming finesse.”” VNov82p7
Spracklen, Kathy. Letter to D. Peel, re chess Fvin3p9

Squailia, Richard. ‘‘Data base management —update con-
trol”” (ISC personal database mod) Dnl4p5

‘squeeze’. See [Taubold]

Stark, Aub. ‘‘Understanding ‘The Australian Beginning’.”
VDec82p4

Standen, Peter. ‘‘Bell for v6.78 Compucolor.” VApr83p3;
commentary on Soundware VFeb84p2

Star Trek. — strategy Cvinlpé;
Changing quadrant colors in —, Dn7p2

stack. ‘‘Stuffed stack syndrome”’ (Steffy) Fvin3p25

Steffy, Myron. “CTA assembler’” review Fv2n3p17, update
Fv2n4p3; ‘‘Assembly language subroutines” ROM
listings, jump tables, keyboard character routine
FvIn5p44: baud, order of entry, numerical conversions,
moving characters Fv2nlpl3: justify, print and store text
files, Fv2n3p24: SCRIPT handler program Fv2ndp29: “A
‘jumper’ for additional escapes’ software, Fv2n3p42;
““‘CTE screen editor’” review Fv2n3p40, update Fv2ndp2;
“Screen drawing with a joystick’® (A) Fv2n3p46;
“Newbug’’ review Fv2ndp3; ‘‘Assembly language
subroutines’’ keyboard input of hex characters,
Fv3nlp29; saving a screen display (B) Cv2n5p13; ‘‘Basic
program Restoration’” Fvin3p23; ““The stuffed stack syn-
drome’ FvIn3p25; ‘‘Tracking Basic variables”’
Cv3n3p24; “‘The CALL function’” Cv3n7p8
(Dec1980/Jan1981); *“Disk data recovery’”” Cv5n2p9; ‘A
program to load SRC files into Compuwriter’’ Cv6n1p8;
appreciation (Norris) Cvénlipl!

““A jumper for additional escapes’ (A) Dn3ip2, addi-
tions Dn32pl5; ‘A method of splitting a program bet-
ween two RAM cards’’ (A) Dn33p8

string. Search — program for 8000 (Mendelson)
Cvbn6p28

Stroop. — phenomenon, Cv2n2p2;

Stuckey, Peter. ‘‘Microline 80 graphics dump” (B)

Fv2n2pl4

Header for Basic programs VMay82pl; ‘‘Printing for
CUVIC with the Epson MX80.”" using WORDKING
word processor VDec82p8; ‘“How to do great things with
soft apples and trash.”” Program conversion from other
Basics VJnu83pll; *‘Disc reviews.” (Dungeons &
Dragons, Castlequest) VAug83p5

style. Notes on Basic speed and style (Norris) CvSn3pll

Notes on programming—(from Kernighan) Kn7pll;
*‘Good programming techniques” (unknown) VJun82p3;
““‘Programming finesse.”’ (Spencer) VNov82p7; notes on
Basic—(Muldowney) VJun83p7

subroutines. (A) see [Steffy], [Matzger], [Norris], [Suits);
decimal to hex conversion (B) see [Andries]

subscribers. — to FORUM, list Fv3nlp34, to COLOR-
CUE, list Cvén5p26

Suits, David. ‘‘Reentering plot submodes.”” Cv3n2pll;
“*Color graphics for Intecolor..” review (Peel) Fvin3pl7;
““‘Quick change artistry”” Fvln3p35; excerpt from “Col-
or Graphics’ (hatch character) Cv3n3p25; ‘‘Assembly
language programming”’, Part 1 Cv4nlpl9 registers,
binary & hex numbers: Part 2 Cv4n2p6 using MLDP sim-
ple program in assembly: Part 3 Cv4n3p19 8080 instruc-
tion set, program topology: Part 4 Cv4ndpl9 status flags
and stack: Part 5 Cv4n5pl9 the input routine: Part 6
Cv4n6p20 input routine cont: Part 7 Cv5nlipl7 macro-
assembler: Part 8 Cy5n2p24 ‘‘Simple math’’: Part 9
Cv5n3pS5 numerical 1/0 and random numbers; ‘““THE’
Basic editor’’ {review) Cv4n3p25; TECH TIP (space bar
pressure} CvSnlplS; ‘How did Sam die?’ ard “Was Eins-
tein correct?’ (CUTIES) Cv5n2pl0; ““‘Calendar printer””
(B) Cv5n2pi7; “Blue sky dept” enhancing CCII color
capabilities Cv5n5p20; ‘‘“Transformers (not electrical)’’
Cv5népl7; book reviews Cvénlpl2; “‘One dimensional
cellular automata’’ Cvén3pl6

