COMPUCOLOR II
ASSEMBLER OPERATING

MANUAL

Copyright (c) 1978 by Compucolor Corporation

999214 Rev., 1

Purpose:

Testing:

Disk access:

COMPUCOLOR ASSEMBLER OPERATING MANUAL

The purpose of the assembler is to convert source
assembly language text into 8080 object code. It is
also used to find syntactical errors.It is implemented
from FCS:

FCS>RUN ASM

FCS will load the assembler and then will respond with
a >, to this you will type the following:

>ASM <file specifier> TO <drived>:

If the user wishes an error only listing a /E should

follow the file specifier. The file specifier is

assumed to be on the default device and an SRC type file
however the file specifier may be <drive:name.type;version>
The output file will be type .LDA with the same version
number as the source. An error will occur if an attempt

is made to reassemble the same version. If the user types

>ASM <file specifier>
no output file will be generated.

Two sample programs are provided. The first being named
SAMPLE. This program is used to show the user how to
access a disk file. It copies to contents of a file to
another file with the type of .DOC. The second is the
source for the program PRINT provided with the EDITOR.
It is used to print a .SRC file. The program will not
work on a BAS file. Print may be temporarily stopped
by pressing the break key and restarted by pressing

the return key. It may be halted by pressing the escape
key.

Other than the two programs mentioned above, there are
many other useful file acesss routines which are described
on the pages following.

General utility routines:

Several useful ulitity routines are found in ROM and
may be of use to the user.

BASOUT 0033H

OSTR

MOVDH

MOVHD
CMPHD
CMPDH
SUBHD
ADHLA
ANHD

NEGH

MULHD

DIVHD

XORHD
RXSER

TXSER

33FL4H

343BH

3444H
344DH
3453H
3459H
3518H
351DH
3524H
3562H

3581H

3533H
0020H

0028H

KEYTEST 0024H

;Sends 1 byte to the screen

;from A register

;Sends string ending with 239 (decimal)
;to the screen. HL points to string.
;OSTR does not do a CRLF

;Moves string of length B from location
sHL: to DE

;Same as MOVDH except DE to HL

;Compares registers HL with DE

;Compares registers DE with HL

;Subtracts DE from HL

sAdds A to HL

sAnds A to HL

;Negates HL

sMultiplies HL by DE high word out in

sDE low in HL

;Divides DE by HL quotient in HL remainder
sin DE

;Exclusive ors HL with DE

;Reads a character from the serial line
;READY (81FF)=50H if no character
;Transmits a character to the serial line
;Returns with the Z bit if a character is
;in KBCHA (81FE)

A000
368B
368D
368E

368E

8082
8083
8084
808A
808D
808E
8090
8092
8093
8095
8097
8098
8099
809A
809C
809E
809F
80 A0
8042
80 A4
80 A6
8048

8048

80F0
80F2

(368B)
(0002)
(0001)
(0000)

(0001)

(0001)

(0001)
(0002)

(8042)
(8082)

(0001)
(0001)
(0006)
(0003)
(0001)
(0002)
(0002)
(0001)
(0002)
(0002)
(0001)
(0001)
(0001)
(0002)
(0002)
(0001)
(0001)
(0002)
(0002)
(0002)
(0002)

(80F0)

(0002)
(0001)

IDEV:
IUNT:
HDVCT:

ORG 368BH

DS 2 s INITIAL DEFAULT DEVICE
DS 1 s INITIAL DEFAULT UNIT

DS 0 ; START OF HANDLER VECTORS

; OPEN TYPE CODE BIT DEFINITIONS :

FNEW

EQU 01H ;0: OLD FILE, 1: NEW FILE

; DIRECTORY ENTRY TYPE CODE BIT DEFINITIONS :

TFREE

TPROT
TFILE

EQU 01H s"FREE SPACE"™ ENTRY - BYTE VALUE
EQU 01H ; PROTECTED FILE
EQU 02H s PERMANENT FILE ENTRY

; RAM ALLOCATION :

STACK

ZFPB:
ZF ATR:
ZFNAM:
ZFTYP:
ZFVER:
ZF SBK:
ZFSIZ:
ZFLBC:
ZFLAD:
ZFSAD:

ZFDBK:
ZFDEN:
ZFAUX:
ZFHAN:
ZFFCN:
ZFDRV:
ZFBLK:
ZFBUF :
ZFXBC:
ZF PTR:
ZF PBE:

DFDV:
DFUN:

EQU 8042H ;INITIAL SP VALUE
ORG 8082H

DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
; END OF AUX. FPB, END OF BASIC INPUT BUFFER

MOV mBRNN === 2WOoN =

ORG 80F0H

DS 2 ;DEFAULT DEVICE (ASCII)
DS 1 ;DEFAULT UNIT (ASCII)

80F3
80F5
80F6

80FT7
80F8
80F9
80FF
8102
8103
8105
8107
8108
810A
810C
810D
810E
810F

INES
8111
8113
8114
8115
8117
8119
811B
811D

811D
811D
811E
811F
819D

819D
819F
8140
8141
81A3
8145
81AT
81AB
81AD

(0002)
(0001)
(0001)

(0001)
(0001)
(0006)
(0003)
(0001)
(0002)
(0002)
(0001)
(0002)
(0002)
(0001)
(0001)
(0001)
(0002)

(0002)
(0001)
(0001)
(0002)
(0002)
(0002)
(0002)

(0001)
(0001)
(00TE)

(0002)
(0001)
(0001)
(0002)
(0002)
(0002)
(o004)
(0002)
78

(2645)
(26ET)
(2coc)
(2c86)
(2c89)

FPBP:
OCODE:
OVERS:

; SYSTEM FILE PARAMETER

FPB:

FATR:
FNAM:
FTYP:
FVER:
FSBK:
FSIZ:
FLBC:
FLAD:
FSAD:

FDBK:
FDEN:
FAUX:

FHAN:
FFCN:
FDRV:
FBLK:
FBUF:
FXBC:
FPTR:
FPBE:

DBF:
DBLK:
MDBLK:

DBFE:

; THE FOLLOWING
; USED BY CLOSE

XFHAN:
XFFCN:
XFDRV:
XFBLK:
XFBUF :
XFXBC:

TMP1:
EMESS:

RESET
CKEND
GETTO
OPENX
OPENY

DS
DS
DS

DS
DS
DS
DS
DS
DS

DS

DS
DS
DS
DS
DS
DS
DS

DS
DS
bS
DS
DS
bs
bs

DS
DS
DS

DS
DS
DS
DS
DS
DS
DS
DS
Mov

EQU
EQU
EQU
EQU
EQU

2
1
1

N =2 =2 a NN 2NN =2WONA

MO ==

1
1
126

PAGE 02

;FILE PARAMETER BLOCK POINTER
;sOPEN TYPE CODE
s ORIGINAL VERSION

BLOCK ALLOCATION :

;OPEN TYPE CODE

; ATTRIBUTE BYTE

;FILE NAME

;yFILE TYPE

;FILE VERSION NUMBER

; STARTING BLOCK NUMBER

; NUMBER OF BLOCKS

;BYTE COUNT OF LAST BLOCK
;LOAD ADR. FOR "IMAGE" FILE

; START ADR. FOR "IMAGE" FILE

; SPARE

;DIRECTORY BLOCK NUMBER
;yDIRECTORY ENTRY NUMBER

;NEW FILE CLOSING SIZE, OR ...
3... AUX. BYTE COUNT FOR SEQUENTIAL ROUT

; HANDLER ADDRESS

; HANDLER FUNCTION CODE

;DRIVE NUMBER

;BLOCK NO. FOR TRANSFER

;BUFFER POINTER FOR TRANSFER

sBYTE COUNT FOR TRANSFER

;BBUF PNTR FOR SEQUENTIAL ROUTINES
;END OF SYSTEM FPB

sDIR BLOCK BUFFER

; "THIS™ DIR BLOCK NUMBER

;MAX. DIR BLOCK NUMBER

s REMAINDER OF 128. BYTE DIR BLOCK BUFFER
sEND OF DIR BLOCK BUFFER

18. BYTES ARE THE DIR BLOCK BUFFER EXTENSION
WHEN THE "FREE" ENTRY MOVES TO THE NEXT BLOCK:

N \VEE g \C B\ VIV R \V]

@

26A5H
26ETH
2COCH
2C86H
2C89H

; AUX. HANDLER ADDRESS

; AUX. HANDLER FUNCTION CODE

; AUX. DRIVE NUMBER

; AUX. BLOCK NUMBER

; AUX. BUFFER POINTER

; AUX. BYTE COUNT

; ¥%® USED BY COPY ###

; USED BY COPY & MAYBE OTHERS ?
3 COPY STATUS CODE

; DIRECTORY ACCESS ROUTINES :

(2D60)

(2D86)

(2DAB)

(2EA3)

PAGE 03

+

OPDIR - "OPEN"™ DIRECTORY FOR A SCAN.

INPUTS - D&E: PNTR TO FHAN IN FPB
OUTPUTS - <C> : DIRECTORY READ ERROR,
OR NO VOLUME ENTRY

We WO WE Me Ve Ve We We Ve we e we

<NC> : NO ERRORS AND :
A : ATR BYTE OF THIS ENTRY (=41H)
B : INTERNALLY MAINTAINED ENTRY COUNTER
D&E : PNTR TO FHAN IN FPB (UNCHANGED)
H&L : PNTR TO "VOLUME" ENTRY IN DIRECTORY
OPDIR EQU 2D60H
y+
; GNDE - GET NEXT DIRECTORY ENTRY
’
; INPUTS - B : INTERNALLY MAINTAINED ENTRY COUNTER
; D&E : PNTR TO FHAN IN FPB
; H&L : PNTR TO CURRENT DIRECTORY ENTRY
; OUTPUTS - <C> : DIRECTORY READ ERROR
; <Z> : END OF DIRECTORY
; <NC,NZ> : NO ERRORS AND :
; A : ATTRIBUTE BYTE OF THIS ENTRY
; B : UPDATED, MUST BE PRESERVED
; D&E : PNTR TO FHAN IN FPB (UNCHANGED)
; H&L : PNTR TO NEXT DIRECTORY ENTRY
.

GNDE EQU 2D86H

7+ :

3 OPEN - OPEN A FILE FOR INPUT OR OUTPUT
’

OPEN EQU 2DABH

READ - READ FILE. CURRENTLY ONLY "IMAGE"
- TYPE FILES ARE SUPPORTED.
"OPEN" MUST BE CALLED BEFORE CALLING "READ".

INPUTS -~ B&C: MAX. ALLOWABLE BYTE COUNT
D&E: IF ZERO, THEN FILE WILL BE READ IN TO
MEMORY AT LOAD ADDRESS SPECIFIED IN
DIRECTORY. IF NON-ZERO, THEN D&E IS
USED AS THE LOAD ADDRESS.
H&L: PNTR TO FPB.

We WE We Ve we We We Ve Me NI we wo

READ EQU 2EA3H

L

WRITE - FILE WRITE. CURRENTLY ONLY "IMAGE" TYPE
FILES ARE SUPPORTED. "OPEN" MUST BE
CALLED BEFORE CALLING "WRITE".

we we we we we

(2ECC)
(2EF8)

(2EFB)

(2F26)

(2FDE)
(3077)

PAGE 04

WRITE EQU 2ECCH
WR EQU 2EF8H
RD EQU 2EFBH

CLOSE -~ FILE CLOSE ROUTINE.

OTHERWISE: GOT VALID DEVICE

CLOSE EQU 2F26H

y+

; PDV - PARSE DEVICE NAME

; <C> : INVALID DEVICE

3y <Z> : NO DEVICE, DEFAULT USED
’

’

PDV EQU 2FDEH
PFSPC EQU 3077H

WO WO WE We WE WE ME WE WM WO WE Ve WE WE WO Ve WS WE WE WP WE Ve Ve We Ve Ve WO W W we We we We

+

THIS IS AN INITIAL SET OF ROUTINES TO FACILITATE FILE
OPERATIONS WITH THE FCS SYSTEM. ROUTINES ARE PROVIDED
FOR SEQUENTIAL BYTE ACCESS, SEQUENTIAL RECORD ACCESS,
AND BLOCK ACCESS.

CERTAIN PARAMETERS IN THE FILE PARAMETER BLOCK (FPB)
MUST BE SET UP BEFORE USING ANY OF THESE ROUTINES. THESE
PARAMETERS SHOULD BE SET UP AFTER CALLING 'OPEN' TO OPEN
THE FILE, BUT BEFORE ANY CALL TO ANY OF THESE ACCESS
ROUTINES.

THE PARAMETERS ARE :

FBUF - SHOULD BE SET TO THE ADDRESS OF THE USER-PROVIDED
BLOCK BUFFER.

FXBC - FOR SEQUENTIAL ACCESS, SHOULD BE SET TO THE SIZE
(NUMBER OF BYTES) OF THE USER-PROVIDED BLOCK BUFFER.
THE SIZE SHOULD BE A MULTIPLE OF THE SYSTEM STANDARD
BLOCK SIZE, 128 DECIMAL.
FOR DIRECT BLOCK ACCESS, SHOULD BE SET TO THE NUMBER
OF BYTES TO BE TRANSFERRED.

WHEN USING SEQUENTIAL BYTE OR RECORD ACCESS, THESE
PARAMETERS SHOULD NOT BE CHANGED DURING THE I/O0 OPERATIONS.
WHEN USING DIRECT BLOCK ACCESS, THESE PARAMETERS MAY

BE SET TO THE DESIRED VALUES FOR THE TRANSFER, PRIOR TO
EACH CALL TO RBLK, RBLKI, WBLK, OR WBLKI. THEY'RE VALUES

ARE PRESERVED BY THE BLOCK I/O ROUTINES, SO THEY
DO NOT NEED TO BE RESET PRIOR TO EACH CALL UNLESS
YOU SPECIFICALLY WANT TO CHANGE EITHER THE LOCATION
OR THE SIZE OF THE BUFFER.

(30C6)

(30ET7)

PAGE 05

SEE THE INDIVIDUAL DESCRIPTION FOR DETAILS ON EACH
OF THE FOLLOWING ACCESS ROUTINES.

“we we we we

+
%%#% RWSEQI ¥*** . "REWIND SEQUENTIAL INPUT" ROUTINE

RWSEQI IS USED TO "REWIND" A SEQUENTIAL INPUT FILE.

RWSEQI MUST BE CALLED BEFORE THE FIRST CALL TO ANY
OF THE SEQUENTIAL BYTE OR RECORD INPUT ROUTINES !

INPUTS: HL => FPB
QUTPUTS: A - LOST
BC,DE - UNCHANGED
HL => FPB

STATUS: NONE

We Ve Ve We WME Ve We Ve We W We Ve We we we we

RWSEQI EQU 30C6H

+

%% TNSEQO *#** "INTITIALIZE SEQUENTIAL OUTPUT"™ ROUTINE

INSEQO IS USED TO INITIALIZE A NEWLY CREATED OPEN FILE
FOR SEQUENTIAL BYTE OR RECORD OUTPUT OPERATIONS.

INSEQO MUST BE CALLED BEFORE THE FIRST CALL TO ANY OF
THE SEQUENTIAL BYTE OR RECORD OUTPUT ROUTINES !

INPUTS: HL => FPB
OUTPUTS: A - LOST
BC,DE -~ UNCHANGED
HL => FPB

STATUS: NONE

WE WE Ve WE W WO WE Ve Ve Ve Ve Ve Ve Ve We ws we

INSEQO EQU 30ETH

+
#%#% CLSEQO *## nC],0SE SEQUENTIAL OUTPUT"™ ROUTINE

H

)

’

; CLSEQO IS USED TO CLOSE A NEWLY CREATED SEQUENTIAL

; OUTPUT FILE. THE REMAINING UNWRITTEN PART OF THE BLOCK
; BUFFER IS WRITTEN OUT, IF ANY, AND THE FINAL FILE SIZE
; IS CALCULATED AND APPROPRIATE INFORMATION UPDATED IN

; THE FPB. THEN 'CLOSE' IS CALLED TO ENTER THE FILE INTO
7y THE DIRECTORY.

’

’

’

’

INPUTS: HL => FPB

OUTPUTS: A,BC,DE - LOST

PAGE 06
HL => FPB IF NO ERRORS, ELSE HL LOST

STATUS: <NC> - NO ERRORS, B=0
<C> =~ FILE WRITE ERROR OR DIRECTORY WRITE ERROR,
WITH B = SYSTEM ERROR CODE

we we we we we we

(3136) CLSEQO EQU 3136H

H
¥#% RBLK *##% WREAD BLOCK" ROUTINE
%¥#% YBLK *#% "YRITE BLOCK"™ ROUTINE

RBLK AND WBLK ARE USED TO READ/WRITE TO/FROM A
SPECIFIED VIRTUAL BLOCK NUMBER IN A FILE.

