COMPUCOLOR I1 and the
Multifunction Input/Output Controller

™T™MS 5501

by Dale Dewey - DZ ENGINEERING

During the middle ’‘70s when microcomputers were being
designed, TEXAS INSTRUMENTS came up with a design concept that
was going to save everyone a lot of money. Their idea was to
design a lot of functions into one package. Their goal was to
reduce component cost, reduce packaging cost, decrease power
requirements and a lot of other things. I15C was very interested
in saving money on their computer for home use. You all know the
rest of this story. History has proven it to be a bad policy to
combine many functions into one module. You should keep unlike
functions isolated from each other. This gives more flexability
and fewer design problems to both the engineers and programmers.
So here we are, stuck with a design that has limited flexability
and lots of programming problems. 1 hope to detail some facts on
the use aof the 5501 controller and perhaps this will help explain
why ISC is having problems with a very outdated computer design.
Before going to far, it is necessary to lay some ground work on
terminology. Remember, hardware is only software for electrical

engineers. To begin with, lets define what the 5501 will do for
any computer design.

First, it is capable of asynchronous serial data input/
output. Most of you know that already but do you know what all
of those adjectives mean? In computer designs, data is sent or
received at any point in time without a clock (asynchronous) and
a bit at a time (serial). Thus, you can’t tell when the data 1s
coming but you do know that once a start bit is detected, it will
be one bit after amother until a stop bit is detected. You must
also assume that the bits are coming to you at a fixed rate since
there is no clock (time) involved. This rate is known as the
BAUD or bits per second rate.

Next, the 5501 can do parallel data input/output. 1In
this case, data is sent or received without any timing and all at
once as a single group of bits. For our microprocessor, a group
of 8 bits is used and this group is called a byte.

Event timers are alsc included in the 5501. These timers
can be cset for a fixed interval of time. When that interval has
elapsed, the computer will be notified. There are five timers,

only four of which are usable if you want an external interrupt
for the parallel input function.

The last function is called interrupt processing. All of
the atove functione are asynchronous in nature. You never know
when an event will occur or which event will occur. The act of
notifying the cemputer that an external (not in your program)
event has occured is called interrupt processing.

- 82 -

Qur next problem is to communicate with the 5501 so that
it car be setup to perform all four of these functions. The
COMPUCOLOR 1I (CC-11) is designed to treat the 5501 as an input/
output or 1/0 port. What did he say? Well 0.K., lets work on
the idea of an 1/0 port. 1 think everyone who has done anything
with BRASIC has run into the PEEK function and POKE statement.
These two tokens are used to examine memory. If you POKE into a
memory location, you are addressing that location with a value
ard storing a second value into that location. For example:

10 POKE 33279,0

will place a value of zero in the KEYBOARD Character Ready Flag.
Likewise, when you PEEK at a location, you are addressing that
location with a value and getting a8 second value from that
locaticn. For example:

20 Y = PEEK(33278)

will set Y equal to the KEYBORD Character value. Some memory
addrezses in your machine are read only memory (ROM) while others
are read/write memory (RAM) and yet others may be write only
fmon-existant) memory. In all cases, the values stored in memory
are 3lways in the range of D to 255 (8 bits).

This same concept applies to the 1/0 ports in your
computer. The only limitation is that there are only 256 1/0
port addresses (0 to 255). Aside from this, they are treated
just like memory. There are two tokens in BASIC which allow you
to access them. They are the INP function and OUT statement.
There is a third statement (WAIT) which is a very special case of
the INP function. I1f you are an assembler programmer, you have
access to the 1/0 ports with the IN and OUT instructions. By the
time we finish with this article, you will be able to use any of
these to control the 5501 or any other 1/0 port in the CC-I1I.

At this point, I have to repeat a WARNING that ISC puts
in all of their manuals. Be careful with some of the 1/0 ports.
If you OUT to or INP from the wrong place or use a wrong value,
the CRT controller chip could get very confused and it will
actually destroy (S5MOKE & FIRE) your computer'!'!!! Enough of a
warning? Now onto the important stuff.