“Variations for ‘SHOOT’"’, Dn3p2; ‘‘Some comments
on the Basic Utilities Disk™’ Dn8p2;
“DISPLAY/CREATE/EDIT/DUP” discussion with
software Dn8p5; ““Tidbit #123”" using large characters
Dn8pl10; ““The scrolling patch’ commentary and correc-
tions to Colorcue article Vinl, DnlOp5; ‘‘Plotting
character strings’’ (PLOT 2) Dnilp3; ‘“An animated
joke”’ (software) (B) Dnl3p2; ‘““Quick change artistry’’,
changing screen displays rapidly, Dn16p7; ‘‘Some ideas
and a quiz’”’ Dn20p5; ‘“The ‘last’ key code” realtime
keyboard entry (B) Dn22p4; ‘‘The ‘new’ key code”
Dn23pl17; ““ALPOCII”, introduction to assembly
language programming, Dn24pl4, Dn26pl7; ““Instruc-
tions for ‘Capture the flag’.”’ Dn37p6

“*Capture the flag.”” Software instructions VMar85p2

45

SUPER MONITOR. (Greene) desc Fvin2p29

Swank, Edgar. “‘Further hints on printer problems’
Cv3nSp2l

switch. A — for changing peripherals, construction
(Lepard) Dn23p21

syntax. — error after running FCS Fvin2plé

synthesizer. Music — {Hubbard) FvIn5p8; hardware
review (Holt) Fv2nip58; Minerva Microware (review)
Mueller Fv2n2p27; see [SOUNDWARFE]

T.A.B. "The Australian Beginning', bulletin board net-
work, commentary (Stark) VDec82p4

tables. Formatting — printout (B) (Herman) Cv3ndp8; see
also [ROM]

Taubold, Rick. **Ram batterings or Tripping down memory
lane, an analysis of the scrolling patch’, Part 1
Fv1ln3p52, Part 2 Fv2nipS0, Part 3 ‘A quilting party —
A use for vour patches.” Fv2n3p9; Saving/loading screen
displays (A)B). using ESC vectors; ““What’s new for the
CCIi?”" Cv5n3plS; *‘Compucolor meets Morrow™
Cvén2pl4; “*How to merge Basic programs with assembly
language programs’’ Cv6n4p26

‘“‘Random thoughts’” random number generation
Dn25p10, card shuffling Dn26p23, converting TRS80
Basic to CCII Dn28pl0, ““The big squeeze’” (increasing
Basic program execution) Dn29pl5, errata for earlier ar-
ticles in this series + ‘‘The speed demon’ (increasing
Basic program execution) Dn30p20; ‘*Adavnced Basic
and the system’" (?) Part 2 Dn33p2

Taylor, Trevor. ‘‘Generating a break’ Cv3n3pl2; *‘Custom
character sets”” Cv3ndp2l; “Transferring Basic files from
other computers” Cv3nép4; ‘“‘Lissajous figures’”
Cv4n2pi8

““The blind cursor, etc” Dn20plQ; “XHGCHR", soft-
ware (A) to exchange a character with one on the screen,
Dn20pl3; ““Clock display routine’” (A) Dn20p14; *‘Some
experiences with a light pen” Dn23p27

‘TECH TIP". CCII bell (Zawislak) CvSnlp4; CCII space
bar pressure (Suits} CvSnlpl5; noise on CRT, remedy
(Bailey) Cv5nlp23; changing disk drives (Pinter)
Cv5n3p3; also see [Pinter], [Newman]}

teletype. Interfacing the CCII with — (Greene) Cv3nlp6
terminal. CCIl as — with other computers (Newman)
Fv2ndp3is;

text. — file justification, storage and printing (Scribe)
(Steffy)(A) Fv2n3p24; — editor, see [editor]

‘THE’ Basic Editor. Quality Software, desc Fvin3plo;
review (Suits) Cvdn3p2s

Review (Colley) Kn2p4

‘THE’ Word Processor. Review (Epps) VMar83p5, review
(Pankhurst) VMar83p9; notes on—update VAug83p6

TERM.TXT. Software (A) for RS232 communications,
Dnl10p8

TEXMAN. Word processor
VApr83ps

Thirtle, John. ‘A portfolio record-keeping program.”
CvSn4p$

timer. User — #2 to drive a real time clock (Ma_tzger)
Fvin3p29; also see [Dewey] on the TMS5501 chip.