INPUTS: HL => FPB
FBLK = DESIRED STARTING VIRTUAL BLOCK NUMBER
FBUF => BLOCK BUFFER
FXBC = NUMBER OF BYTES TO READ/WRITE

OUTPUTS: A - LOST
BC,DE - UNCHANGED
HL => FPB
FBLK,FBUF ,FXBC - UNCHANGED

STATUS: <NC><Z> - NO ERRORS:
FAUX= NUMBER OF BYTES TRANSFERRED = (FXBC).
<NC><{NZ> - TRANSFER TRUNCATED BY END-OF-FILE
FAUX= NUMBER OF BYTES TRANSFERRED < (FXBC).
<C><Z> - VIRTUAL BLOCK NOT WITHIN FILE:
FAUX UNCHANGED.
<C><NZ><M> - READ/WRITE ERROR:
FAUX = NUMBER OF BYTES ATTEMPTED.

WO W Ve ME W M WS Ve Ve W W Ne Ve We NE Ve VI WE Ve WE WE We We we we

(317F) WBLK EQU 317FH
(3182) RBLK EQU 3182H

+

¥%#% RBLKI *#% "READ BLOCK & INCREMENT" ROUTINE
%#% WYBLKI *#% nyRITE BLOCK & INCREMENT" ROUTINE

RBLKI AND WBLKI ARE IDENTICAL IN FUNCTION TO

RBLK AND WBLK EXCEPT: IF NO ERRORS OCCURRED, THEN
FBLK IS SET TO THE NEXT VIRTUAL BLOCK NUMBER

FOR SEQUENTIAL ACCESS. IF ANY ERRORS OCCURRED,
THEN FBLK IS UNCHANGED.

“we We We We We We we we W we

(31F6) WBLKI EQU 31F6H
(31F9) RBLKI EQU 31F9H

+
%#% GTBYT #*# "GET BYTE" ROUTINE

GTBYT IS USED TO READ SEQUENTIAL BYTES FROM AN OPEN
FILE.

.
b
.
?
.
b
.
b
H

PAGE 07

RWSEQI MUST HAVE BEEN CALLED BEFORE THE FIRST CALL
TO GTBYT !

INPUTS: HL => FPB

OUTPUTS: A = THE BYTE, IF NO ERRORS
BC,DE - UNCHANGED
HL => FPB

STATUS: <NC> - NO ERRORS, A= THE BYTE
<C><Z> ~ END OF FILE
<{C><NZ><M> - READ ERROR

() we s wo we we we we we Wwe wo s o we we

(322C) TBYT EQU 322CH

+

%% PTBYT ### npyT BYTE"™ ROUTINE
PTBYT IS USED TO WRITE SEQUENTIAL BYTES TO AN OPEN FILE.

INSEQO MUST BE CALLED AFTER OPEN AND BEFORE THE FIRST
CALL TO PTBYT !

INPUTS: A =

TH
HL =>

E BYTE

FPB

OUTPUTS: A = THE BYTE
BC,DE - UNCHANGED
HL => FPB

STATUS: <NC> - NO ERRORS
<C><Z> - FILE FULL, BYTE NOT WRITTEN
<C><{NZ><M> - WRITE ERROR

“s We WE WE WO We WO WE Ve W WE Ve W WO WE Ve W we e

(32u4) PTBYT EQU 324AH

+

#%®% GAREC ##® nGET ASCII RECORD"™ ROUTINE

GAREC IS USED TO READ SEQUENTIAL RECORDS FROM AN
ASCII FILE. A RECORD IS A STRING OF ASCII CHARACTERS
TERMINATED BY EITHER A LINE FEED (10.) OR A

FORM FEED (12.) .

RWSEQI MUST HAVE BEEN CALLED BEFORE THE FIRST CALL
TO GAREC !

INPUTS: HL => FPB
BC => RECORD BUFFER
DE = RECORD BUFFER LENGTH (BYTES)

OUTPUTS: HL => FPB
BC => PAST LAST BYTE STORED
DE = NUMBER OF BYTES READ
A - LOST

WO W Ve Ve WE WS W WE Ve Ve We We We W e Ve we we e

LL

(3257)

(327B)

(3285)
81AE (0000)

PAGE 08

STATUS: <NC> - NO ERRORS
<C><Z> - END OF FILE
<C><NZ><M> - READ ERROR
<C><NZ><P> - BUFFER WAS FILLED, BUT A VALID
TERMINATOR WAS NOT SEEN. THE NEXT
CALL TO GAREC WILL START WITH THE
NEXT SEQUENTIAL BYTE.

We We We we we we we we we

GAREC EQU 325T7H
y+
; %% DYREC ¥#% nwpyT VARIABLE LENGTH RECORD"™ ROUTINE

PVREC IS USED TO PUT A VARIABLE LENGTH RECORD INTO A
SYSTEM STANDARD 'VARIABLE LENGTH RECORD, SEQUENTIAL' FILE.
WITHIN THE FILE, EACH RECORD CONSISTS OF A TWO BYTE BYTE
COUNT, LOW BYTE FIRST, FOLLOWED BY THAT NUMBER OF DATA
BYTES. -

INPUTS: HL => FPB

BC => RECORD BUFFER

DE = RECORD LENGTH (BYTES)
OUTPUTS: HL => FPB
BC => PAST LAST BYTE IN RECORD BUFFER
DE = 0 IF NO ERRORS

A - LOST

STATUS: <NC> - NO ERRORS
<C><Z> - TRANSFER TERMINATED BY END OF FILE - FILE FU

We WS Ve W Ve Ve W W Ve Ve WE Ve Ve Ve We We Ve we

H <C><NZ><M> - WRITE ERROR

PVREC EQU 327BH

+

%#% PTREC *#% "pPyT UNFORMATTED RECORD" ROUTINE

PTREC IS USED TO PUT AN 'UNFORMATTED' RECORD INTO A
SEQUENTIAL FILE. OPERATION OF PTREC IS IDENTICAL TO
PVREC, ABOVE, EXCEPT THAT THE TWO BYTE BYTE COUNT
IS NOT WRITTEN INTO THE FILE.

we we we we we we we we

PTREC EQU 3285H
END

TERMS

Address

Bit

Byte
Instruction

Object Program

Program -

Source Program

System Program
User Program
Word

nnnnB

nnnnD

nnnnO

nnnnQ

nnnnH

OIOIIII rp

DESCRIPTION

A 16-bit number assigned to a memory location corresponding to its sequen-
tial position.

The smallest unit of information which can be represented. {A bit may be in
one of two states, represented by the binary digits 0 or 1).

A group of 8 contiguous bits occupying a single memory location.

The smallest single operation that the computer can be directed to execute.

A program which can be loaded directly into the computer’s memory and
which requires no alteration before execution. An object program is usually
on paper tape, and is produced by assembling (or compiling) a source pro-
gram. Instructions are represented by binary machine code in an object

program,

A sequence of instructions which, taken as a group, allow the computer to
accomplish a desired task.

A program which is readable by a programmer but which must be transformed
into object program format before it can be loaded into the computer and
executed. Instructions in an assembly language source program are represented
by their assembly language mnemonic.

A program written to help in the process of creating user programs.

A program written by the user to make the computer perform any desired task.
A group of 16 contiguous bits occupying two successive memory locations.
nnnn represents a number in binary format.

nnnn represents a number in decimal format.

nnnn represents a number in octal format.

nnnn represents a number in octal format.

nnnn represents a number in hexadecimal format.

A representation qf a byte in memory. Bits which are fixed as 0 or 1 are in-
dicated by O or 1; bits which may be either 0 or 1 in different circumstances

are represented by letters; thus rp represents a three-bit field which contains
one of the eight possible combinations of zeroes and ones.

TABLE OF CONTENTS

INTRODUCTION

CHAPTER 1
COMPUTER ORGANIZATION
WORKING REGISTERS
MEMORY
PROGRAM COUNTER
STACK POINTER
INPUT/OUTPUT
COMPUTER PROGRAM REPRESENTATION
IN MEMORY
MEMORY ADDRESSING
Direct Addressing
Register Pair Addressing
Stack Pointer Addressing
Immediate Addressing
Subroutines and Use of the Stack
for Addressing
CONDITION BITS
Carry Bit
Auxiliary Carry Bit
Sign Bit
Zero Bit
Parity Bit

CHAPTER 2
THE 8080 INSTRUCTION SET
ASSEMBLY LANGUAGE
How Assembly Language is Used
Statement Syntax
Label Field
Code Field
Operand Field
Comment Field

TWO'S COMPLEMENT REPRESENTATION
OF DATA
DATA STATEMENTS

DB Define Byte(s) of Data

DW Define Word (Two Bytes) of Data

DS Define Storage (Bytes)

CARRY BIT INSTRUCTIONS
STC Set Carry

iii

W W W W NNNN - —

[e AN <2< N o T UL 8

— O O 00 00 ~J ~J =

13
13
14
14
14
14

Table of Contents

CMC Complement Carry 14
SINGLE REGISTER INSTRUCTIONS 14
INR Increment Register or Memory - 15
DCR Decrement Register or Memory 15
CMA Complement Accumulator 15
DAA Decimal Adjust Accumulator 15
NOP INSTRUCTION 16
DATA TRANSFER INSTRUCTIONS 16
MOV Instruction 16
STAX Store Accumulator 17
LDAX Load Accumulator 17

REGISTER OR MEMORY TO ACCUMULATOR

INSTRUCTIONS : ' 17
ADD Add Register or Memory to Accumulator 17
ADC Add Register or Memory to Accumulator

With Carry 18
SUB Subtract Register or Memory

' From Accumulator 18

SBB Subtract Register or Memory From

Accumulator With Borrow 19
ANA Logical And Register or Memory
: With Accumulator 19
XRA Logical Exclusive-Or Register or Memory

With Accumulator (Zero Accumulator) 19
ORA Logical Or Register Or Memory With

Accumulator 20
CMP Compare Register or Memory With

Accumulator 20

ROTATE ACCUMULATOR INSTRUCTIONS 21
RILC Rotate Accumulator Left 21
RRC Rotate Accumulator Right 21
RAL Rotate Accumulator Left Through Carry 22
RAR Rotate Accumulator Right Through Carry 22

REGISTER PAIR INSTRUCTIONS 22
PUSH Push Data Onto Stack 22
POP Pop Data Off Stack 23
DAD Double Add ‘ 24
INX Increment Register Pair 24

DCX Decrement Register Pair 24

iv

Table of Contents

XCHG
XTHL
SPHL

Exchange Registers
Exchange Stack
Load SP From H and L

IMMEDIATE INSTRUCTIONS

LXI
MVI
ADI
ACI
SUI
SBI

ANI
XRI
ORI
CPI

Load Register Pair Immediate

Move Immediate Data

Add Immediate to Accumulator

Add Immediate to Accumulator With Carry
Subtract Immediate From Accumulator
Subtract Immediate From Accumulator
With Borrow

And Immediate With Accumulator
Exclusive-Or Immediate With Accumulator
Or Immediate With Accumulator ‘
Compare Immediate With Accumulator

DIRECT ADDRESSING INSTRUCTIONS

STA
LDA

SHLD
LHLD

Store Accumulator Direct
Load Accumulator Direct
Store H and L Direct
Load H and L Direct

JUMP INSTRUCTIONS

PCHIL
JMP
JC
JNC
JZ
IJNZ
JM
JP
JPE
JPO

Load Program Counter
Jump

Jump If Carry

Jump If No Carry
Jump If Zero

Jump If Not Zero
Jump IF Minus

Jump If Positive

Jump If Parity Even
Jump If Parity Odd

CALL SUBROUTINE INSTRUCTIONS

CALL
CC
CNC
Cz
CNZ
cM
CP
CPE
CPO

Call

Call If Carry

Call If No Carry
Call If Zero

Call If Not Zero
Call If Minus

Call If Plus

Call If Parity Even

-Call If Parity Odd

24
25
25
25
26
26
27
27
27

28
28
29
29
29
30
30
30
30
31
31
31
32
32
32
32
33
33
33
33

34
34
34
34
35
35
35
35
35
35

Table of Contents

RETURN FROM SUBROUTINE INSTRUCTIONS

RET Return

RC Return If Carry
RNC Return If No Carry
RZ Return If Zero

RNZ Return If Not Zero
RM Return If Minus:

RP Return If Plus .
RPE Return If Parity Even
RPO Return If Parity Odd

RST INSTRUCTION
INTERRUPT FLIP-FLOP INSTRUCTIONS

EI Enable Interrupts

DI Disable Interrupts
INPUT/OUTPUT INSTRUCTIONS

IN Input

ouT Output

HLT HALT INSTRUCTION
PSEUDO-INSTRUCTIONS

ORG Origin

EQU Equate

SET

END End of Assembly
CHAPTER 3

PROGRAMMING TECHNIQUES
BRANCH TABLES PSEUDO-SUBROUTINE
SUBROUTINES

Transferring Data to Subroutines

SOFTWARE MULTIPLY AND DIVIDE
MULTIBYTE ADDITION AND SUBTRACTION
DECIMAL ADDITION
DECIMAL SUBTRACTION

CHAPTER 4
INTERRU PTS
WRITING INTERRUPT SUBROUTINES

APPENDIX A
INSTRUCTION SUMMARY

APPENDIX B
INSTRUCTION EXECUTION TIMES, BIT
PATTERNS, AND OPERATION CODES

35
36
36
36
36
36
37
37
37
37
37
38
38
38
38
38
39
39
39
39
40
40
40

41
41
32
43
45
47
48
49

51
52

VI

XVI

Table of Content

APPENDIX C
ASCII TABLE

LIST OF FIGURES

Automatic Advance of the Program Counter
as Instructions are Executed

Assembler Program Converts Assembly
Language Source Program to Hexadecimal
Object Program ‘

XX

\
\% a>
G‘\P 0°‘$ 9“\\

This section provides the programmer with a func-
tional overview of the 8080. Information is presented in this
section at a level that provides a programmer with necessary
background in order to write efficient programs.

To the programmer, the computer is represented as
consisting of the following parts:

(1) Seven working registers in which all data operations
occur, and which provide one means for addressing
memory.

(2) Memory, which may hold program instructions or data
and which must be addressed location by location in
order to access stored information.

(3) The program counter, whose contents indicate the
next program instruction to be executed.

(4) The stack pointer, a register which enables various
portions of memory to be used as stacks. These in
turn facilitate execution of subroutines and handling
of interrupts as described later.)

{6) Input/Output, which is the interface between a pro-
’ gram and the outside world.

WORKING REGISTERS

The 8080 provides the programmer with an 8-bit ac-
cumulator and six additional 8-bit “scratchpad"”’ register's.

These seven working registers are numbered and ref-
erenced via the integers 0, 1,2, 3,4, 5, and 7; by convention,
these registers may also be accessed via the letters B, C, D,
E, H, L, and A (for the accumulator), respectively.

Some 8080 operations reference the working registers
in pairs referenced by the letters B, D, H and PSW. These
correspondences are shown as follows:

Register Pair Registers Referenced

B Band C (0 and 1)
D D and E (2 and 3)
H H and L (4 and 5)

PSW See below

Register pair PSW (Program Status Word) refers to register
A (7) and a special byte which reflects the current status of
the machine flags. This byte is described in detail in
Chapter 2.

MEMORY

The 8080 can be used with read only memory, pro-
grammable read only memory and read/write memory. A
program can cause data to be read from any type of memory,
but can only cause data to be written into read/write
memory.

The programmer visualizes memory as a sequence of
bytes, each of which may store 8 bits (represented by two
hexadecimal digits}. Up to 65,536 bytes of memory may be

Rev. B

present, and an individual memory byte is addressed by its
sequential number from 0 to 65,535D=FFFFH, the largest
number which can be represented by 16 bits.

The bits stored in a memory byte may represent the
encoded form of an instruction or may be data, as described
in Chapter 2 in the section on Data Statements.

PROGRAM COUNTER

The program counter is a 16 bit register which is ac-
cessible to the programmer and whose contents indicate the
address of the next instruction to be executed as described
in this chapter under Computer Program Representation in
Memory.

STACK POINTER

A stack is an area of memory set aside by the pro-
grammer in which data or addresses are stored and retrieved
by stack operations. Stack operations are performed by
several of the 8080 instructions, and facilitate execution of
subroutines and handling of program interrupts. The pro-
grammer specifies which addresses the stack operations will
operate upon via a special accessible 16-bit register called
the stack pointer.

- INPUT/OUTPUT

To the 8080, the outside world consists of up to 256
input devices and 256 output devices. Each device commu-
nicates with the 8080 via data bytes sent to or received
from the accumulator, and each device is assigned a number
from 0 to 255 which is not under control of the programmer.
The instructions which perform these data transmissions are
described in Chapter 2 under Input/Output Instructions.

COMPUTER PROGRAM REPRESENTATION
IN MEMORY

A computer program consists of a sequence of instruc-
tions. Each instruction enables an elementary operation such
as the movement of a data byte, an arithmetic or logical
operation on a data byte, or a change in instruction execu-
tion sequence. Instructions are described individually in
Chapter 2.