The following table shows all of the 1/0 port addresses
for the TMS 5501 in the CC-1II. Note that single functions have
two addresses. This is due to an incomplete decoding of the 1/0
addresses. This "feature" is another of the ISC cost savers.

By only doing a partial decode, they were able to save a chip or
two on the logic board. Anyway, use only the lowest addresses.

The others work but why confuse yourself? This also means that

the addresses 16 to 31 can’t be used for anything else.

- 83 -

™S 5501

Input/Output Port Assignmenﬁs

1/0 FUNCTIONAL
ADDRESS DESCRIPTION

0 & 16 Read serial data receiver

1 & 17 Read parallel data input

2 & 18 Read interrupt device address
3 & 19 Read 5501 status register

4 & 20 Load 5501 command register

5 & 21 Load BAUD rate register

& & 22 Load serial data transmitter
7 8 2 Load parallel data output

8 & 24 Load interrupt mask register
@ & 25 Load interval timer #1

10 & 26 Load interval timer #2

11 & 2 Load interval timer #3

12 & 2 Load interval timer #4

12 8 2 Load interval timer #5

14 & 30 No function

15 & 31 No function

This is a complete list of the 1/0 ports. Only some of
these are usable by the programmer. This is because your machine
cperates out of ROM. Many of the functions in the CC-I1 are
controlled by the File Control System (FCS) or Screen (CRT) Mode
software. These functions are "burned” into the system ROM and
cannot be changed. Those functions which can be programmed, will
be fully detailed. Those which are fixed, will be explained by
function in the CC-11 design.

The first function to discuss in detail is the interrupt
prccessing. Whenever an event occurs (a timer "times-out"), the
timer will set a flag inside the 5501. The 5501 will then check
tc see if the mask bit associated with that event is on. If it
is, the 8501 will then notify the 8080 that an interrupt is
waiting. The 8080 will complete the present instruction and then
send a signal to the 5501. 1f the interrupt acknowledge bit is
on in the 5501 command register, this signal will force a new
instruction onto the data bus. This instruction causes the 8080
to jump to one of eight memory locations. These memory locations
are called interrupt vectors. They typically contain a jump
instruction to a service routine which will handle (in this case
restart a3 timer) the interrupt.

Two more tables are required before going further. The
first involves the command register in the 5501. The second is
the interrupt mask register which enabhles or disables each
interrupt connected with the 5501. These registers are 8 bits
long and can be shown as a set of 8 blocks with each block
representing a bit within the register.

- 84 -

NOTES:

™S 5501

Command Register

BIT

I
-

Rit
Number Function

0 RESET
1 = Reset serial transmitter and receiver.
Clear interrupt mask register. Zero all
interval timers. o
0O => No action

1 BREAK
1 => Serial transmitter bit set to continuious
MARKING (BREAK) condition.
0 => Serial transmitter set for normal (SPACING)
operation.

ry

X17 of parallel input port.

NTERRUPT 7 SELECT
=%
=% Interval timer #5.

1
.1
o

ol

INTERRUPT ACKNOWLEDGE ENABLE

1 => Enable response to interrupt acknowledge.
= Disable response to interrupt acknowledge.

4 HARDWARE TEST BIT
5 HARDWARE TEST BIT
6 NOT USED
7 NOT USED

Bit O is normally off (leave it that way). This bit is
used by the ROM only during a power up sequence.

Bit 1 is used to send a break. If your program detects
the BREAK key, set Bit 1 for a short time then reset it.

Bit 2 is normally off (leave it that way).

BIT 3 is normally on (leave it that way).

Don’t use this register unless you understand what each bit does.
Check the 5501 specification sheet in the programmers manual for
details on BITS 4 &8 5. These bits are used to test the 5501.