A — for stereo tape recordings (Haskin) VApr83p6; ad-

justing the CCII real time clock for 50 Hz operation
(Winder) VArp84p$s

commentary (Burrows)

Thompson, Paul. ““Word processing with the Epson MX80
& CCII screen editor’” Dn30pl7

Thompson. R. ““How random is RND(X)’’ Dn5p3

46

TMS5501. See [Dewey], [1/0]

tokens. Basic — listing program (Martin} Cv3n4p15; list
of — (s) (Manazir) Cv3ndpl7

Keyboard layout of (B) — Dnlp6
Basic—chart (Unknown) Knip9

“Tom teaser.” Puzzle (Napier) Cvén5p25, Cvénépl?
TRACE. Disassembling sottware. See [Wulff]

transistor. — equivalents for CCIl Cv5n2pt9
TRENDSPOTTER. See [EXECUGRAPH]

TRS80. Converting — Basic programs to CCII (Taubold)
Dn28pl0

“Turkey and Hunter’. Modification (Clarke) Cv2n3py

two's compiiment. Tutorial in—arithmetic (Yob) Kn2p22

typematic. See [keyboard], [assembly language]

Ungerman, Mike. Converting TRS-80 programs to CCIi,
Cv3n2p23

underline. Printer —- (Power) Fv2n1p40

UPDATE. Newletter, CCII user group of New South
Wales. See Cvén3p3i

upper case. — to lower case conversion, see [conversion|
uploading. See [conversion], [APPLE], etc.

user. — groups for Compucolor 11, current as of May
1984 Cv6nip30, also see [bulletin boards}; — supported
software (Dinsmore) Cvén2pd; ESC —, see [BASIC]; —
timer, sce {timers]

Utility. — bill analysis program (B) Cv3nép7

v

Van Putte, Doug. ‘3D graphics”” Cv4ndp7,Cv4nép3; ““Plot
3D figures with FORTRAN 80" Cv5nlp9; “A CAD pro-
gram’’ Cv5n2pS; ““Go the superior way with your IRA*’
CvSn6pld; ‘A Pascal for the Compucolor I Part 1
Cv6n2p30, Part 2 Cvén3p3, Part 3 Cvéndp29, Part 4
Cv6n5p20; ““What the diskens is ‘recursion’.””, Cvénép3

“Print @ subroutine’” Dnl0p3; patch for Personal Data
Base (ISC) DnlOp4; “‘Extra large Compucolor ASCII
character set’”” Dnllp6; ‘‘ASCIl values™ (listing in
decimal, binary, octal & hex) Dnlsp7;

‘‘Eliminate Plot mode color crossover’” Dnl6p9; ““‘CCII
‘if point’ subroutine for graphic coordinates’’ Dnl19p!5;
““Personal budget and stock fund switch strategy pro-
grams’’ (Ad) Dn34p3; *‘Description of CHIP tibrary
genealogy program’’ Dn34p24; CHIP disk library update
Dn38plS5

variables. Keeping track of — (B) (Steffy) Cv3n3p24; how
Basic stores — (Dinsmore) Cvénlplé

Cross-reference program for printing—(B)
(unknown) KnSp19, modification (Hiner)} Kn6p8

version. v6,78 and v8.79, for compatibility see [jump
table]

Vick, Ricki. Index to DATACHIP, nos 1-22, Dn24pl

voice, — communication, VOTREX (Power) Fv2n1p39,
DIGITALKER (Rhijn) Fv2nlp60

VOTRAX. Commentary (Power) Fv2nlp39
v6.78. Replacement ROM chips for — (Rusch) Fv2n2pl13

w

Wardle, Terry. ‘‘Converting a standard keyboard to a
deluxe keyboard.”” VNov82p9

Warner, James. ‘‘Interfacing the Heath H-14 line printer
to the Compucolor IT’" Cv3n3pl3

waterloo. University of —, software available Fvlnlpll,
desc Fvin2p2l

Weisberg, Paul. ‘“‘Apple to CCII graphics/program con-
version.”” Fv2n3p6

Whaley, C. P. ‘‘Fuzzy decision making.: Kn3pl2

whilly, w. S. [Joseph Norris] CYPHER, encryption soft-
ware Cv6n2pl9; “*Pesticidal programming’’ tutorial for
IDA by Bill Green, Part 1 Cv6n3p19, Part 2 Cv6ndpl6
(disk directory reconstruction), Part 3 Cvénépi3 (using
IDA’s monitor)

williams, A. E. “‘Linked lists”’, Part 1 Cv2n3p6, Part 2
Cv2n4pSs
winder, Ken. “Internal soundware for the Compucolor.”
Fv2nip27