A program will be stored in memory as a sequence of
bits which represent the instructions of the program, and
which we will represent via hexadecimal digits. The memory
address of the next instruction to be executed is held in the
program counter. Just before each instruction is executed,
the program counter is advanced to the address of the next
sequential instruction. Program execution proceeds sequen-
tially unless a transfer-of-control instruction (jump, call, or
return) is executed, which causes the program counter to be
set to a specified address. Execution then continues sequen-
tially from this new address in memory.

Upon examining the contents of a memory byte, there
is no way of telling whether the byte contains an encoded
instruction or data. For example, the hexadecimal code 1FH

has been selected to represent the instruction RAR (rotate
the contents of the accumulator right through carry); thus,
the value 1FH stored in a memory byte could either repre-
sent the instruction RAR, or it could represent the data
value 1FH. It is up to the logic of a program to insure that
data is not misinterpreted as an instruction code, but this is
simply done as follows:)

Every program has a starting memory address, which
is the memory address of the byte holding the first instruc-
tion to be executed. Before the first instruction is executed,
the program counter will automatically be advanced to ad-
dress the next instruction to be executed, and this procedure
will be repeated for every instruction in the program. 8080
instructions may require 1, 2, or 3 bytes to encode an in-
struction; in each case the program counter is automatically
advanced to the start of the next instruction, as illustrated
in Figure 1-1, -

Memory Instruction Program Counter
Address Number Contents
0212 1 0213
0213 }) 0215
0214 '

0215 3 0216
0216 0219
0217 4

0218

0219 5 021B
021 A 6 021C
0218 021F
021C

021D 7

021E

021F 8 0220
0220 9 0221
0221 10 0222

Figure 1-1. Automatic Advance of the Program Counter
as Instructions Are Executed

In order to avoid errors, the programmer must be sure
that a data byte does not follow an instruction when another
instruction is expected. Referring to Figure 1-1, an instruc-
tion is expected in byte 021FH, since instruction 8 is to be
executed after instruction 7. If byte 021FH held data, the
program would not execute correctly. Therefore, when
writing a program, do not store data in betwsen adjacent
instructions that are to be executed consecutively.

NOTE: If a program stores data into a location, that loca-
tion should not normally appear among any pro-
gram instructions. This is because user programs
are (normally) executed from read-only memory,
into which data cannot be stored.

A class of instructions (referred to as transfer-of-con-
trol instructions) cause program execution to branch to an
instruction that may be anywhere in memory. The memory

Rev R

address specified by the transfer of control instruction must
be the address of another instruction; if it is the address of a
memory byte holding data, the program will not execute
correctly. For example, referring to Figure 1-1, say instruc-
tion 4 specifies a jump to memory byte 021FH, and say
instructions 5, 6, and 7 are replaced by data; then following
execution of instruction 4, the program would execute cor-
rectly. But if, in error, instruction 4 specifies a jump to
memory byte 021EH, an error would result, since this byte
now holds data. Even if instructions 5, 6, and 7 were not
replaced by data, a jump to memory byte 021EH would
cause an error, since this is not the first byte of the
instruction.

Upon reading Chapter 2, you will see that it is easy to
avoid writing an assembly language program with jump in-
structions that have erroneous memory addresses. Informa-
tion on this subject is given rather to help the programmer
who is debugging programs by entering hexadecimal codes
directly into memory.

MEMORY ADDRESSING

By now it will have become apparent that addressing
specific memory bytes constitutes an important part of any
computer program; there are a number of ways in which this
can be done, as described in the following subsections.

Direct Addressing

With direct addressing, an instruction supplies an exact
memory address.

The instruction:

“Load the contents of memory address 1F2A into
the accumulator”’

is an example of an instruction using direct addressing, 1F2A
being the direct address.

This would appear in memory as follows:

Memory Address Memory
any 3A
‘instruction
any +1 2A being executed
any + 2 1F

The instruction occupies three memory bytes, the
second and third of which hold the direct address.

Register Pair Addressing

A memory address may be specified by the contents
of a register pair. For almost all 8080 instructions, the H and
L registers must be used. The H register contains the most
significant 8 bits of the referenced address, and the L register
contains the least significant 8 bits. A one byte instruction

which will load the accumulator with the contents of mem-
ory byte 1F2A would appear as follows:

Memory Registers

Instruction
being executed | 7E C

1F H

2A |L

In addition, there are two 8080 instructions which
use either the B and C registers or the D and E registers to
address memory. As above, the first register of the pair holds
the most significant 8 bits of the address, while the second
register holds the least significant 8 bits. These instructions,
STAX and LDAX, are described in Chapter 2 under Data
Transfer instructions.

Stack Pointer Addressing

Memory locations may be addressed via the 16-bit
stack pointer register, as described below.

There are only two stack operations which may be
performed; putting data into a stack is called a push, while
retrieving data from a stack is called a pop.

NOTE: Ir order for stack push operations to operate,
stacks must be located in read/write memory.

STACK PUSH OPERATION

16 bits of data are transferred to a memory area
(called a-stack) from a register pair or the 16 bit program
counter during any stack push operation. The addresses of
the memory area which is to be accessed during a stack push
operation are determined by using the stack pointer as
follows:

(1) The most significant 8 bits of data are stored at the
memory address one less than the contents of the
stack pointer.

(2) The least significant 8 bits of data are stored at the
memory address two less than the contents of the
stack pointer.

(3) The stack pointer is automatically decremented by
two.

For example, suppose that the stack pointer contains
the address 13A6H, register B contains 6AH, and register C
contains 30H. Then a stack push of register pair B would
operate as follows:

|
° 1
Before Push Memory Address After Push
FF 13A3 FF
FF 13A4 30 | « SP
FF 13A5 6A
SP — |FF 13A6 FF
o
]
B Cc | B Cc
1
6A 30 | 6A 30
|
|

1
1
Before Pop Memory Address After Pop
FF 1607 - | FF
SP - |33 1508 33
08 1509 0B
FF 150A FF | « SP
l
]

H L : H L
FF FF I | o8 33
|
|

STACK POP OPERATION

16 bits of data are transferred from a memory area
(called a stack) to a register pair or the 16-bit program
counter during any stack pop operation. The addresses of
the memory area which is to be accessed during a stack pop
operation are determined by using the stack pointer as
follows:

(1) The second register of the pair, or the least significant
8 bits of the program counter, are loaded from the
memory address held in the stack pointer.

(2) The first register of the pair, or the most significant
8 bits of the program counter, are loaded from the
memory address one greater than the address held in
the stack pointer. k

(3) The stack pointer is automatically incremented by
two.

For example, suppose that the stack pointer contains
the address 1508H, memory location 1508H contains 33H,
and memory location 1509H contains OBH. Then a stack
pop into register pair H would operate as follows:

The programmer loads the stack pointer with any de-
sired value by using the LXI instruction described in Chapter
2 under Load Register Pair-immediate. The programmer
must initialize the stack pointer before performing a stack
operation, or erroneous results will occur.

Immediate Addressing

An immediate instruction is one that contains data.
The following is an example of immediate addressing:

“’Load the accumulator with the value 2AH."”

The above instruction would be coded in memory as
follows:

Memory

3E < Load accumulator immediate

2A + Value to be loaded into accumulator

Immediate instructions do not reference memory;
rather they contain data in the memory byte following the
instruction code byte.

Subroutines and Use of the Stack for Addressing

Before understanding the purpose or effectiveness of
the stack, it is necessary to understand the concept of a

‘subroutine.

Consider a frequently used operation such as multi-
plication. The 8080 provides instructions to add one byte
of data to another byte of data, but what if you wish to
multiply these numbers? This will require a number of in-
structions to be executed in sequence. It is quite possible
that this routine may be required many times within one
program; to repeat the identical code every time it is needed
is possible, but very wasteful of memory:

Rev. B

—_—
[

: Program
—
Routine
fouting

|
| Program
_
Routine

|
: Program

—_
Routine
—foutine

|
etc

Amore efficient means of accessing the routine would
be to store it once, and find a way of accessing it when
needed:

Program

Program ~ —_
Routine

Program

A frequently accessed routine such as the above is
called a subroutine, and the 8080 provides instructions that
call and return from subroutines.

When a subroutine is executed, the sequence of events
may be depicted as follows:

Main Program
{

Call instruction

\ Subroutine
/

Next instruction
{

The arrows indicate the execution sequence.

When the “’Call” instruction is executed, the address
of the “‘next” instruction (that is, the address held in the
program counter), is pushed onto the stack, and the sub-
routine is executed. The last executed instruction of a sub-
routine will usually be a “Return Instruction,’” which pops
an address off the stack into the program counter, and thus
causes program execution to continue at the ‘““Next” in-
struction as illustrated below:

Memory
Address - Instruction

0C02 Push address of

0co3 CALL SUBROUTINE <— next instruction

cCo4 02 (0OCO6H) onto

0C05 OF the stack and

0C06 NEXT INSTRUCTION, | branch to
subrourtine
starting at

OFCO OF02H

OF01

0F02 FIRST SUBROUTINE

INSTRUCTION <

OF03

— Body of subroutine

— Pop return address

— (0CO6H) off

OF4E stack and return

OF4F RETURN to next instruction

Subroutines may be nested up to any depth limited
only by the amount of memory available for the stack. For
example, the first subroutine could itself call some other
subroutine and so on. An examination of the sequence of
stack pushes and pops will show that the return path will
always be identical to the wall path, even if the same sub-
routine is called at more than one level.

CONDITION BITS

Five condition (or status) bits are provided by the
8080 to reflect the results of data operations. All but one
of these bits (the auxiliary carry bit) may be tested by pro-
gram instructions which affect subsequent program execu-
tion. The descriptions of individual instructions in Chapter
2 specify which condition bits are affected by the execution
of the instruction, and whether the execution of the in-
struction is dependent in any way on prior status of con-
dition bits.

In the following discussion of condition bits, ‘‘setting”
a bit causes its value to be 1, while “'resetting”’ a bit causes
its value to be 0.

Carry Bit

The Carry bit is set and reset by certain data opera-
tions, and its status can be directly tested by a program.
The operations which affect the Carry bit are addition, sub-
traction, rotate, and logical operations. For example, ad-
dition of two one-byte numbers can produce a carry out of
the high-order bit:

BitNo. 7 6 5 4 3 2 1 0
AEE1 01 01110
+74=0 1 110100
1220 01 000 1 O

l:carry-out =1, sets Carry Bit = 1

An addition operation that results in 2 carry out of
the high-order bit will set the Carry bit; an addition opera-
tion that could have resulted in a carry out but did not will
reset the Carry bit.

NOTE: Addition, subtraction, rotate, and logical opera-
tions follow different rules for setting and resetting
the Carry bit, See Chapter 2 under Two's Comple-
ment Representation and the individual instruction
descriptions in Chapter 2 for details. The 8080
instructions which use the addition operation are
ADD, ADC, ADI, ACl, and DAD. The instructions
which use the subtraction operation are SUB, SBB,
SUI, SB!, CMP, and CPI. Rotate operations are
RAL, RAR, RLC, and RRC. Logical operations
are ANA, ORA, XRA, ANI, ORI, and XRI.

Auxiliary Carry Bit

* The Auxiliary Carry bit indicates carry out of bit 3.
The state of the Auxiliary Carry bit cannot be directly tested
by a program instruction and is present only to enable one
instruction (DAA, described in Chapter 2) to perform its
function. The following addition will reset the Carry bit and
set the Auxiliary Carry bit:

BitNo. 7 6 5 4 3 2 10
2 00 101110
+74= 01110100
A2 10100010
L*Carry=0 l——-*Auxiliary Carry=1

The Auxiliary Carry bit will be affected by all ad-
dition, subtraction, increment, decrement, and compare
instructions,

Sign Bit

As described in Chapter 2 under Two’s Complement
Representation, it is possible to treat a byte of data as having
the numerical range -128,4 to +127,4. In this case, by
convention, the 7 bit will always represent the sign of the
number; that is, if the 7 bit is 1, the number is in the range
-128,4 to -1. If bit 7 is 0, the number is in the range 0 to
+127,. '

At the conclusion of certain instructions (as specified
in the instruction description sections of Chapter 2), the
Sign bit will be set to the condition of the most significant
bit of the answer (bit 7).

Zero Bit '

This condition bit is set if the result generated by the
execution of certain instructions is zero. The Zero bit is
reset if the result is not zero.

A result that has 2 carry but a zero answer byte, as
illustrated below, will also set the Zero bit:

BitNo. 7 6 5 4 3 2 1 0
101001 11
+ 01011001
1 0000O0O0COO
Carry ouf Zero answer
of bit 7.

Zero bitsetto 1.
Parity Bit
_ Byte ““parity” is checked after certain operations. The
number of 1 bits in a byte are counted, and if the total is
odd, “odd” parity is flagged; if the total is even, “‘even’
parity is flagged.

The Parity bit is set to 1 for even parity, and is reset
to 0 for odd parity.

Rev. 3

N

This section describes the 8080 assembly language
instruction set.

For the reader who understands assembly language
programming, Appendix A provides a complete summary
of the 8080 instructions.

For the reader who is not completely familiar with
assembly language, Chapter 2 describes individual instruc-
tions with examples and machine code equivalents.

ASSEMBLY LANGUAGE
How Assembly Language is Used

Upon examining the contents of computer memory,
aprogram would appear as a sequence of hexadecimal digits,
which are interpreted by the CPU as instruction codes, ad-
dresses, or data. It is possible to write a program as a se-
quence of digits (just as they appear in memory), but that
is slow and expensive, For example, many instructions
reference memory to address either a data byte or another
instruction:

Assuming that registers H and L contain 14H and
C3H respectively, the program operates as follows:

, Byte 1432 specifies that the accumulator is to be
loaded with the contents of byte 14C3.

Bytes 1433 through 1435 specify that execution is to
continue with the instruction starting at byte 14C4.

Bytes 14C4 and 14C5 specify that the L register is to
be loaded with the number 36H.

Byte 14C6 specifies that the contents of the accumu-
lator are to be stored in byte 1436.

Now suppose that an error discovered in the program
logic necessitates placing an extra instruction after byte
1432. Program code would have to change as follows:

Hexadecimal
Memory Address

1432 71E
1433 Cc3
1434 C4
147~k 14
1436

14C3 FF
14C4 | 2E_]
14C5 36
14C6 77

Hexadecimal
Memory Address Old Code New Code
A |

1432 7E { 7 |
1433 C3 New Instruction
1434 ' C4 C3
1435 14 cs
1436 . 14
1437 . .
14C3 | FF_ .
14C4 2E FF
14C5 36 2E
14Co 77 37
14C7 . 77

Most instructions have been moved and as a result
many must be changed to reflect the new memory ad-
dresses of instructions or data. The potential for making
mistakes is very high and is aggravated by the complete un-
readability of the program.

Writing programs in assembly language is the first and
most significant step towards economical programming; it

provides a 1eadable notation for instructions, and separates

the programmer from a need to know or specify absolute -

memoiy addi esses.

Assembly language piograms are written as a sequence
ol instiuctions which are converted to executable hexadeci-
mal code by a special program called an ASSEMBLER. Use
of the 8080 assembler is described in its operator’s man-
ual.

I Assembly- Executable
i language ASSEMBLER machine

program PROGRAM| ~ | code
! written by :
programmer
SOURCE OBJECT
PROGRAM PROGRAM

Figure 2-1. Assembler Program Converts Assembly
Language Source Program to Object Program

As illustrated in Figure 2-1, the assembly language
program generated by a programmer is called a SOURCE
PROGRAM. The assembler converts the SOURCE PRO-
GRAM into an equivalent OBJECT PROGRAM, which con-
sists of a sequence of binary codes that can be loaded into
memory and executed.

For exampie:
One Possible
Version of the -
Source Program Object Program
NOW: MOV AB 78
CPl *C' _, isconverted _, FE43
Jz LER by the CA7C3D
: Assembler :
LER: MOV MA ' 77

NOTE: In this and subsequent examples, it is not necessary
to understand the operations of the individual in-
structions. They are presented only to illustrate
typical assembly language statements. Individual
instiuctions are described later in this chapter.

Now if a new instruction must be added, only one
change is required. Even the reader who is not yet familiar
with assembly !anguage will see how simple the addition is:

NOW: Mov AB
{New instruction inserted here)
CPi ‘c’
Jz LER

LER MoV M,A

The assembler takes care of the fact that a new in-
struction will shift the rest of the program in memory. .

Statement Syntax

Assembly language instructions must adhere to-a fixed
set of rules as described in this section. An instruction has
four separate and distinct parts or fields.

Field 1 is the LABEL field. 1t is a name used to
reference the instruction’s address.)

Field 2 is the CODE field. It specifies the operation
that. is to be performed.

Field 2 is the OPERAND field. It provides any ad-

ldress or data information needed by the CODE field.

Field 4 is the COMMENT field. It is present for the
programmer’s convenience and is ignored by the assembler.
The programmer uses comment fields to describe the opera-
tion and thus make the program more readable.

The assembler uses free fields; that is, any number of

‘ blanks may separate fields.