- 85 -

™T™S 5501

Interrupt Mask Register

BIT

-
w
—
-

-

Function

INTERVAL TIMER #1

1 => ENABLE INTERRUPT
0 => DISABLE INTERRUPT

INTERVAL TIMER #2
1 => ENABLE INTERRUPT
0 => DISABLE INTERRUPT

EXTERNAL SENSOR

(REAL TIME CLOCK?

1 => ENABLE INTERRUPT
0 => DISABLE INTERRUPT

INTERVAL TIMER #3
1 => ENABLE INTERRUPT
0 => DISABLE INTERRUPT

SERIAL CHARACTER RECEIVED
1 => ENABLE INTERRUPT
D => DISABLE INTERRUPT

SERIAL CHARACTER SENT

1 => ENABLE INTERRUPT

0 => DISABLE INTERRUPT
INTERVAL TIMER #4

1 => ENABLE INTERRUPT

D => DISABLE INTERRUPT

INTERVAL TIMER #5 OR

PARALLEL INPUT (XI7)
(SEE COMMAND REGISTER)

1 => ENABLE INTERRUPT

0 => DISABLE INTERRUPT

Vector

Address

0

16

24

32

40

48

56

As another example, let’s consider the real time clock
in the CC-11. The clock (HOURS, MINUTES and SECONDS) is under
control of the 5501 chip. There is a signal which comes from the
pocwer supply in your machine that is applied to the EXTERNAL
SENSOR pin on the 5501. This signal is derived from the 60 HIZ
(50 H7)» power source and will cause an interrupt every 1/60th

1/50th" of a second. When this signal goes from GROUND to
T VOLTS, it will set the internal interrupt flag in the 5501.
If BIT 2 in the MASK REGISTER is set, the 5501 will notify the
8380 that an interrupt is waiting. When the 8080 completes the
current instruction cycle, it checks to see if the programmer
has interrupts enabled.

NOTE: Only assembler programmers can turn
interrupts on and off with the EI
and DI instructions.

If interrupts are on, the 8080 will send an acknowledge
zignal to the 5501. The 5501 now checks to see if BIT 3 in the
COMMAND Register is on. If it is, the 5501 will place a restart
(RST) instruction on the bus. This causes the 8080 to save the
next instruction address for the presently running program and
execute the instruction in one of the vector locations. In the
case cf our clock, that vector is located at memory address 16.
The 8080 will execute this instruction, a JMP to UPDATE. This
interrupt service routine then saves all registers; increment the
fractione of a second counter in memory; update the HOURS,
MINUTES and SECONDS memory locations as necessary; restore all
rzgisters and then return. The program which was interrupted now
starts running again Jjust as 1f nothing happened.

If you can follow all of that, you are off and running
with the 5501. 1f you are not sure, go back and read the last
two paragraphs again. Draw a picture or flow chart of each step.
Ac you might expect, interrupt service routines can take a lot of
time 1f they are very long. It 1s considered good programming
practice to keep the routines as short and fast as possible.

This lets your normal program do its thing.

Now that we have been through all of that, what can you
the programmer do with these two 1/0 ports? The answer is not a
lot. The programs in ROM will keep all bits in the MASK Register
ON except when the disk is being accessed. If you turn one of
them OFF it will stay OFF for a short period of time and then be
turned ON again by another interrupt service routine in ROM. 1If
ycu want complete control over this register, you must not allow
any programs in ROM to execute. That means you must write your
own FCE! The one thing you can do with these two ports is to
cend a BREAK character using the COMMAND Register. 1In addition,
vycu can disable the interrupt acknowledge function by setting
BIT 3 off. This is done only if you have another piece of
hardware which can acknowledge an interrupt service request (such

as an ANALOG to.DIGITAL converter). Just turning it off will
give unkmnown results.

_ 87 -

Now lets look at the INTERVAL Timers in the 5501. These
timers are very simple to use. You load a number (0 to 255) into
them then every b4 microseconds one is subtracted from that
number. When the number reaches zero, the timer generates an
interrupt. If you load a zero, you will get an interrupt without
any delays.