“The Compucolor 11 power supply.” KnSpl0; **Com-
pucolor formatter disc.”” VSep82p6; *‘Microline 80 bug.”
VSep82p6: disk drive 1.LED installation VOct82p8; *‘Disc
drive problems.”” VNov82p4; ‘‘Bell installation.”
(schematic) VDec82p6: *‘Is poking a health hazard?”
VMar83p8; ‘‘Hex on the cheap.”” Hex conversions with
four-function calculator VJun83p4; “‘Operating the FCS
department.”” VAug83p4; “‘Program review— XDISK’
and "XDISC"."” VAug83ip6; ““The CCII power supply.”
VAug83p8; *‘Connecting your modem to the CCIL."”
VAug83pl0, update VJul84p3: “*The caps-lock light.”
VOct83p6; ““Key memory locations.* VOct83p7; “*Selec-
tig lower case with caps-lock.”” VJan84pl; **A selectable
baud rate oscillator.” VFeb84p2; “*Keeping in time.* ad-
justing the 60 Hz CCI! clock for 50 Hz operation
VApr84pS: “Compucolor add-ons and options.”’
VJul84p2; “*On the PRG trail." VAug84p2, VOct84p3;
**Graphics printer program.’” Comments on program
from FORUM VAug84p3; “XDISK and XDISC
revisited." VAug84pé; **ROM listing”” VSep84p6; **More
about the graphics printer.”” VOct84p4; *‘Bert’s Bar pro-
gram.”" VJan&5p2; ‘‘Summary of commands for
MLDP™ VJan85p3; notes on FASBAS VJun85p2;
“Substitute function keys.” VJun85p3

with

Woods, Antony. “‘Problems

VMay84p3

Woods, Doug. ‘‘Problems with INT and others.” (B)
Fv2n1p32; “*Shuffling in Basic’” Fvin3p27

Woods, lan. *‘Computer democracy.” Fvin2pl7; *‘Shuf-
fling in BASIC.”” FvIn3p27; “‘Multidigit accuracv (Ad-
dition).”" FvIn4p29

the directory.”

WORDKING. Word processor, printing with (Stuckey)
VDec82p8

word processor. Using a — (Rosen) FvIn5p50.
Also see [Comp-U-Writer]
WRITE. — command in FSC (Minor) explained Dn29p4

wulfi, T. “TRACE” (software) printing disassembler
Cv6né6p33

“‘A simple Data Set Ready implementation tfor the CCIL.”

Dn35p7
X

XDISC. Program guide to-—(Bernie Raffe) Knlipll;
review (Winder) VAug83p6, update VAug84p6

XHGCHR. See [Taylor]

Y

'y’ fix, — software, from ‘BBS’ (Suits-Barlow) FvIn2p6;
““The cheap ‘y’ killer”” (Orford) Fvin3p20; ‘Strange
behavior of the cheap diode fix’ (unsigned) FvinSp24;
—correction (Dewey) Fv2nlp23; (Devlin) Cv4nl pl3;
‘Printer problems’ (software solution) Cv3v2p2S5;
(Swank, using WAIT) Cv3n5p21)

(Devlin) Dn27p8; (Barlow) discussion, Dn27p9

Yob, Gregory. (title unknown) explanation of logical Basic
commands and two’s complement arithmetic Kn2p22

HERNETY

NOV/DEC 1984 COLORCUE

COLORCUE 19 West Second Street ¢ Moorestown, NJ 08057

	Vol. 6, No. 1, Jan/Feb 1984
	Vol. 6, No. 3, May/Jun 1984
	Vol. 6, No. 4, Jul/Aug 1984
	Vol. 6, No. 5, Sep/Oct 1984
	Vol. 6, No. 6, Nov/Dec 1984