Before describing each field in detail, here are some
general examples:

Label Code Operand
HERE: MVI C,0 : Load the C register with 0
THERE: DB 3AH ; Create a one-byte data

, constant

LOOP: ADD E ; Add contents of E register

to the accumulator
RLC ; Rotate the accumulator left

NOTE: These examples and the ones which follow are in-
tended to illustrate how the various fields appear
in complete assembly language statements. It is not
necessary at this point to understand the operations
which the statements perform.

Label Field

This is an optional field, which, if present, may be

Ay mumpsk oF characters long. The first character of the label
must be a letter of the alphabet '

A colon (:) must

follow the last character. (The operation codes, pseudo-

instruction names, and register names are specially defined

- within the assembler and may not be used as labels. Opera-

tion codes and pseudo-instructions are given later in this
chapter and Appendix A. :

Here are some examples of valid label fields:
LABEL:
F14F:

Here are some invalid label fields:
123: begins with a decimal digit
LABEL is not followed by a colon
ADD: s an operation code

END: s a pseudo-instruction

Since labels serve as instruction addresses, they cannot
be duplicated. For example, the sequence:

HERE: JMP THERE
THERE: MoV CcD
THERE: CALL - SuB

is ambiguous; the assembler cannot determine which ad-
dress is to be referenced by the JMP instruction.

One instruction may have more than one label, how-
ever. The following sequence is valid:

LOOP1: ; First label
LOOP2: MOV ’ C,D ; Second label
JMP LOOPT
JMP LOOP2

Each JMP instruction will cause program control to
be transferred to the same MOV instruction.

Code Field

This field contains a code which identifies the ma-
chine operation (add, subtract, jump, etc.) to be performed:
hence the term operation code or op code. The instructions
described later in this chapter are each identified by a
mnemonic label which must appear in the code field. For
example, since the “‘jump’’ instruction is identified by the
letters “JMP,’’ these letters must appear in the code field to
identify the instruction as "“jump.”’

There must be at least one space following the code
field. Thus, :

HERE: JMP THERE
is legal, but:
HERE JMPTHERE

is illegal.

Operand Field

This field contains information used in conjunction
with the code field to define precisely the operation to be
performed by the instruction. Depending upon the code
field, the operand field may be absent or may consist of one
item or two items separated by a comma.

There are four types of information [(a) through (d)
below] that may be requested as items of an operand field,
and the information may be specified in nine ways [(1)
through (9) below], as summarized in the following table,
and described in detail in the subsequent examples.

OPERAND FIELD INFORMATION

Information required Ways of specifying

{1) Hexadecimal Data
(2) Decimal Data

(3) Octal Data

(4) Binary Data

(5) Program Counter (3$)
(6) ASCII Constant

(7) Labels assigned values
(8) Labels of instructions

(9) Expressions

{(10) Register or'Register -
Pair Specification

(a) Register

(b) Register Pair

(c) Immediate Data

(d) 16-bit Memory Address

The tenways of specifying information are as follows:

(1} Hexadecimal data. Each hexadecimal number must
be followed by a letter ‘H’ and must begin with a
numeric digit (0-9), .

Example:

Label Code Operand
HERE: MVI

- Comment
C,0BAH ; Load register C with the
; hexadecimal number BA

(2) Decimal data. Each decimal number may optionally
be followed by the letter ‘D,’ or may stand alone.

Example:

Label Code Operand Comment

ABC: MVI E,(105

; Load register E with 105 |

(3) Octal data. Each octal number must be followed by
one of the letters ‘O’ or ‘Q.’

Example:
Label ~ Code Operand Comment _I
LABEL: MVI A720 ; Load the accumulator with;

; the octal number 72

(4) Binary data. Each binary number must be followed
by the letter ‘B.’

Example:

Label Code Operand Comment
NOW: MVI 10B,11110110B ; Load register two
; (the D register) with
;OF6H
JUMP: JMP 0010111011111010B ; Jump to
; memory
; address 2EFA
() The current program counter. This is specified as the

character ‘$’ and is equal to the address of the current
instruction. '

Example:
Label Code Operand
GO: JMP $+6

The instruction above causes program control to be
transferred to the address 6 bytes beyond where the
JMP instruction is loaded.

(6) An ASCII constant. This is one or more ASCII char-
acters enclosed in single quotes. Two successive single
quotes must be used to represent one single quote
within an ASCII constant. Appendix D contains a list
of legal ASCI! characters and their hexadecimal

representations.

Example:

Label Code Operand

CHAR: MVI E,*" ;Load the E register with the
; eight-bit ASCII representa-
; tion of an asterisk

Comment

(7) Labels that have been assigned a numeric value by

a SET or EQU directive

Example:

Suppose VALUE has been equated to the hexa-
decimal number 9FH. Then the following instruc-
tionsmadload the D register with 9FH:

10

Label Code Operand
Al: MVi D, VALUE
A2: MVI D, 9FH
(8) Labels that appear in the label field of another
instruction.
Example:
‘ Label Code Qperand Comment
HERE: JMP THERE ; Jump to instruction
;at THERE
THERE: Mvi D, 9FH

(9) Arithmetic and logical expressions involving data types
(1) to (8) above connected by the arithmetic opera-
tors (+) (addition), - (unary minus and subtraction),
® (multiplication), / (division), MOD {(modulo), the
logical operators NOT, AND, OR, XOR, SHR (shift

right), SHL (shift left), and left and right parentheses.

All operators treat their arguments as 15-bit quantities,
and generate 16-bit quantities as their result.

The operator + produces the arithmetic sum of its
operands.

The operator - produces the arithmetic difference of
its operands when used as subtraction, or the arithmetic
negative of its operand when used as unary minus.

The operator * produces the arithmetic product of its
operands.

The operator / produces the arithmetic integer quo-
tient of its operands, discarding any remainder.

The operator MOD produces the integer remainder
obtained by dividing the first operand by the second.

The operator NOT complements each bit of its
operand.

The operator AND produces the bit-by-bit logical
AND of its operands.

The operator OR produces the bit-by-bit iogical OR
of its operands.

The operator XOR produces the bit-by-bit logical
EXCLUSIVE-OR of its operands.

The SHR and SHL operators are linear shifts which
shift their first operands right or left, respectively, by the
number of bit positions specified by their second operands.
Zeros are shifted into the high-order or low-order bits, re-
spectively, of their first operands.

The programmer must insure that the result generated
by any operation fits the requirements of the operation
being coded. For example, the second operand of an MVI

instruction must be an 8-bit value.
Therefore the instruction:
MVI, H.NOTO

is invalid, since NOT 0 produces the 16-bit hexadecimal
number FFFF. However, the instruction:

MVI, H,NOT 0 AND OFFH

is valid, since the most significant 8 bits of the result are
insured to be 0, and the result can therefore be represented
in 8 bits. :

Examples:
i’_— o Arbitrary
Label Code Operand Memory Address
HERE: MVI C, HERE SHR 8 2E1A

The above instruction loads the hexadecimal number
2EH (16-bit address of HERE shifted right 8 bits) into the
C register. '

Label
NEXT:

Code
MVI

Operand
D, 34+4 OH/2

The above instruction will load the value 34+ (64/2)
=34+32 = 66 into the D register.

Operators cause expressions to be evaluated in the
following order:

1. Parenthesized expressions
«,/M, MOD, SHL, SHR
+, - {unary and binary).
NOT

AND

OR, XOR

corwnN

In the case of parenthesized expressions, the most
deeply parenthesized expressions are evaluated first:

Example:
The instruction:
MV D, (34+40H)/2

will load the value

1i

{34+64)/2=49 into the D register.

The operators MOD, SHL, SHR, NOT, AND, OR,
and XOR must be separated from their operands by at least
one blank. Thus the instruction:

MV C. VALUE ANDOFH
is invalid. See Page 11 A

Using some or all of the above ten data specifications,
the following four types of information may be requested:

(a) A register (or code indicating memory reference) to
serve as the source or destination in a data operation -

Specification

ReQiste_r

2 B

b C

B D

H E

L H

M L

Memory Reference
A A (accumulator)
Example:

Label Code Operand _'
INS1: MVI A, 2EH %
INS2: MVI B,I17
INS3: Mvi C,XYZ ‘

{b) A register pair to serve as the source or destination in

adata operation. Register pairs are specified as follows:

Specification Register Pair.

B Registers B and C
D Registers D and E
H Registers H and L
PSW One byte indicating the state of the

condition bits, and Register A (see
Sections 4.9.1 and 4 .9.2)
spP The 16-bit stack pointer register

i

|

(10)

A register or register pair
specification is a letter or
group of letters used to
specify a register, register
pair, or memory reference

-operand.

Specification

A
B

(ol @]

Z2H I

PSW

Meaning

w »

¢ oWl oo

11 A

register

register or B and C register
pair

register

. register or D and E register

pair :

register

register or H and L register
pair

register

a memory reference (the
memory address specified

by the contents of the H

and L register pair.)

The 16-bit stack pointer register
The ''register pair'' consisting of
the A register and the state of the
condition bits

Example:
Label Code Operand Comment
PUSH D ; Push registers D and
; E onto stack
INX SP ; Increment 16-bit

; number in the stack

; pointer

S, - -

(c) Immediate data, to be used directly as a data item.

Example:
T T o]
| Label Code Operand Comment
HERE: MVI H, DATA ; Load the H register with

; the value of DATA

_

Here are some examples of the form DATA could
take:

ADDR AND OFFH (where ADDR is a 16-bit address)’

127

VALUE (where VALUE has been equated to a
number)

3EH=10/2 (2 AND 2)

(d) A 16-bit address, or the label of another instruction in
memory.
Example:

- -

| Lebel Code Operand Comment

i HERE: JMP THERE ; Jump to the instruction

} "~ ;at THERE

L JMP 2EADH ; Jump to address 2EAD

Comment Field

The only rule governing this field is that it}must begin
with a semicolon {;).

HERE: MVI C, 0ADH ; This is a comment
A comment field may appear alone on a line:

.

; Begin loop here

12

DATA STATEMENTS

This section describes ways in which data can be

“specified in and interpreted by a program. Any 8-bit byte

contains one of the 256 possible combinations of zeros and
ones. Any particular combination may be interpreted in
various ways. For instance, the code 1FH may be interpreted
as a machine instruction (Rotate Accumulator Right
Through Carry), as a hexadecimal value 1FH=31D, or merely
as the bit pattern 600011111,

Arithmetic instructions assume that the data bytes up-
on which they operate are in a special format called ““two’s
complement,’” and the operations performed on these bytes
are called “two’s complement arithmetic.”’

WHY TWO’S COMPLEMENT?

Using two’s complement notation for binary numbers,
any subtraction operation becomes a sequence of bit com-
plementations and additions. Therefore, fewer circuits need
be built to perform subtraction.

Two’s Complement Representation

When a byte is interpreted as a signed two’s comple-
ment number, the low-order 7 bits supply the magnitude of
the number, while the high-order bit is interpreted as the
sign of the number (0 for positive numbers, 1 for negative).

The range of positive numbers that can be represented
in signed two’s complement notation is, therefore, from 0
to 127:

0 = 000000008 =0OH °
1 =00000001B = 1H

126D =01111110B = 7EH
127D =01111111B = 7FH

To change the sign of a number represented in two's
complement, the following rules are applied:

{a) Complement each bit of the number (producing the

so-called one’s complement.

(b) Add one to the result, ignoring any carry out of the
high-order bit position.
Example: Produce the two’s complement representation

of -10D. Following the rules above:
+10C = 000010108

Complement each
bit : 111101018
Add one :111101108B

Therefore, the two’s complement representation of
-10D is F6H. (Note that the sign bit is set, indicating a nega-
tive number).

What is the value of B6H interpreted as a signed
two's complement number? The high-order bit
is set, indicating that this is a negative number.
To obtain its value, again complement each bit
and add one.

86H =100001108B

Complementeach bit : 01111001B
Add one : 011110108

Thus, the value of 86H is -7AH = -122D

The range of negative numbers that can be represented
in signed two's complement notation is from -1 to -128.

-1=111111118=FFH
-2=111111108B=FEH

Example:

-127D=100000018B=81H
-1280=100000008 =80H

To perform the subtraction 1AH-0CH, the following
operations are performed:

Take the two's complement of OCH=F4H
Add the.result to the minuend:

1AH=00011010
FAH=11110100

+(-0CH) = .
00001110 =0EH the correct answer

When a byte is interpreted as an unsigned two's com-
plement number, its value is considered positive and in the
range 0 to 2565, ¢:

0=00000000B=0H
1=00000001B=1H

127D=01111111B=7FH
128D=10000000B =80H

255D=11111111B=FFH

Two’s complement arithmetic is still valid. When per-
forming an addition operation, the Carry bit is set when the
result is greater than 255D. When performing subtraction,
the Carry bit is reset when the result is positive. If the Carry
bit is set, the result is negative and present in its two's com-
plement form. Thus, the Carry bit when set indicates the

occurrence of a “borrow.””’
Example:
complement arithmetic. :

197D=11000101=C5H
-98D=10011110=9EH
71 0110001 1=63H=99D

Since the carry out of bit 7 = 1, indicating that the
answer is correct and positive, the subtract operation will re-
set the Carry bit to 0.

carry out —

Subtract 15D from 12D using unsigned two’s
complement arithmetic.

Example:

Subtract 98D from 197D using unsigned two’s

13

'EXAMPLE:

120=00001100=0CH
-16D=11110001=0F1H
carryout=> 0 11111101=-3D

Since the carry out of bit 7 = 0, indicating that the
answer is negative and in its two's complement form, the
subtract operation will set the Carry bit indicating that a
“borrow’’ occurred.

NOTE: The 8080 instructions which perform the subtrac-
tion operation are SUB, SUI, SBB, SBI, CMP, and
CMI. Although the same result will be obtained by
. addition of a complemented number or subtrac-
tion of an uncomplemented number, the resulting
Carry bit will be different,

If the result -3 is produced by performing an
*ADD" operation on the numbers +12D and
-15D, the Carry bit will be reset; if the same
result is produced by performing a “SUB"
operation on the numbers +12D and +15D,
the Carry bit will be set. Both operations in-
dicate that the result is negative; the pro-
grammer must be aware which operations set
or reset the Carry bit.

“ADD” +12D and -15D

+12D=00001100
+(-15D)=11110001
 11111101=-3D
causes carry to be reset.

“SUB” +15D from +12D

+12D =00001100
-(+16D)=11110001
§ 11111101=-3D

causes carry to be set

DB Define Byte(s) of Data
Label Code
oplab: DB

Operand

list

“list” is a list of either:
(1)

Arithmetic and logical expressions involving any of
the arithmetic and logical operators, which evaluate

to eight-bit data quantities

(2) Strings of ASCII characters enclosed in quotes

Description: The eight-bit value of each expression, or
the eight-bit ASCll representation of each character is
stored in the next available byte of memory starting with
the byte addressed by ‘‘oplab.” (The most significant bit of
each ASCII character is always = 0).

Example:

Instruction Assembled Data (hex)
HERE: DB 0A3H A3

WORD1: DB 5"2, 2FH-0AH 0A25

WORD2: DB 5ABCHSHR B 5A

STR: DB ‘STRINGSpl’ 535452494E472031
MINUS: DB -03H FD

NOTE: In the first example above, the hexadecimal value
A3 must be written as 0A3 since hexadecimal num-
bers must start with a decimal digit.

DW Define Word (Two Bytes) of Data

Format:
Label Code Operand
oplab: DW list

“list’" is a list of expressions which evaluate to 16 bit data
quantities.

Description: The least significant 8 bits of the expres-
sion are stored in the lower address memory byte (oplab),
and the most significant 8 bits are stored in the next higher
addressed byte (oplab +1). This reverse order of the high and
low address bytes is normally the case when storing addres-
ses In memory. This statement is usually used to create ad-
dress constants for the transfer-of-control instructions; thus
LIST is usually a list of one or more statement labels appear-
ing elsewhere in the program.

Examples:

Assume COMP address memory location 3B1CH and
FILL addresses memory location 3EB4H.

Assembled
Instruction Data (hex)
ADD1: DW COMmMP 1C38B
ADD2: DW FILL B43E
ADD3: DW 3CO01H, 3CAEH 013CAE3C

Note that in each case, the data are stored with the
least significant 8 bits first.

DS Define Storage (Bytes)

Format:
Label Code Operand
oplab: DS exp

‘‘exp’’ is a single arithmetic or logical expression.

Description: The value of EXP specifies the number
of memory bytes to be reversed for data storage. No data
values are assembled into these bytes: in particular the pro-
grammer should not assume that they will be zero, or any
other value. The next instruction will be assembled at mem-
ory location oplab+EXP (oplab+10 or oplab+16 in the
example below).

14

Examples:
HERE: DS 10 ; Reserve the next 10 bytes
DS 10H ; Reserve the next 16 bytes

CARRY BIT INSTRUCTIONS

This section describes the instructions which operate
directly upon the Carry bit. Instructions in this class occupy
one byte as follows:

010|1|1 X 11111
‘ 0 for STC
' 1 for CMC
The general assembly language format is:
Label Code Operand
LABEL: orP

T—- not used

‘ I—' STC or CMC
Optional instruction label

CMC Complement Carry
Format:
Label Code Operand
oplab: CcMC —

O|0|111J111 |1|1
Description: if the Carry bit = 0, it is set to 1. If the Carry
bit=1, it is reset to 0.