One useful function of these timers is as watchdogs.

Let’s say you have an input that must occur every 10 milliseconds
and you want to know if it doesn’t. Easy, set a timer for 175
counts (11 ms). Each time you get an input, restart the timer by
loading 175 into it. VYou will never get a timer interrupt. If
the inputs should stop, you will get an interrupt when the timer
reaches zero (your input is 1 ms late). Most of the timers in
the 5501 are dedicated to your CC-11. There are very few things
vou can do with all of them.

TIMER #1

This timer is not used in the CC-II, but its interrupt
vector is used. If you start the timer, you will be reset to
CRT mode when it times out. This timer makes a good watchdog
timer and is a nice way to kill a runaway program. It will
always bring you back to the CRT mode.

TIMEP #2

This is the famous user timer. Its vector address, which
contains a JMP to location 33224, is 8. VYou must put a jump to
vour service routine in location 33224. Be sure to save all
registers on entry and restore all registers on return. You must
3lso restart timer #2 if you want it to run again.

TIMER #3

This timer is used to "scan" the keyboard. Each time it
times out, the keyboard is checked to see if any key is depessed.
Changing this timer will only change the scan of the keyboard for
ore time interval since the scan routine will restart the timer
with a fixed time constant.

TIMER #¢&

This timer is used by the nonexistant BELL. It controls
the length of time that the bell sounds if you install one and

fix the V6.78 ROM bug. The V8.79 bug was fixed and you would get
a "beep" if you had a bell.

TIMER #5

This timer is not used in the CC-II, but its interrupt
vector is used. If you do start it, you will end up in an
"executive loop"” on time out. This is a do-nothing loop which
waits for anything else to happen. This loop is used by the CRT
mode while it 1s waiting for some key to be typed on the KEYBOARD.

- 88 -

The parallel output port is 8 bits wide and serves two
functions in the CC-11. When the disk drives are not being used,
the port is used to address the keyboard. During disk drive use,
the port controls the stepper motor, the read/write function and
the drive select.

Whenever a disk drive is selected, the 5501 is a very
busy chip. First, it controls the positioning of the read/write
head in the floppy disk drive. It also selects the proper drive,
places it in the read or write mode and transfers data for the
floppy disk using the Serial Transmitter/Receiver. While this is
gaing on, all interrupts except the Serial Character Sent or
Serial Character Received are masked OFF. The keyboard is turned
back on, the Mask bits are set ON and the modem is turned on when
the disk access function is completed. The parallel input port
is not used during disk access.

When the disks drives are off, the lower 4 bits of the
parallel output port are used as a binary number to address the
keyboard. There are 16 scan lines in the keyboard and a decode
chip in the keyboard converts this address into a signal which
will celect a single line of keys. After setting the output port
to address a line of keys, the parallel input port is tested.

All 8 inputs are used, and the code read from the port will
indicate which key(s) is(are) depressed. In addition, BIT 7 of
the parallel output port may be set ON and the high 4 bits of the
parallel input port will indicate the state of the special keys.

The following chart details the Parallel Qutput Port.
The bit assignments are good for both the 3-phase (V6.78) and
4-phase (VB.79) disk drives. The hardware in the drive corrects
for the difference in stepper motors.

The only way you as a programmer can control or scan for
a unique key 1is to stop Timer #3. This can be done only by
turning interrupts OFF. The following BASIC program demonstrates
this cperation for those of you who would like to try it. VYou
must remember that while scanning the keyboard ALL interrupt
driven events are disabled (no disk acess, no REAL TIME CLOCK,
rcthirg). There is a better way to get input from the Keyboard.
This is done by changing the KEYBOARD Flag value at location
33247. By doing this, you get to leave interrupts on and still
select and sort which keys you want to use. See the Advanced
Praogrammers Manual for more details on the use of the I/0 Flags.
The binary numbers for input and output to the keyboard are
tatulated next. Notice that the Binary Code is not ASCII and
that the Keyboard Address and Code are inverted. Another good
reason to find some other way to read the keyboard.