Condition bits affected: Carry

STC Set Carry

Format:
Label Code Operand
oplab: STC -

0|O|1|1 lol1l1l1

Description: The Carry bit is set to one.

Condition bits affected: Carry

SINGLE REGISTER INSTRUCTIONS

This section describes instructions which operate on a
single register or memory location. |f a memory reference is
specified, the memory byte addressed by the H and L regis-
ters is operated upon. The H register holds the most signifi-
cant 8 bits of the address while the L register holds the least
significant 8 bits of the address.

Rev. B

INR Increment Register or Memory

Format:
Label Code Operang
oplab: INR reg
¥ 8,C.D.E,H,LMorA
oflo] ™ f1]o]o

\000 for register B

001 for register C
010 for register D
011 for register £
100 for register H
101 for register L
110 for memory ref. M.
111 for register A

Description: The specified register or memory byte is
incremented by one.

Condition bits affected: Zero, Sign, Parity, Auxiliary
Carry

Example:

If register C contains 99H, the instruction:

INR C
will cause register C to contain 9AH

DCR Decrement Register or Memory
Format:
l.abel

Code Operand

DCR reg
— 1

B,.C.D.EH,.LMor A

oplab:

ojof "™ {i]o|1

——-— 000 for Register B
001 for register C
010 for register D
011 for register E
100 for register H
101 for register L
110 for memory ref. M
111 for register A

Description: The specitied register or memory byte is
decremented by one. '

Condition bits affected: Zero, Sign, Parity, Auxiliary
Carry

Example:

If the H register contains 3AH, the L register contains
7CH, and memory location 3A7CH contains 40H, the
instruction:

DCR M

will cause memory location 3A7CH to contain 3FH. To

15

illustrate:
DCR M references
registers
H and L
Memory before Memory after
3A 7C DCRM DCR M
~—— 20 3F
indicating
memory location 3A7C
CMA Complement Accumulator
Format:
Label Code Operand
oplab: CMA"- —_—

0|0|1 |0|1JI l‘l ll

Description: Each bit of the contents of the accumula-
tor is complemented (producing the one‘s complement).

Condition bits affected: None
Example:

If the accumulator contains 51H, the instructionCMA
will cause the accumulator to contain OAEH.

Accumulator=01010001=561H
Accumulator=1010111 0=AEH.

DAA Decimal Adjust Accumulator

Format:
Label Code Operand
oplab: DAA e

ojojijojoji |1

Description: The eight-bit hexadecimal number in the
accumulator is adjusted to form two four-bit binary-coded-
decimal digits by the following two step process:

(1) If the least significant four bits of the accumulator
represents a number greater than 9, or if the Auxiliary
Carry bit is equal to one, the accumulator is incre-
mented by six. Otherwise, no incrementing occtirs.

(2) If the most significant four bits of the accumulator
now represent a number greater than 9, or if the nor-
mal carry bit is equal to one, the most significant four
bits of the accumulator are incremented by six. Other-
wise, no incrementing occurs.

If a carry out of the least significant four bits occurs
during Step (1), the Auxiliary Carry bit is set; otherwise it is
reset. Likewise, if a carry out of the most significant four

bits occurs during Step (2), the normal Carry bit is set;
otherwise, it is unaffected:

NOTE: This instruction is used when adding decimal num-
bers. It is the only instruction whose operation is
affected by the Auxiliary Carry bit.

Condition bits affected: Zero, Sign, Parity, Carry,
Auxiliary Carry

Example:

Suppose the accumulator contains 9BH, and both
carry bits = 0. The DAA instruction will operate as follows:

(1) Since bits 0-3 are greater than 9, add 6 to the accumu-
lator. This addition will generate a carry out of the

lower four bits, setting the Auxiliary Carry bit.

Bit No. 76543210
Accumulator=1001 1011=9BH
+6 = 0110

1010 0001=A1H
\

Auxiliary Carry =1

(2) Since bits 4-7 now are greater than 9, add 6 to these
bits. This addition will generate a carry out of the

upper four bits, setting the Carry bit.

Bit No. 76543210
Accumulator=10100001 = AlH
+#©=0110
1 00000001
|—>Carry=1

Thus, the accumulator will now contain 1, and both
Carry bits will be = 1,

For an example of decimal addition using the DAA
instruction, see Chapter 4.

NOP INSTRUCTIONS

The NOP instruction occupies one byte.

Format:
Label Code Operand
oplab NOP —_—

ofojofojolofolo

Description: No operation occurs. Execution proceeds
with the next sequential instruction.

Condition bits affected: None

DATA TRANSFER INSTRUCTIONS

This section describes instructions which transfer data
between registers or between memory and registers.

Instructions in this class occupy one byte as follows:

(a) For the MOV instruction:

16

dst src

R Y

L—O(‘)‘O for register B
001 for register C
010 for register D
011 for register E
100 for register H
101 for register L
110 for memory reference M
111 for register A

NOTE: dst and src cannot both = 110B

For the remaining instructions:

0|1

(b)

OIOIO x [x 0|1 IO
U '
0 for register pair B 0 for STAX
1 for register pair D 1 for LDAX

When a memory reference is specified in the MOV in-
struction, the addressed location is specified by the Hand L
registers. The L register holds the least significant 8 bits of
the address; the H register holds the most significant 8 bits.

The general assembly language format is:

" Label Code Operand
oplab: MQV dst, src
t 1. ABCDEMHL or M
(dst and src not
both = M)
Optional instruction iabel
Label Code Operand
oplab:

BorD

\ \STAX or LDAX

Optional instruction label

MOV Instruction

Format:
Label Code Operand
oplab: MOV _dst, src
_-(—;
0 |1 dst src

Description: One byte of data is moved from the
register specified by src {the source register) to the register
specified by dst (the destination register). The data re-
places the contents of the destination register; the source
remains unchanged.

Condition bits affected: None
Example 1:
Label Code Operand Comment
MOV AE ; Move contents of the E
; register to the A register
MOV DD ; Move contents of the

; D register to the D
; register, i.e,, thisis a

; null operation

NOTE: Any of the null operation instructions MOV X,X
can also be specified as NOP (no-operation).

Example 2:

Assuming that the H register contains 2BH and the L
register contains EQH, the instruction: .

MOV M,A

will store the contents of the accumulator at memory loca-
tion 2BE9H.

STAX Store Accumulator

Format:
Label Code Operand
oplab: STAX ()
OIOIO X 010|1 |0

Description: The contents of the accumulator are
stored in the memory location addressed by registers B and
C, or by registers D and E.

Condition bits affected: None
Example:

If register B contains 3FH and register C contains
16H, the instruction:

STAX B

will store the contents of the accumulator at memory loca-
tion 3F16H.

LDAX Load Accumulator

Format:)
Label Code Operand
oplab: LDAX - P
0|0|0 X 1|011 |0

Description: The contents of the memory location
addressed by registers B and C, or by registers D and E, re-
place the contents of the accumulator.

17

Condition bits affected: None
Example:

If register D contains 93H and register E contains
8BH, the instruction:

LDAX D
will load the accumulator from memory location 838BH.

REGISTER OR MEMORY TO
ACCUMULATOR INSTRUCTIONS

This section describes the instructions which operate
on the accumulator using a byte fetched from another regis-
ter or memory. Instructions in this class occupy one byte as

follows:
0] o0 jred
—
000 for ADD ———1 f000 for register B
001 for ADC 001 for register C
010 for SUB 010 for register D
011 for SBB 011 for register E
100 for ANA 100 for register H
101 for XRA 101 for register L
110 for ORA 110 for memory
reference M

111 for CMP 111 for register A

Instructions in this class operate on the accumulator
using the byte in the register specified by REG. If a memory
reference is specified, the instructions use the byte in the
memory location addressed by registers H and L. The H reg-
ister holds the most significant 8 bits of the address, while
the L register holds the least significant 8 bits of the address.
The specified byte will remain unchanged by any of the in-
structions in this class; the result will replace the contents of
the accumulator.

The general assembly language instruction format is:

Label Code Operand
oplab: op reg

“~AB.,C,D,EH,L, or M

ADD, ADC, SUB, SBB, ANA, XRA, ORA
or CMP

Optional instruction label

ADD ADD Register or Memory To Accumulator

Format: »
Label Code Operand
oplab: ADD r
P A _—e
1 lO 0 IO IO reg

Description: The specified byte is added to the con-
tents of the accumulator using two's complement arithmetic.

Condition bits affected: Carry, Sign, Zero, Parity,
Auxiliary Carry
Example 1:

Assume that the D register contains 2EH and the ac-
cumulator contains 6CH. Then the instruction:

ADD D
will perform the addition as follows:

2EH = 00101110
6CH = 01101100
9AH = 10011010

The Zero and Carry bits are reset; the Parity and Sign
bits are set. Since there is a carry out of bit A;, the Auxiliary
Carry bit is set, The accumulator now contains SAH.

Example 2: .
The instruction:
ADD A

will double the accumulator.

ADC ADD Register or Memory To Accumulator
With Carry

Format:
L abel Code Operand
nplab: A;CD — reg
17010401
ol el L

Description: The specified byte plus the content of
the Carry bit is added to the contents of the accumulator.

Condition bits affected: Carry, Sign, Zero, Parity,
Auxiliary Carry

Example:

Assume that register C contains 3DH, the accumulator
contains 42H, and the Carry bit = 0. The instruction:
ADC C
will perform the addition as follows:
3DH=00111101
42H =01000010
CARRY = 0
RESULT=01111111=7FH

The results can be summarized as follows:
FH

OO0 OO0

Accumulator
Carry =
Sign =
Zero =
Parity =
Aux. Carry =

18

If the Carry bit had been one at the beginning of the
example, the following would have occurred:

3DH=00111101

42H =01000010
CARRY = 1
RESULT=10000000=80H

Accumulator = 80H
Carry =0
Sign =1
Zero =0
Parity =0
Aux.Carry = 1

SUB Subtract Register or Memory
From Accumulator '

Format:
Label
oplab:

Code Operand

SuU
v B — reg

0|1|0

reg
[1

1|0

Description: The specified byte is subtracted from the
accumulator using two’s complement arithmetic.

If there is no carry out of the high-order bit position,
indicating that a borrow occurred, the Carry bit is set;
otherwise it is reset. (Note that this differs from an add op-
eration, which resets the carry if no overflow occurs).

Condition bits affected: Carry, Sign, Zero, Parity,
Auxiliary Carry

Example:

Assume that the accumulator contains 3EH. Then the
instruction:

suB A

will subtract the accumulator from itself producing a result
of zero as follows:

3EH =00111110
+(-3EH)=110000 0 1 negateand add one
+ 1 to produce two’s
_ complement
carry >] 00000000 Result =0

Since there was a carry out of the high-order bit
position, and this is a subtraction operation, the Carry bit
will be reset.

Since there was a carry out of bit A;, the Auxiliary
Carry bit will be set.

The Parity and Zero bits will also be set, and the Sign
bit will be reset.

Thus the SUB A instruction can be used to reset the
Carry bit (and zero the accumulator).

SBB Subtract Register or Memory From
Accumulator With Borrow

Format:
Label Code Operand
oplab: SBB re
0311
b o R R

Description: The Carry bit is internally added to the
contents of the specified byte. This value is then subtracted
from the accumulator using two’s complement arithmetic.

This instruction is most useful when performing sub-
tractions. It adjusts the result of subtracting two bytes when

a previous subtraction has produced a negative result (a bor-

row). For an example of this, see the section on Multibyte
Addition and Subtraction in Chapter 4.

Condition bits affected: Carry, Sign, Zero, Parity,
Auxiliary Carry (see last section for details).

Example:

Assume that register L contains 2, the accumulator
contains 4, and the Carry bit = 1. Then the instruction SBB
L will act as follows:

02H + Carry = O3H
Two’s Complement of 03H = 11111101

Adding this to the accumulator procedures:

Accumutator =04H=00000100
11111101
‘!I] 00000001 =01H = Result

carry out = 1 causing the Carry bit to be reset

The final result stored in the accumulator is one, caus-
ing the Zero bit to be reset. The Carry bit is reset since this
is a subtract operation and there was a carry out of the high-
order bit position. The Auxiliary Carry bit is set since there
was a carry out of bit A;. The Parity and the Sign bits are
reset.

ANA Logical and Register or Memory
With Accumulator

Format:
Label Code Operand
oplab: ANA reg
¥ “—
1101900
[l Al ol bl IS

Description: The specified byte is logically ANDed bit
by bit with the contents of the accumulator. The Carry bit
is reset to zero.

The logical AND function of two bits is 1 if and only
if both the bits equal 1.

Condition bits affected: Carry, Zero, Sign, Parity

19

Example:

Since any bit ANDed with a zero produces a zero and
any bit ANDed with a one remains unchanged, the AND
function is often used to zero groups of bits.

Assuming that the accumulator contains OFCH and
the C register contains OFH, the instruction:

ANA C
will act as follows:)
Accumulator =111 11100=0FCH
C Register =00001111=0FH
Result in

Accumulator =00001 100 =0CH

This particular example guarantees that the high-order
four bits of the accumulator are zero, and the low-order four
bits are unchanged.

XRA Logical Exclusive-Or Register or Memory
With Accumulator (Zero Accumulator)

Format:
Label Code Operand
oplab: XRA reg
¥ «—
1 |0 1 JO J1 ‘regl

Description: The specified byte is EXCLUSIVE-ORed
bit by bit with the contents of the accumulator. The Carry
bit is reset to zero.

The EXCLUSIVE-OR function of two bits equals 1 if
and only if the values of the bits are different.

Condition bits affectéd: Carry, Zero, Sign, Parity,
Auxiliary Carry

Example 1:

Since any bit EXCLUSIVE-ORed with itself pro-

duces zero, the EXCLUSIVE-OR can be used to zero the
accumulator.

Label Code Operand
XRA A
MOV B.A
MOV C.A

These instructions zero the A, B, and C registers.
Example 2:

Any bit EXCLUSIVE-ORed.with a one is comple-
mented (0 XOR1=1,1 XOR 1=0).

Therefore if the accumulator contains all ones (OFFH),
the instruction:

XRA B

will produce the one’s complement of the B register in the
accumulator.

Rev. B

Example 3:
Testing for change of status.

Many times a byte is used to hold the status of several
(up to eight) conditions within a program, each bit signify-
ing whether a condition is true or false, enabled or disabled,
etc.

The EXCLUSIVE-OR function provides a quick means
of determining which bits of a word have changed from one
time to another.

Label Code Operand
LA: MOV AM ; STAT2 to accumulator
INX H ; Address next location

LB: MOV BM ; STAT1 to B register
CHNG: XRA B ; EXCLUSIVE-OR

; STAT1 and STAT2
STAT: ANA B ; AND result with STAT1
STAT2: DS 1
STAT1: DS 1

Assume that logic elsewhere in the program has read
the status of eight conditions and stored the corresponding
string of eight zeros and ones at STAT1 and at some later
time has read the same conditions and stored the new status
at STAT2. Also assume that the H and L registers have been
initialized to address location STAT2. The EXCLUSIVE-OR
at CHNG produces a one bit in the accumulator wherever a
condition has changed between STAT1 and STAT2.

For example:
Bit Number 76543210
STAT1=56CH= 01011100
STAT2=78H= 01111000

EXCLUSIVE-OR: 00100100

This shows that the conditions associated with bits 2
and 5 have changed between STAT1 and STAT2. Knowing
this, the program can tell whether these bits were set or re-
set by ANDing the result with STAT1.

Result = 00100100
STATT = 01011100
AND = 00000100

Since bit 2 is now one, it was set between STAT1 and
STATZ2; since bit 5 is zero it is reset.

ORA Logical or Register or Memory With
Accumulator

Format:
Label Code Operand
oplab: ORA re
v pd 9
1101110
l I l Iregl

20

Description: The specified byte is logically ORed bit
by bit with the contents of the accumulator. The carry bit
is reset to zero.

The logical OR function of two bits equals zero if and
only if both the bits equal zero.
Condition bits affected: Carry, zero, sign, parity

Example:

Since any bit ORed with a one produces a one, and
any bit ORed with a zero remains unchanged, the OR func-
tion is often used to set groups of bits to one.

Assuming that register C contains OFH and the accu-
mulator contains 33H, the instruction:

ORA C
acts as follows:
Accumulator=00110011=33H

CRegister =00001111=0FH
Accumulator=00111111=3FH

This particular example guarantees that the low-order
four bits of the accumulator are one, and the high-order four
bits are unchanged.

Result =

CMP Compare Register or Memory
With Accumulator

Format:
Label Code Operand
oplab: CMP reg
¥ /“
1 IO 1 ll |1 reg

Description: The specified byte is compared to the
contents of the accumulator. The comparison is performed
by internally subtracting the contents of REG from the ac-
cumulator (leaving both unchanged) and setting the condi-
tion bits according to the result. In particular, the Zero bit is
set if the quantities are equal, and reset if they are unequal.
Since a subtract operation is performed, the Carry bit will be
set if there is no carry out of bit 7, indicating that the
contents of REG are greater than the contents of the accu-
mulator, and reset otherwise.

NOTE: If the two quantities to be compared differ in sign,
the sense of the Carry bit is reversed.

Condition bits affected: Carry, Zero, Sign, Parity,
Auxiliary Carry

Example 1:

Assume that the accumulator contains the number
OAH and the E register contains the number O5H. Then

the instruction CMP E performs the following internal
subtractions:

0AH 00001010
-6H = 11111011
17 00000101 =result

[: carry = 1, causing the Carry bit to be reset

Accumulator =
+ (-E Register)

The accumulator still contains 0AH and the E register
still contains 05H; however, the Carry bit is reset and the
zero bit reset, indicating E less than A.

Example 2:

‘ If the accumulator had contained the number 2H, the
internal subtraction would have produced the following:

02H 00000010
-6H 11111011

11111101 =result
I ; carry = 0, Carry bit = 1 '
The Zero bit would be reset and the Carry bit set,
indicating E greater than A.

Accumulator =
+ (-E Register)

Example 3:

Assume that the accumulator contains -1BH. The in-
ternal subtraction now produces the following:

= -1BH = 11100101
-5H = 11111011
7 11100000

[; carry = 1, causing carry to be reset

Since the two numbers to be compared differed in
sign, the resetting of the Carry bit now indicates E greater
than A.

Accumulator
+ (-E Register) =

ROTATE ACCUMULATOR INSTRUCTIONS

This section describes the instructions which rotate
the contents of the accumulator. No memory locations or
other registers are referenced.

Instructions in this class occupy one byte as follows:

00.0 1111
[el vt B A
t______ __ 00forRLC
01 for RRC
10 for RAL
11 for RAR
The general assembly language instruction format is:
Label Code Operand
label: op
“——— not used

\\\RLC,RRC,RALorRAR

Optional instruction label

RLC Rotate Accumulator Left

Format:
Label Code Operand
oplab: RI£C _
OIOIO 010 1l1ll

21

-After RLC is executed:

Description: The Carry bit is set equal to the high-
order bit of the accumulator. The contents of the accumu-
lator are rotated one bit position to the left, with the high-
order bit being transferred to the low-order bit position of
the accumulator.

Condition bits affected: Carry
Example:

Assume that the accumulator contains 0F2H. Then
the instruction:

RLC
acts as follows:

Before RLC is executed: Carry Accumulator

“[l1110010“l
B tj1|1fojojijo1

Carry = 1 A = 0ESH
RRC Rotate Accumulator Right
Format:
Label Code Operand
lab: —_—
oplab R?C

ololo 0L1 111_11

Description: The carry bit is set equal to the low-order
bit of the accumulator. The contents of the accumulator are
rotated one bit position to the right, with the low-order bit’
being transferred to the high-order bit position of the
accumulator.

Condition bits affected: Carry
Example:

Assume that the accumulator contains OF2H. Then
the instruction:

RRC
acts as follows:

Before RRC is executed: Accumulator Carry

il

]

Carry=0

[‘11110010

After RRC is executed:

RAL Rotate Accumulator Left Through Carry

Format:
Label Code Operand
lab: RAL e
opla A

m————

OIOIO 110 1L1 1

Description: The contents of the accumulator are ro-
tated one bit position to the left.

The high-order bit of the accumulator replaces the
Carry bit, while the Carry bit replaces the high-order bit of
the accumulator.

Condition bits affected: Carry
Example:

Assume that the accumulator contains O0B5H. Then
the instruction:

RAL
acts as follows:

Before RAL is executed: Carry Accumulator

l’@ 101101014']
m ojri{1joyijojijo

Carry=1 A =6AH

Atter RAL is executed:

RAR Rotate Accumulator Right Through Carry

Format:
Label Code Operand
oplab: RAR —_—
¥

——

OIOIO 111 1|111

Description: The contents of the accumulator are ro-
tated one bit position to the right.

The low-order bit of the accumulator replaces the

carry bit, while the carry bit replaces the. high-order bit of
the accumulator.

Condition bits affected: Carry
Example:

Assume that the accumulator contains 6 AH. Then the
instruction:

RAR

acts as follows:

Before RAR is executed:

l—'01101010——>m—|

After RAR is executed:
1101111011101 [(ﬂ

A = 0BSH

Accumulator Carry

Carry=0

REGISTER PAIR INSTRUCTIONS

This section describes instructions which operate on
pairs of registers.)

PUSH Push Data Onto Stack

Eormat:
Label Code Operand
oplab: PUSH rp

/ T~—B,0.H, or PSW

111] rp 0|1|0|1

\00 for registers B and C

01 for registers D and E
10 for registers H and L
11 for flags and register A

Description: The contents of the specified register pair
are saved in two bytes of memory indicated by the stack
pointer SP. ’

The contents of the first register are saved at the mem-
ory address one less than the address indicated by the stack
pointer; the contents of the second register are saved at the
address two less than the address indicated by the stack
pointer. If register pair PSW is specified, the first byte of in-
formation saved holds the contents of the A register; the
second byte holds the settings of the five condition bits,
i.e., Carry, Zero, Sign, Parity, and Auxiliary Carry. The for-
mat of this byte is:

76543210

A
S|Zjo|CclolP|1|C

/ J \ |
State of Carry bit

State of Sign bit

State of Zero bit always 1
always O State of Parity
bit

State of auxiliary
Carry bit

always 0

In any case, after the data has been saved, the stack
pointer is decremented by two.

Condition bits affected: None

Example 1:

Rev. B

Assume that register D contains 8FH, register E con-
tains 9DH, and the stack pointer contains 3A2CH. Then the
instruction:

PUSH D

stores the D register at memory address 3A2BH, stores the
E register at memory address 3A2AH, and then decrements
the stack pointer by two, leaving the stack pointer equal to
3A2AH. |

Before PUSH I ' After PUSH
HEX
MEMORY ADDRESS MEMORY

FF 3A29 FF
FF 3A3A 9D | « sP
FF 3A28 8F
SP ~ |FF 3A2C FF
l
D E : D E
8F 9D l 8F 9D

Example 2:

Assume that the accumulator contains 1FH, the stack
pointer contains 502AH, the Carry, Zero and Parity bits all
equal 1, and the Sign and Auxiliary Carry bits all equal 0.
Then the instruction:

PUSH PSW

stores the accumulator (1FH) at location 5029H, stores the
value 47H, corresponding to the flag settings, at location
5028H, and decrements the stack pointer to the value
5028H.

POP Pop Data Off Stack

Format:
Label Code Operand
oplab: POP p

™ B,D,H, or PSW

111 p OIOIOI’I

S~ 00 for registers B and C

01 for registers D and E
10 for registers H and L
11 for flags and register A

Description: The contents of the specified register pair
are restored from two bytes of memory indicated by the
stack pointer SP. The byte of data at the memory address

23

indicated by the stack pointer is loaded into the second
register of the register pair; the byte of data at the address
one greater than the address indicated by the stack pointer
is loaded into the first register of the pair. If register pair
PSW is specified, the byte of data indicated by the contents
of the stack pointer plus one is used to restore the values of
the five condition bits (Carry, Zero, Sign, Parity, and Aux-
iliary Carry) using the format described in the last section.

In any case, after the data has been restored, the stack
pointer is incremented by two.

Condition bits affected: If register pair PSW is speci-
fied, Carry, Sign, Zero, Parity, and Auxiliary Carry may be
changed. Otherwise, none are affected.

Example 1:

Assume that memory locations 1239H and 123AH
contain 3DH and 93H, respectively, and that the stack
pointer contains 1239H. Then the instruction:

POP H

loads register L with the value 3DH from location 1239H,
loads register H with the value 93H from location 123AH,
and increments the stack pointer by two, leaving it equal to
1238H.

Before POP After POP

HEX
MEMORY ADDRESS MEMORY
FF 1238 FF
sP - |3D 1239 3D
93 123A 93
FF 1238 FF_| < spP

l
H L | H

L
[oF] [Fo] |

Example 2:

Assume that memory locations 2CO0H and 2CO1H
contain C3H and FFH respectively, and that the stack
pointer contains 2CO0H. Then the instruction:

POP PSW

will load the accumulator with FFH and set the condition

- bits as follows:

C3H=11000011

Sign bit=1 4.__1 , ‘ l_..,Carry bit=1
Zero bit= 1 Parity bit=0

Aux. Carry bit=0

Rev. B

DAD Doubie Add

Format:
Label Code Operand
uplab: DAD rp
~—— T“-BDH,orsp
0 IO p |1 |0 IO]1

———

\ 00 for registers B and C
01 for registers D and E
10 for registers H and L
11 for register SP
Description: The 16-bit number in the specified regis-
ter pair is added to the 16-bit number held in the Hand L
registers using two’s complement arithmetic. The result re-
places the contents of the H and L registers.

Condition bits affected: Carry
Example 1:

Assume that register B contains 33H, register C con-
tains 9FH, register H contains A1H, and register L contains
7BH. Then the instruction:

DAD B
performs the following addition:

Registers B and C = 339F
+ Registers Hand L = A17B
New contents of Hand L = D51A

Register H now contains D5H and register L now con-
tains 1AH. Since no carry out was produced, the Carry bit
isreset = 0.

Example 2:
The instruction:
DAD H

will double the 16-bit number in the H and L registers
(which is equivalent to shifting the 16 bits one position to
the left).

INX Increment Register Pair

Format:
Label Code Operand
oplab: INX rp

f—\ B.D,H, or SP

0|0 rp

0|0|1 |1

.
™ 00 for registers B and C
01 for registers D and E
10 for registers Hand L
11 for register SP

24

Description: The 16-bit number held in the specified
register pair is incremented by one.

Condition Bits affected: None
Example:

If registers D and E contain 38H and FFH respectively,
the instruction: '

INX D

will cause register D to contain 39H and register E to con-
tain OOH.

I1f the stack pointer SP contains FFFFH,
instruction:

the

INX SP

will cause register SP to contain 0000H.

DCX Decrement Register Pair

Format:
Label Code Operand
oplab: DCX P

——

" "-B.DH,orsP

OIO rp IIOII I1|
x
00 for registers B and C
01 for registers D and E
10 for registers H and L
11 for register SP

Description: The 16-bit number held in the specified
register pair is decremented by one.

Condition bits affected: None
Example:

If register H contains 98H and register L contains 00H,
the instruction:

DCX H

will cause register H to contain 97H and register L to con-
tain FFH.

XCHG Exchange Registers

Format:
Label Code Operand
oplab: XCHG —

111 |1 |0|1J0L1 |1

Description: The 16 bits of data held in the H and L
registers are exchanged with the 16 bits of data held in the
D and E registers.

Condition bits affected: None

Example:

If register H contains 00H, register L contains FFH,
register D contains 33H and register E contains 556H, the
instruction XCHG will perform the following operation:

Before XCHG | After XCHG
D E | D E
3] [e5] | [l [FE]
|
H L | H L
[0] [ee] | [33] [s5]
XTHL Exchange Stack
Format:
Label Code Operand
oplab: XTHL —_

‘!|1l1IO|0|0|1 1

Description: The contents of the L register are ex-
changed with the contents of the memory byte whose ad-
dress is held in the stack pointer SP. The contents of the H
register are exchanged with the contents of the memory
byte whose address is one greater than that held in the stack
pointer. ‘

Condition bits affected: None

Example:

If register SP contains 10ADH, registers H and L con-
tain OBH and 3CH respectively, and memory locations
10ADH and 10AEH contain FOH and ODH respectively, the
instruction X THL will perform the following operation:

Before XTHL After XTHL

'
HEX

MEMORY ADDRESS MEMORY
FF 10AC FF
S) 10AD 3C |« spP
0D 10AE 0B
FF 10AF FF
|
' |
H L ! H L
1
[oB] [3c] .
|

25

SPHL Load SP From H And L

Format:
Label Code Operand
oplab: SPHL —_—

1|1 l1 |1 I1|0|0|1

Description: The 16 bits of data heid in the H and L
registers replace the contents of the stack pointer SP. The
contents of the H and L registers are unchanged.

Condition bits affected: None

Example:

If registers H and L contain 50H and 6CH respectively,
the instruction SPHL will ioad the stack pointer with the
value 506CH.

IMMEDIATE INSTRUCTIONS

This section describes instructions which perform op-
erations using a byte or bytes of data which are part of the
instruction itself.

Instructions in this class occupy two or three bytes as
follows:

{a) For the LXI data instruction (3 bytes):

low data
La L b bl

high data

LAl 1 1.t

OIO 1))

*~———00 for registers B and C
01 for registers D and E
10 for registers H and L
11 for register SP

0|0|0|1

(b) For the MV data instruction (2 bytes):

data

B SO N B | T |

010 reg

S~———000 for register B
001 for register C
010 for register D
011 for register E
100 for register H
101 for register L
110 for memory ref. M
111 for register A

1|1|0

Rev. B

op

™~—_000 for ADI
001 for AC!
010 for SUI
011 for SBI
100 for ANI
101 for XRI
110 for ORI
111 for CP!

The LX!I instruction operates on the register pair
specified by RP using two bytes of immediate data.

1|1IO

The MVI instruction operates on the register specified
by REG using one byte of immediate data. If a memory
reference is specified, the instruction operates on the mem-
ory location addressed by registers H and L. The H register
holds the most significant 8 bits of the address, while the L
register holds the least significant 8 bits of the address.

The remaining instructions in this class operate on the
accumulator using one byte of immediate data. The result
replaces the contents of the accumulator.

The general assembly language instruction format is:

Label Code Operand
oplab: LXI rp, data
R) .
~~16-bit data quantity
B, D, H, or SP
Optional instruction label
Label Code Operand
oplab: MVI req, data
t \ N 8-bit data quantity
I AB,C.DEH,L, or M
Optional instruction labe!
or.
Label Code Operand
oplab: QP data
T 1 \B-bit data quantity
—_____ ADI,ACI,SUISBI,ANIXRI,ORLI,
or CPI
i
b _Optional instruction label

26

Format:

Label Code Operand
oplab: 4—‘_\LX_I-// rp, data \
&
OIO P 01010|1 data data

Description: The third byte of the instruction (the
most significant 8 bits of the 16-bit immediate data) is
loaded into the first register of the specified pair, while the
second byte of the instruction (the least significant 8 bits of
the 16-bit immediate data) is loaded into the second register
of the specified pair. |f SP is specified as the register pair, the
second byte of the instruction replaces the least significant
8 bits of the stack pointer, while the third byte of the in-

_ struction replaces the most significant 8 bits of the stack

pointer. :
Condition bits affected: None

NOTE: The immediate data for this instruction is a 16-bit
quantity. All other immediate instructions require
an 8-bit data value.

Example 1:

Assume that instruction label STRT refers to memory
location 103H (=259). Then the following instructions
will each load the H register with 01H and the L register
with O3H:

LX1 H,103H
LX!I H,259
LXI HSTRT

Example 2:

The following instruction loads the stack pointer with
the value 3ABCH:

LX! SP,3ABCH

MVI Move Immediate Data

Format:
Label Code Operand
oplab: Mvi reg, dita
(—F—-" "\——"/.
——— et am—
0 IO .reg' 1 |1 |0 data

Description: The byte of immediate data is stored in
the specified register or memory byte.

Condition bits affected: None

Example
Label Code Operand Assembled Data
M1: MVI H, 3CH 26EC
“M2: MVI L, OF4H 2EF4
_M3: Mvi M, OFFH 36FF

The instructions at M1 loads the Hregister with the
byte of data at M1 + 1, i.e., 3CH.

Likewise, the instruction at M2 loads the L register
with OF4H. The instruction at M3 causes the data at M3 + 1
(OFFH) to be stored at memory location 3CF4H. The mem-
ory location is obtained by concatenating the contents of
the H and L registers into a 16-bit address.

NOTE: The instructions at M1 and M2 above could be re-
placed by the single instruction:

LXI H, 3CF4H

ADI Add Immediate To Accumulator

Format:
Label Code Operand
oplab: — ADI . data
r—— r———— —
Al CILC AR I

Description: The byte of immediate data is added to
the contents of the accumulator using two’s complement
arithmetic.

Condition. bits affected: Carry, Sign, Zero, Parity,
Auxiliary Carry

Example:
Label Code Operand Assembled Data
AD1: MVI A, 20 3E14
AD2: ADI 66 C642
AD3: ADI -66 C6BE

The instruction at AD1 loads the accumulator with
14H. The instruction at AD2 performs the following
addition:

Accumulator = 14H = 00010100

AD2 Immediate Data = 42H = 01000010
Result = 01010110 = 56H = New
accumulator

The parity bit is set. Other status bits are reset.

The instruction at AD3 restores the original contents
of the accumulator by performing the following addition:

Accumulator = 56H = 01010110
AD3 Immediate Data = OBEH = 10111110
~ Resuit = 00010100 = 14H

The Carry, Auxiliary Carry, and Parity bits are set.
The Zero and Sign bits are reset.