- 89 -

™T™S 5501

Parallel Output Port

S8

Function

Bit 4 an

Bit 4 or

Bit &4 an

Bit 4 or

Bit 4 an

Bit 4 or

Bit 4 an

Bit 4 or

Bit 4 an
Bit 4 ==

Bit 4 =3

NOT USED

Bit & an

Bit 4 or

d 5 =0

Keyboard address Bit O

5 => 1

Stepper Motor Phase Bit O

d5 =>0

Keyboard address Bit 1

5 =>1

Stepper Motor Phase Bit 1

d5 =>20

Keyboard address Bit 2

5 => 1

Stepper Motor Phase Bit 2

dS =>0

Keyboard address Bit 3

5 => 1

0
1

d 5 =>0

> Read from disk
> Write to disk

Keyboard enable and Modem enable

1 and Bit 5§

=> 0

Select internal drive (CDO)

0 and Bit 5

=> 1

Select external drive (CD1)

d 5 =>0

D => Normal Keyboard operation
1 => Test Keyboard for SHIFT,

REPEAT
5 => 1
NOT USED

or CAPS LOCK key

CONTROL ,

10

19
20

93
100
109
110

139
200

199
210

;-,P.D
—

299
200

399
400

409
410

™S 5501

Keyboard Scan Program

INPUT "INPUT KEYBOARD ADDRESS >";N

REM Set for special keys (SHIFT, CONTROL, - - =)
IF N> 15 THEN N= 128

REM Mask OFF all interrputs

outr 8,0

REM Reset TMS 5501

oUT 4,1

REM Load Keyboard Address into output port

ouT 7,N

REM Wait a little before reading keyboard
FOR I= 1 TO 41000:NEXT I

REM Read Keycode from input port
A= INP (1)

REM Report results if not a special key
IF A< > 255 AND N< 16 THEN 300

IF N< 16 THEN 200

REM Enable TMS 5501
ouT 4,8

REM Mask ON all interrupts except serial transmitter
ouUT 8,223

REM Start TIMER #3 to scan keyboard
oUT 11,128

REM Print result of input
PRINT "KEYCODE > ";A

REM Start the porgram over
GQTO 10

15

14

13

12

11

28

™T™Ss S5S501

Keyboard Codes

Binary Code
Input Port

254 253 2541 247 239 223 191 127"
[

I O a P FO BREAK BLACK SPACE
|

I A @ F1 INSERT RED

| CHAR

|

|2 B R F2 . DELETE GREEN

| LINE

[

I 3 c S F3 INSERT YELLOW

| LINE

|

| 4 D T F4 DELETE BLUE

[CHAR

|

I 5 E U FS AUTO MAGENTA

|

I 6 F V F&6 CYAN

!

|7 c W F7 WHITE

|

I 8 H X F8 HOME

[

I 9 1 Y F9 TAB CURSOR

[RIGHT

|

| s J Z F10 CURSOR CURSOR X
[DOWN LEFT

|

| K L F11 ERASE ESC +
| LINE

|

I < L \ F12 ERASE CURSOR

[PAGE up ‘

|

| - M 1 F13 CR FG ON =
1

o> N ~ F14 A7 ON BG ON

|

1/ 0 . F15 A7/BL BLINK

| OFF ON

|

I CNTL SHIFT RPT CAPS
| LOCK

- g2 -

The last function in the TMS 5501 which we need to cover
is the Serial Transmiter/Receiver. When you want to send a byte
of information out the serial port you OUT it to the transmitter.
It will add a start bit to the beginning of your byte to let the
remote receiver know that a byte is coming. Next it will send
the zero bit, the one bit and so on until it gets to the seven
bit. At this point the transmitter will add one or two stop bits
to your byte to let the remote receiver know that the end of the
byte has been reached. Most receivers require only one stop bit,
however, it is best to check to see what is required. If you
can’t find out, use two stop bits to be safe.