27

ACI| Add Immediate To Accumulator With Carry

Format:
Label Code Operand
oplab: . ACI Idata
—t———— ,——A——-‘
1]1 0|0|1 1|1|0 : data

Description: The byte of immediate data is added to
the contents of the accumulator plus the contents of the
carry bit.

Condition bits affected: Carry, Sign, Zero, Parity,
Auxiliary Carry

Example:
Label Code Operand Assembled Data
C1t: MVI A, 56H 3E56
C2: ACI -66 CEBE
C3: ACI 66 CE42

Assuming that the Carry bit = 0 just before the in-
struction at C2 is executed, this instruction will produce the
same result as instruction AD3 in the example of Section
3.103.

That is:

Accumulator = 14H
Carry =1

The instruction at C3 then performs the following

addition:

Accumulator = 14H = 00010100
C3 Immediate Data = 42H = 01000010
Carry bit=1 = 1

Result = 01010111 = 57H

SUI Subtract Immediate From Accumulator

Format:
Label Code Operand
oplab: - SUIl Kdata
— e e,
1101
1J1 ol l l1|0 1 i 1da-ta| 1 L

Description: The byte of immediate data is subtracted
from the contents of the accumulator using two’s comple-
ment arithmetic.

Since this is a subtraction operation, the carry bit is
set, indicating a borrow, if there is no carry out of the high-
order bit position, and reset if there is a carry out.

Condition bits affected: Carry, Sign, Zero, Parity,
Auxiliary Carry

Example:

This instruction can be used as the equivalent of the
DCR instruction.

Label Code Operand Assembled Data
MV A0 3EQ0
S1: SuUI 1 D601

The MVI instruction loads the accumulator with zero.
The SUI instruction performs the following subtraction:

Accumulator = OH = 00000000
-S1 Immediate Data=-1H =11111111 two’s complement
Result =11111111 = -1H
Since there was no carry, and this is a subtract opera-
tion, the Carry bit is set, indicating a borrow.

The Zero and Auxiliary Carry bits are also reset,
while the Sign and Parity bits are set.

SBl Subtract Immediate from Accumulator
With Borrow

Format:
Label Code Operand
oplab: «» SBI data
111,140
L o T A LA

Description: The Carry bit is internally added to the
byte of immediate data. This value is then subtracted from
the accumulator using two'’s complement arithmetic.

This instruction and the SBB instruction are most use-
ful when performing multibyte subtractions. For an ex-
ample of this, see the section on Multibyte Addition and
Subtraction in Chapter 4.

Since this is a subtraction operation, the carry bit is
set if there is no carry out of the high-order position, and
reset if there is a carry out.

Condition bits affected: Carry, Sign, Zero, Parity,
Auxiliary Carry

Example:
Label Code Operand Assembled Data
XRA A AF
SBI 1 DEO1

The XRA instruction witl zero the accumulator (see
example earlier in this chapter). If the Carry bit is zero, the
SBI instruction will then perform the following operation:

28

Immediate Data + Carry = 01H
Two's Complement of 01TH = 11111111

Adding this to the accumulator produces:

Accumulator = OH = 00000000
1111111
11111111 = -1H = Result
l-_> carry out = 0 causing the Car(y bit to be set
The Carry bit is set, indicating a borrow. The Zero and
Auxiliary Carry bits are reset, while the Sign and Parity bits
are set.) '
If, however, the Carry bit is one, the SB! instruction
will perform the following operation:

Immediate Data + Carry = 02H
Two's Complement of 02H = 11111110

Adding this to the accumulator produces:

Accumulator = OH = 00000000
IARRAREE]

L)—HHIHO = -2H = Result

carry out = 0 causing the Carry bit to be set
This time the Carry and sign bits are set, while the

zero, parity, and auxiliary Carry bits are reset.

ANI And Immediate With Accumulator

Format:
Label Code Operand
oplab: __—ANI data
eeme—— e s,
1J1 1|0101|1|0 data

Description: The byte of immediate data is logically
ANDed with the contents of the accumulator. The Carry bit
is reset to zero.

Condition bits affected: Carry, Zero, Sign, Parity

Example:
Label Code Operand Assembled Data
MOV A C 79
Al: ANI OFH E60F

The contents of the C register are moved to the accu-
mutator. The ANI instruction then zeroes the high-order
four bits, leaving the low-order four bits unchanged. The
Zero bit will be set if and only if the low-order four bits
were originally zero.

If the C register contained 3AH, the AN! would per-
form the following:

Accumulator = 3AH = 00111010
AND (A1 Immediate Data) = 0FH = 00001111
" Result = 00001010 = OAH

XRI Exclusive-Or Immediate With Accumulator

Format:
Label Code Operand
oplab: - XRI &iata
«
e te——— e —
L A S L e e

Description: The byte of immediate data is EXCLU-
SIVE-ORed with the contents of the accumulator. The carry
bit is set to zero.

Condition bits affected: Carry, Zero, Sign, Parity

Example:

Since any bit EXCLUSIVE-ORed with a one is com-

plemented, and any bit EXCLUSIVE-ORed with a zero'is
unchanged, this instruction can be used to complement spe-
cific bits of the accumulator. For instance, the instruction:

XRI 81H

will complement the least and most significant bits of the
accumulator, leaving the rest unchanged. If the accumulator
contained 3BH, the process would work as follows:

Accumulator = 3BH= 00111011
XRI Immediate data = 81H =106000001
Result = 10111010

ORI Or Immediate With Accumulator

Format:
Label Code Operand
oplab: P ORI /data
m——. P ——— —
dat
4 0 A A L A B

Description: The byte of immediate data is logically
ORed with the conterts of the accumulator.

The result is stored in the accumulator. The Carry bit -

is reset to zero, while the Zero, Sign, and Parity bits are set
according to the result,

Condition bits affected: Carry, Zero, Sign, Parity

Example:
I
- Label Code Operand Assembly Data
Mov AC 79
[OR1: ORI OFH F60F

L

The contents of the C register are moved to the accu-
mulator. The ORI instruction then sets the low-order four

bits to one, leaving the high-order four bits unchanged.

if the C register contained 0BSH, the ORI would per-
form the following:
Accumulator= 0B5H = 10110101

OR (OR1 Immediate data) = 0OFH =00001111
Result = 10111111 = 0BFH

' CPl Compare Immediate With Accumulator

Format:
Label Code Operand
oplab: - CPI {data
Al A RTAE A AT A SR

Description: The byte of immediate data is compared
to the contents of the accumulator.

The comparison is performed by internally subtract-
ing the data from the accumulator using two’s complement
arithmetic, leaving the accumulator unchanged but setting
the condition bits by the result.

In particular, the zero bit is set if the quantities are
equal, and reset if they are unequal.

Since a subtract operation is performed, the Carry bit
will be set if there is no carry out of bit 7, indicating the
immediate data is greater than the contents of the accumu-
lator, and reset otherwise. :

NOTE: [f the two quantities to be compared differ in sign,
the sense of the Carry bit is reversed.

Condition bits affected: Carry, Zero, Sign, Faiiiy,
Auxiliary Carry

Example: _
I o |
| Label Code Operand Assembled Data |
i MVI A, 4AH 3E4A |

CPI 40H FEA40

The CP1 instruction performs the following operation:

Accumulator = 4AH= 01001010
+(-Immediate data)= -40H= 11000000
1] 00001010 = Result

carry out = 1 causing the Carry bit to be reset

The accumulator still contains 4AH, but the zero bit
is reset indicating that the quantities were unequal, and the
carry bit is reset indicating DATA is less than the
accumulator.

Rev. B

DIRECT ADDRESSING INSTRUCTIONS

This section describes instructions which reference
memory by a two-byte address which is part of the instruc-
tion itself. Instructions in this class occupy three bytes as
follows:

hi add

low add

S

0|0|1 olp 0l1|0

1 t
[most significant 8
bits of a memory
address

least significant B bits of a
memory address

10 for STA
11 for LDA
00 for SHLD
01 for LHLD

Note that the address is held least significant byte
first.
The gene}al assembly language format is:
Code
op

Label
label:

Operand

exp

—

STA, LDA, SHLD, or LHLD

A 16-bit memory address

Optional instruction label

STA Store Accumulator Direct

Format:
~ Label Code Operand
oplab: STA adr
s YN
OIOII 1|0 0|1|0 low add hi add

Description: The cdnténts of the accumulator replace
the byte at the memory address formed by concatenating
HI ADD with LOW ADD.

Condition bits affected: None
Example:

The following instructions will each store the contents
of the accumulator at memory address 583H:

SAC: STA 5B3H
STA 1459
LAB: STA 010110110011B

30

LDA Load Accumulator Direct

Format:
Label Code Operand
oplab: - LDA ‘(adr\
010f1]1|*]0")0] lowadd | hiadd

Description: The byte at the memory address formed
by concatenating HI ADD with LOW ADD replaces the con-
tents of the accumulator.

Condition bits affected: None
Example:

The following instructions will each replace the accu-
mulator contents with the data held at location 300H:

LOAD: LDA 300H
LDA 3%(16"16)
GET: LDA 200H+256
SHLD Store H and L Direct
Format:
Label Code Operand
oplab: P SHLD v adr \
mp 0 |0 0[1 IO low addr lhidl.addr

Description: The contents of the L register are stored
at the memory address formed by concatenating HI ADD
with LOW ADD. The contents of the H register are stored at
the next higher memory address.

Condition bits affected: None

Example:

If the H and L registers contain AEH and 29H respec-
tively, the instruction:

SHLD 10AH
will perform the following operation:
i
Memory HEX Memory
Before SHLD ADDRESS After SHLD

00 109 00

00 10A 29

00 108 AE

00 10C 00
|

LHLD Load H And L Direct

Format:
Label Code Operand
oplab: . LHLD v adr “
0|0|1 Oll 0|1|0 low add hi add

Description: The byte at the memory address formed
by concatenating Hl ADD with LOW ADD replaces the con-
tents of the L register. The byte at the next higher memory
address replaces the contents of the H register.

Condition bits affected: None
Example:

If memory locations 25BH and 25CH contain FFH
and 03H respectively, the instruction:

LHLD 25BH

will load the L register with FFH, and will load the H regis-
ter with O3H.

JUMP INSTRUCTIONS

This section describes instructions which alter the nor-
mal execution sequence of instructions. Instructions in this
class occupy one or three bytes as follows:

(a) For the PCHL instruction (one byte):

1
B T A A

(b) For the remaining instructions (three bytes):

hi add

low add

111 xlxlx 0|1 X

1 1 1 mostssignificant 8
bits of a memory

address

least significant 8 bits of a
memory address

1 for JMP, 0 otherwise

|__ 000 for JMP or JNZ
001 forJz

010 for JNC

011 for JC

100 for JPO

101 for JPE

110 for JP

111 for JM

Note that, just as addresses are normally stored in
memory with the low-order byte first, so are the addresses

3

represented in the Jump instructions.

The three-byte instructions in this class cause a trans-
fer of program contro! depending upon certain specified con-
ditions. If the specified condition is true, program execution
will continue at the memory address formed by concatenat-
ing the 8 bits of HI ADD (the third byte of the instruction)
with the 8 bits of LOW ADD (the second byte of the instruc-
tion). If the specified condition is false, program execution
will continue with the next sequential instruction.

The general assembly language format is:

Label Code Operand
oplab: PCHL
\not used
Optional instruction label
—Or—
Label Code Operand
label: op EXP

K \ A 16-bit address
JMP,JC,INC,JZ,IJNZ.,JM,JP JPE JPO

Optional instruction label

PCHL Load Program Counter

Format:
Label Code Operand
oplab: PCHL —_—

IJ1J1]Oll |0|0I1

Description: The contents of the H register replace the
most significant 8 bits of the program counter, and the con-
tents of the L register replace the least significant 8 bits of
the program counter. This causes program execution to con-
tinue at the address contained in the H and L registers.

Condition bits affected: None
Example 1:

If the H register contains 41H and the L register con-
tains 3EH, the instruction:

PCHL

will cause program execution to continue with the instruc-
tion at memory address 413EH.

Example 2:

Arbitrary

Memory Assembled

Address Label Code Operand Data

40C0 ADR: DwW LOC 0042

4100 STRT: LHLD ADR 2AC040
PCHL E9

4200 LOC: NOP 00

Program execution begins at STRT. The LHLD in-
struction loads registers H and L from locations 40C1H
and 40COH; that is, with 42H and OOH, respectively. The
PCHL instruction then loads the program counter with
4200H, causing program execution to continue at location
LOC.

JMP JUMP
Format:
L.abel Code Operand
oplab: JMP v adr\
1110000 f] fowadd | hiadd

Description: Program execution continues uncondi-
tionally at memory address adr.

Condition bits affected: None

Example:
Arbitrary
Memory Assembled
Address Label Code Operand Data_-
3C00 JMP CLR C3003E
3C03 AD: ADI 2 C602
3D00 LOAD: MVI A3 3EQ3
3D02 JMP 3CO3H C3033C
3E00 CLR: XRA A . AF
3E01 JMP $-101H C3003D

The execution sequence of this example is as follows:

32

The JMP instruction at 3COOH replaces the contents
of the program counter with 3EQOH. The next instruction
executed is the XRA at CLR, clearing the accumulator. The
JMP at 3E01H is then executed.

The program counter is set to 3DO0H, and the MVI at
this address loads the accumulator with 3. The JMP at
3D02H sets the program counter to 3CO3H, causing the ADI
instruction to be executed.

From here, normal program execution continues with
the instruction at 3CO5H.

JC Jump If Carry

Format:
Label Code Operand
oplab: JC v adr\
111 0|1I1 0|1|0 low add hi add
L1 1 1 1 2 1 Lt 2 1111

Description: If the Carry bit is one, program execu-
tion continues at the memory address adr.

Condition bits affected: None

For a programming example, see the section on JPO
later in this chapter.

JNC Jump If No Carry

Format:
Label Code Operand
oplab: JNC v adr .,
1|1 0]1]0 OIIIO low add hi add
LL Al s 11t |

Description: If the Carry bit is zero, program execu-
tion continues at the memory address adr.

Condition bits affected: None

For a programming example sce the section on JPO
later in this chapter.

JZ Jump If Zero

Format:
Labe! Code Operand
" oplab: JZ v adr S
1|1 0|0|1 0|1IO low add hi add
Al iy it

Description: If the zero bit is one, program execution
continues at the memory address adr.

Condition bits affected: None

JNZ Jump If Not Zero

Format:
Label Code Operand
oplab: JNZ adr
4 \
1l1 0|0|0 0l1 0] lowadd hi add
Lid il s s bt i a2t 0

Description: If the Zero bit is zero, program execu-
tion continues at the memory address adr.

Condition bits affected: None

JM Jump If Minus

Format:
Label Code Operand
oplab: JM adr
"4 N
oYt e] fowadd |, hiadd

Description: If the Sign bit is one (indicating a nega-
tive result), program execution continues at the memory
address adr.

Condition bits affected: None

JP Jump If Positive

Format:
Label Code Operand
oplab: JpP adr
Y N
TP O T (O fowadd | hiadd

Description: If the sign bit is zero, (indicating a posi-
tive result), program execution continues at the memory
address adr.

Condition bits affected: None

JPE Jump If Parity Even

Format:
Label Code_ Operand
oplab: JPE adr
'4 N
TPOIO) (O] owadd, |, hiadd

Description: If the parity bit is one (indicating a result
with even parity), program execution continues at the mem-
ory address adr.

33

Condition bits affected: None
JPO Jump If Parity Odd

Format:
Label Code Operand
oplab: JPO adr
v N
V0010 O towadd | hiadd

Description: If the Parity bit is zero (indicating a re-
sult with odd parity), program execution continues at the
memory address adr.

Condition bits affected: None
Examples of jump instructions:

This example shows three different but equivalent
methods for jumping to one of two points in a program
based upon whether or not the Sign bit of a number is set.
Assume that the byte to be tested is in the C register.

Assembled

Label Code Operand Data
ONE: MoV AC 79

ANI 80H E680

Jz PLUS CAXXXX

INZ MINUS C2XXXX
TWO: MOV AC 79

RLC 07

JINC PLUS D2XXXX

JMP MINUS C3IXXXX
THREE: MOV AC 79

ADI 0 C600

JM MINUS FAXXXX
PLUS: SIGN BIT

RESET

MINUS: SIGN BIT SET

The AND immediate instruction in block ONE zeroes
all bits of the data byte except the Sign bit, which remains
unchanged. If the Sign bit was zero, the Zero condition bit
will be set, and the JZ instruction will cause program con-
trol to be transferred to the instruction at PLUS. Otherwise,
the JZ instruction will merely update the program counter
by three, and the JNZ instruction will be executed, causing
control to be transferred to the instruction at MINUS. (The
Zero bit is unaffected by all jump instructions).