The receiver works in a similar manner except in reverse.
It is always looking for a start bit. When received, the zero
bit is set up, the one bit is set and so on until the seven bit
is set. The receiver now checks to see if a stop bit is received.
If at least one is not received, this 1s called a framing error.
Once a full byte is received, the Status Register is set to
indicate that it is available. You can get the byte by doing an
INP from the serial port.

There are four 1/0 ports which are used to control the
serial port. The first is the BAUD or bit rate register. It is
used to set the rate at which bits are sent or received. You can
not have different rates for the transmitter and receiver. The
chart below indicates the bit assignments for the BAUD Rate
Register. If you use this register directly, be sure to also set
location 33250 (CRATE). The best way to use this register is to
use PLOT 27,18,R command in BASIC where R is the bit number plus

one for the rate you want. BASIC will take care of updating
location 33250.

The Status Register will indicate the "status" of the
serial port and the interrupts. 1Its bit functions are shown
in the following chart. Each bit will indicate something about
the status of the 5501 and is generally used to find out what is
gecing on within the chip itself.

The last two ports are the actual serial transmitter or
receiver. In normal operation, the following steps would be used.

1) Set the BAUD rate

2) Get a byte to send

3) Test the status to see if the Transmitter
Buffer is empty (transmitter is not busy)

4) OUT the byte to the transmitter

5) Test the status to see if the Receiver
Buffer is full (byte waiting for pick up)

6) INP the byte from the receiver

7) Test the status for any error conditions

8) Repeat steps 2) to 7) as necessary

Notice that Modem control (Handshake) and parity are not features
of the transmitter or receiver. If you need these, they must be
taken care of in software or by other hardware means.

- 93 _

™S 5501

BAUD Rate Register

} | | | | | | | |
! BIT | BIT | BIT t BIT | BIT | BIT t+ BIT | BIT |
) 7 | 6 | 5 | 4 I3 1 2 | 1 I 0 |
| ! I | | | i I |
Bit
Number Function
0 Set for 110 BAUD
1 Set for 150 BAUD
2 Set for 300 BAUD
3 Set for 1200 BAUD
4 Set for 2400 BPAUD
5 Set for 4800 BAUD
b Set for 9600 BAUD
7 Number of STOP BITS transmitted
"D => two
1 => one

In general, 110 BAUD is assumed to be with 2 STOP BITS.
This means that 11 bits are transmitted for every byte. If a
byte represents one character, then it is correct to say that
110 BAUD is equivalent to 10 characters per second. At 110 BAUD,
the maximum efficency of the serial port is 73% (8 bits received
for every 11 sent). The other rates assume only 1 STOP BIT. The
maximum efficency of these rates is 80%Z. 1f you use 2 STOP BITS,
the only thing you are changing is the serial port through put.
This may have no effect on overall system performance.

- 94 -

T™TMS 5501

Status Register

| I | | [I I | I
| BIT | BIT | BIT | BIT | BIT | BIT I BIT | BIT |
17 1 & 1 5 1 4 V 3 Vv 2 1 1 1 0 |
] I 1 I I I I I I
Bit
Number Function
0 Framing Error
When this bit is ON, it indicates that the last
character did not have a staop bit after bit
seven of the byte was received. This error is
normally caused by unlike BAUD rates for the
receiver and remote transmitter.
1 Overrun Error
When this bit is ON, it indicates that a second
character was received before the first one was
picked up from the serial receiver buffer. This
will happen when your interrupt service routine
is too long. Try slowing down the BAUD rate to
correct the problem.
2 Serial Data Received
When this bit is ON, it indicates that no data is
being received. This condition would indicate .
that a BREAK is being detected.
3 Receiver Buffer Full
When this bit is ON, it indicates that a byte has
been received by the serial receiver and that it
is available for pick up.
4 Transmitter Buffer Empty
When this bit is ON, it indicates that the serial
transmitter buffer is empty and ready to receive
another character for transmission.
5 Interrupt Pending
When this bit is ON, it indicates that one of the
interrupts has occured and that the corresponding
interrupt Mask bit was ON. This status is used
when interrupts are disabled.
6 Full Bit Detected
. This is a test bit.
7 Start Bit Detected

This is a test bit.
- g5 -

As an example of using the serial transmitter, let’s look
at the following BASIC program.

10 REM Erase Page,A7 O0ff (2 SB),110 BAUD
11 PLOT 12,15,27,18,1

100 REM Send all printable AS5CI1 characters to
101 REM the serial port then print them on the CRT
102 FOR 1=32 TO 128

110 REM Test bit 4 to be sure buffer is empty
111 WAIT 3,16,16

120 REM Send to serial port
121 OUT 6,1

130 REM Print the character on the CRT
131 PRINT CHR$(I)

140 NEXT I

Statement 10 sets the BAUD rate and the number of stop
bits to be used by the serial transmitter. Statement 100 sets
up a locp to print all ASCII characters. Statement 110 tests
port 3, bit 4. This is done using the WAIT statement. This
ztatement takes the INP value of port 3 (the first argument),
exclusive OR’s it with 16 (the last argument), and then AND’s it
with 16 (the second argument). If the result of this test 1is
zero, control will pass to statement 120 otherwise stetement 110
is executed again. This will cause the program to "loop" until
the transmitter buffer is empty. Statement 120 sends I to the
serial port. Statement 130 prints the value of 1 on the CRT.
Statement 140 increments I and the program will run until I
equals 129.

This is a very simple program that is very effective in
demonstrating the use of the serial port. Set your printer to
110 BAUD and run the program. Notice the output is missing no
characters. Now delete statement 111. See what happens? The
transmitter buffer is being overwritten before a character can

be sent. This condition would be even worse if you were writing
your programs in ASSEMBLER.

One port which I have not covered is the Interrupt Device
Address. This port is of no use to the CC-II. This is used when
interrupts are turned OFF and you are testing Bit 5 in the Status
Register. In this case, doing an INP from port 2 will cause your
program to pass control to the Vector Address for the event which
caused Bit 5 to be set in the first place. Since we are working
with a ROM based csystem, this is a useless function.

- 96 -

Summary:

Port 0 Serial Receiver
Characters may be received without having to
modify anything. Bit 3 of Port 3 will tell
you if a character is waiting. See page 12
for details.

Port 1 Parallel Data Input
No use to programmers

+

* Port Interupt Device Address

No use to programmers

Port 3 Status Register
Lets you know what is going on. O0f particular
interest are Bit‘’s 0,1,2,3,4. See Page 14 for
details on each Bit

Port 4 Command Register :
Use Bit 1 to send a Break. See Page 4 for
details.

Port 5 Baud Rate Register
No real use. Use BASIC PLOT 27,18,R command
to set this register.

* Port 6 Serial Transmitter
Characters may be sent without having to
modify anything. Bit 4 of Port 3 will tell
you if a character may be sent. See page 12
for details.

Port 7 Parallel Data Out
No use to programmers

* Port 8 Interrupt Mask Register
No use to programmers

Port 9 Interval Timer #1
Not used by CC-1II. You can use it to return
to CRT mode. See page 7 for details

Port 10 Interval Timer #2
This is your timer. See page 7 for details.

* Port 11 Interval Timer #3
Used to scan keyboard. Not useable by you.

* Port 12 Interval Timer #4
Not usable in CC-1I1. Bell timer.

¥ Port 13 Interval Timer #5
Not used by CC-I1. Will cause you to return
to "do-nothing" loop if you use it.

- 97 -

References:

Programming Manual 999222
Intelligent Systems Corp.

Advanced Programming Manual
D2 Engineering

Maintemance Manual 999208
Intelligent Systems Corp.

Specification Sheet TMS-5501
Texas Instruments lnc.

Application Report - TMS 5501 CA-185A
Texas Instruments Inc.

- 98 -