The RLC instruction in block TWO causes the Carry
bit to be set equal to the Sign bit of the data byte. If the
Sign bit was reset, the JNC instruction causes a jump to
PLUS. Otherwise the JMP instruction is executed, uncondi-
tionally transferring control to MINUS. (Note that, in this
instance, a JC instruction could be substituted for the un-
conditional jump with identical results).

lhe add immediate instruction in block THREE:
causes the condition bits to be set. If the sign bit was set,
the JM instruction causes program control to be transferred

to MINUS. Otherwise, program control flows automatically -

into the PLUS routine.

CALL SUBROUTINE INSTRUCTIONS

This section describes the instructions which call sub-
routines. These instructions operate like the jump instruc-
tions, causing a transfer of program control. In addition, a
return address is pushed onto the stack for use by the
RETURN instructions {see Return From Subroutine In-
structions later in this chapter).

Instructions in this class occupy three bytes as follows:

I|1 xlxlx 1|0 X | low add t\

A A T

most significant 8
bits of a memory
address

i add

I
11131

least significant 8 bits of a
memory address

1 for CALL, O otherwise

L 000 for CNZ

001 for CZ or CALL
010 for CNC

011 for CC

100 for CPO

101 for CPE

110 for CP

111 for CM

Note that, just as addresses are normally stored in .

memory with the low-order byte first, so are the addresses
represented in the call instructions.

The general assembly language instruction format is:
Label Code
label: op sub

Operand

\ A 16-bit memory address
CALL,CC,CNC,CZ,CNZ,CM,CP,CPE,CPO
Optional instruction label
instructions in this class call subroutines upon certain

specified conditions. If the specified condition is true, a re-
turn address is pushed onto the stack and program execution

continues at memory address SUB, formed by concatenating
the 8 bits of HI ADD with the 8 bits of LOW ADD. if the
specified condition is false, program execution continues
with the next sequential instruction.

CALL cCall
Format:
Label Code Operand
oplab: CALL sub
"4 N

low add hi add

Lii 1t 11 Lt it 11

1l1 0[0!1 1I0 1

Description: A call operation is unconditionally per-
formed to subroutine sub.

Condition bits affected: None

For programming examples see Chapter 4.

CC Call If Carry

Format:
Label Code Operand
oplab: CC sub
g N

low add hi add

1111111 1.1 1.0 1322

111 0|1l1 1|0l0

Description: |f the Carry bit is one, a call operation is
performed to subroutine sub.

Condition bits affected: None

For programming examples using subroutines, see
Chapter 4.

CNC Call If No Carry

Format:
Label Code Operand
oplab: CNC sub
¢ X
| .
OO 00 foadd | hiadd

Description: |f the Carry bit is zero, a call operation is
performed to subroutine sub.

Rev. B

Condition bits affected: None

For programming examples using subroutines, see
Chapter 4.

CZ Call If Zero

Format:
Label Code Operand
oplab: ’ CZ sub
e \
L i o 0 B el

Description: If the Zero bit is zero, a call operation is
performed to subroutine sub.

Condition bits affected: None

For programming examples using subroutines, see
Chapter 4.

CNZ Call If Not Zero

Format:
~ Label Code Operand
oplab: CNz sub
"4 N

1|1 OIOIO 1I0 0

low add hi add
LLl

Description: If the Zero bit is one, a call operation is
performed to subroutine sub.

Condition bits affected: None

For programming examples using subroutines, see
Chapter 4.

CM Call If Minus

Format:
Label Code Operand
oplab: c™M sub
'e X
TP 000 lowasd | hiadd

Description: If the Sign bit is one (indicating a minus
result), a calt operation is performed to subroutine sub.

Condition bits affected: None

For programming examples using subroutines, see
Chapter 4.

~ P Call If Plus

Format:
Label Code Operand
oplab: cp : sub
I'4 N

1l1 1|1I0 1]0|0

low add hi add
1 0411012 21 440 0

Description: If the Sign bit is zero (indicating a posi-
tive result), a call operation is performed to subroutine sub.

Condition bits affected: None

For programming examples using subroutines, see
Chapter 4.

CPE Call If Parity Even

Format:
Label Code Operand
oplab: CPE sub
4 N
Tl ATl T Pl e

Description: If the Parity bit is one (indicating even
parity), a call operation is performed to subroutine sub.

Condition bits affected: None
For programming examples using subroutines, see
Chapter 4.

CPO Call If Parity Odd

Format:
Label Code Operand
oplab: CPO sub
v N

1|1 1|0|0 1|0|0 low add hi add
L1 ii111 Al 1l 1l 11

Description: If the Parity bit is zero (indicating odd
parity), a call operation is performed to subroutine sub.

Condition bits affected: None

For programming examples using subroutines, see
Chapter 4.

RETURN FROM SUBROUTINE INSTRUCTIONS

This section describes the instructions used to return
from subroutines. These instructions pop the last address
saved on the stack into the program counter, causing a trans-
fer of program control to that address.

Instructionz in this class occupy one byte as follows:

AXX
1 1

0,0 |x
I

\ 1 for RET,

0 otherwise

000 for RNZ

001 for RZ or RET
010 for RNC

011 for RC

100 tor RPO

101 for RPE

110 for RP

111 for RM

The general assembly language instruction format is:
Code

op

Label
oplab:

\

Optional statement label

Operand

S— not used

ET,RC,RNC,RZ,RNZ,RM,RP,RPE,RPO

Instructions in this class perform RETURN operations
upon certain specified conditions. If the specified condition
is true, a return operation is performed. Otherwise, program
execution continues with the next sequential instruction.

RET Return
Format:
Label Code Operand
oplab: RET e
1 |1 0 IO |1 0 IO 1

Description: A return operation is unconditionally
performed.

Thus, execution proceeds with the instruction immedi-
ately following the last call instruction.

Condition bits affected: None

RC Return If Carry

Format:
Label Code Operand
oplab: RC _
P Y
1 |1 0 I‘l I1 0 IO IO

36

Description: If the Carry bit is one, a return operation
is performed.

Condition bits affected: None

For programming examples, see Chapter 4.

RNC Return If No Carry

Format:
Label Code Operand
oplab: ‘ RNf —_
1|1 OI‘I'O 010|0|

Description: If the carry bit is zero, a return operation
is performed.

Condition bits affected: None

For programming examples, see Chapter 4.

RZ Return If Zero

Format:
Label Code Operand
oplab: RZ —_—
1 l1 0 |0 I‘l 0 IO IO

Description: If the Zero bit is one, a return operation
is performed.

Condition bits affected: None

For programming examples, see Chapter 4.

RNZ Return If Not Zero

Format:
Label Code Operand
oplab: RN\z\‘ N
1 l‘l 0 lO |O 0 |0 0

Description. If the Zero bit is zero, a return operation
is performed.

Condition bits affected: None

For programming examples, see Chapter 4.

Rev. B

RM Return If Minus

Format:
Label Code erand
oplab: "RM _—

1|‘I 1|1|1 OIOO

Description: If the Sign bit is one (indicating a minus
result), a return operation is performed.

Condition bits affected: None

For programming examples, see Chapter 4.

RP Return If Plus

Format:
Label Code Operand
oplab: RP —_—

1|1 1|1|0 OJOIO

Description: If the Sign bit is zero (indicating a posi-
tive result), a return operation is performed.

Condition bits affected: None
For programming examples, see Chapter 4.

RPE Return If Parity Even

Format:
Label Code Operand
oplab: RPE _

e ———

111 1|0|1 OIOIO

Description: If the Parity bit is one {indicating even
parity), a return operation is performed.

Condition bits affected: None

For programming examples, see Chapter 4.

RPO Return If Parity Odd

Format:
Label Code Operand
oplab: RPO —_—

"

1J1 1|O|0 OIOID

Description: If the Parity bit is zero (indicating odd
parity), a return operation is performed.

Condition bits affected: None
For programming examples, see Chapter 4.

RST INSTRUCTION

This section describes the RST (restart) instruction,
which is a special purpose subroutine jump. This instruction
occupies one byte.

Format:
Label Code Operand
oplab: RST / exp

1J1 exp 1J1I1

L1

NOTE: “exp” must evaluate to a number in the range
0008 to 111B.

Description: The contents of the program counter
are pushed onto the stack, providing a return address for
later use by a RETURN instruction.

Program execution continues at memory address:
0000000000EXPOOOB

Normally, this instruction is used in conjunction with
up to eight eight-byte routines in the lower 64 words of
memory in order to service interrupts to the processor. The
interrupting device causes a particular RST instruction to be
executed, transferring control to a subroutine which deals
with the situation as described in Section 6.

A RETURN instruction then causes the program
which was originally running to resume execution at the
instruction where the interrupt occurred.

Condition bits affected: None

Example:
Label Code Operand Comment
RST 10-7 ; Calt the subroutine at

. address 24 (0110008B)
RST ESHL 1 ;Call the subroutine at
; address 48 (110000B). E
; is equated to 11B.
RST 8 s Invalid instruction
RST 3 ; Call the subroutine at
; address 24 (0110008B)

For detailed examples of interrupt handling, see
Chapter 5.

37

INTERRUPT FLIP-FLOP INSTRUCTIONS

This section describes the instructions which operate
directly upon the Interrupt Enable flip-flop INTE. Instruc-
tions in this class occupy one byte as follows:

1lllll‘l X0|1|1

w

\1 for El

0 for DI

The general assembly language format is:
Label Code Operand
label: op
‘\ ™~ not used
El or DI

Optional instruction label

El Enable Interrupts

Format:
Label Code Operand
oplab: El _

1|1|1 I1|1|0|1l1

Description: This instruction sets the INTE flip-flop,
enabling the CPU to recognize and respond to interrupts.

Condition bits affected: None

DI Disable Interrupts

Format:
Label Code Operand
oplab: DI —

1£|1|1|OIOI1|1

Description: This instruction resets the INTE flip-flop, ‘

causing the CPU to ignore all interrupts.

Condition bits affected: None

- Label Code

INPUT/OUTPUT INSTRUCTIONS

This section describes the instructions which cause
data to be input to or output from the 8080. Instructions in
this class occupy two bytes as follows:

T el O

e —————t
T

8-bit device number

1for IN
0 for OUT

The device number is a hardware characteristic of the
input or output device, not under the programmer’s control.

The general assembly language format is:

Operand

label: op exp

\ ™~ An 8-bit device number
INor OUT

Optional instruction label

IN Input
Format:
Label Code Operand
oplab: IN exp
[essestem—
et ey Tty e,

Description: An eight-bit data byte is read from input
device number exp and replaces the contents of the
accumulator.

Condition bits affected: None

Example:

Label Code Operand Comment

IN 0 ; Read one byte from input
; device # 0 into the
, accumulator

IN 10/2 ; Read one byte from input

; device # 5 into the
; accumulator

OUT Output
Format:
Label Code Operand
oplab: ouT I/exp
et —
1I‘I0I1J°I0Ill1 A ' lelxpl 'l 'l

Description: The contents of the accumulator are sent
to output device number exp.

Condition bits affected: None

Example:

It acts merely to provide the assembler with information to
be used subsequently while generating object code.

The general assembly language format of a pseudo-
instruction is:

Label Code Operand Comment

Label Code Operand Comment

ouT 10 ;. Write the contents of the
; accumulator to output
; device # 10

ouT - 1FH ; Write the contents of the

; accumulator to output
; device # 31

HLT HALT INSTRUCTION

This section describes the HLT instruction, which oc-
cupies one byte.

Format:
Label Code _ Operand
oplab: HLT
not used

0J1J1J1 l011J1l0

Description: The program counter is incremented to
the address of the next sequential instruction. The CPU then
enters the STOPPED state and no further activity takes
piace until an interrupt occurs.

name op opnd
~ Operand, may be optional

\

NOTE: Names on pseudo-instructions are not followed by
a colon, as are labels. Names are required in the
label field of EQU, and SET pseudo-
instructions. The label fields of the remaining
pseudo-instructions may contain optional labels,
exactly like the labels on machine instructions. In
this case, the label refers to the memory location
immediately following the last previously assem-
bled machine instruction. If present, names

may be any number of
characters long.

ORG,EQU,SET,END,

name may be required, option, or illegal

ORG Origin
Format:
Label Code Operand
oplab: ORG exp
1

A 16-bit address

Description: The assembler’s {ocation counter is set to
the value of exp, which must be a valid 16-bit memory ad-
dress. The next machine instruction or data byte(s) gener-
ated will be assembled at address exp, exp+1, etc.

If no ORG appears before the first machine in-

struction or data byte in the program, assembly will begin
at location 0 AOOOH :

PSEUDO — INSTRUCTIONS

This section describes pseudo-instructions recognized
by the assembler. A pseudo-instruction is written in the same
fashion as the machine instructions described earlier in this
chapter, but does not cause any object code to be generated.

Example 1:
Hex Memory Assembled
Address Label Code Operand Data
ORG 1000H

1000 MOV AC 79

1001 ADI 2 C602

1003 JMP NEXT C35010
HERE: ORG 1050H

1050 NEXT: XRA A AF

The first ORG pseudo-instruction informs the assem-
bler that the object program will begin at memory address

1000H. The second ORG tells the assembler to set its loca-

tion counter to 1050H and continue assembling machine in-
structions or data bytes from that point. The label HERE
refers to memory location 1006H, since this is the address
immediately following the jump instruction. Note that the
range of memory from 1006H to 104FH is still included in
the object program, but does not contain assembled data. In
particular, the programmer should not assume that these
locations will contain zero, or any other value.

Example 2:

The ORG pseudo-instruction can perform a function
equivalent to the DS (define storage) instruction (see the
section on DS earlier in this chapter). The following two
sections of code are exactly equivalent: ‘

Memory - Assbl.
Address|Label Code Operand |Label Code Operand Data
2C00 MOV AC MOV AC 79
2CO01 JMP NEXT JMP NEXT {(C3102C
2C04 DS 12 ORG $+12
2C10 [NEXT: XRA A NEXT:XRA A AF
EQU Equate
Format:
Label Code Operand
name EQU exp
——

')
\ An expression

Required name

Description: The symbol ““name’ is assigned the value
by EXP by the assembler. Whenever the symbol ‘‘name’’ is
encountered subsequently in the assembly, this value will be
used.

NOTE: Asymbol may appear in the name field or only one
EQU pseudo~instru¢tion; i.e., an EQU symbol may
not be redefined.

Example:
Label Code Operand Assembled Data
PTO EQU 8
ouT PTO D308

40

The OUT instruction in this example is equivalent to
the statement:

ouT 8

If at some later time the programmer wanted the
name PTO to refer to a different output port, it would be
necessary only to change the EQU statement, not every
OUT statement.

SET
Format:
Label Code Operand
name SET exp

1
An expression

Required name

|u

Description: The symbol ““name’ is assigned the value
of exp by the assembler. Whenever the symbo! “name’ is
encountered subsequently in the assembly, this value will be
used unless changed by another SET instruction.

This is identical to the EQU equation, except that
symbols may be defined more than once.

Example
Label Code Operand Assembled Data
IMMED SET 5
ADI IMMED C605
IMMED SET 10H-6
ADI IMMED C60A
END End Of Assembly
Format:
Label Code Operand
oplab: END —_

Description: The END statement signifies to the as-
sembler that the physical end of the program has been
reached, and that generation of the object program and (pos-
sibly) listing of the source program should now begin.

One and only one END statement must appear in
every assembly, and it must be the (physically) last state-
ment of the assembly.

’5

‘&\‘\G \)66

v‘ W
RUSIEL
(@) o $00 “gG

This section describes some techniques other than
macro: which may be of help to the programmer,

BRANCH TABLES PSEUDO-SUBROUTINE

Suppose a program consists of several separate rou-
tines, any of which may be executed depending upon some
initial condition (such as a number passed in a register). One
way to code this would be to check each condition sequenti-
ally and branch to the routines accordingly as follows:

CONDITION = CONDITION 1?
IF YES BRANCH TO ROUTINE 1
CONDITION = CONDITION 2?
IF YES BRANCH TO ROUTINE 2

BRANCH TO ROUTINE N

A sequence as above is inetficient, and can be im-
" proved by using a branch table.

The logic at the beginning of the branch table program
computes a pointer into the branch table. The branch table
itself consists of a list of starting addresses for the routines
to be branched to. Using the pointer, the branch table pro-
gram loads the selected routine’s starting address into the
address bytes of a jump instrasiion, then executes the jump.
For exarple, consider a prosram that executes cne of'eight
routines depending on which bit of the accumulator is set:

41

Jump to routine 1 if the accumulator holds 00000001
00000010
00000100
00001000
00010000
00100000
01000000
10000000

v " o0 (7] 2] o

0 " o s o v
" 2] "”w o Iz o
" g e 0w s v "
" o ” ”

”w e , o

O NOO_WN

" s " oo

A program that provides the above logic is given at the
end of this section. The program is termed a ‘‘pseudo-
subroutine” because it is treated as a subroutine by the pro-
grammer (i.e., it appears just once in memory), but it is
entered via a regular JUMP instruction rather than via a
CALL instruction. This is possible because the branch rou
tine controls subsequent execution, and will never return to
the instruction following the call:

Main Program Branch Table Jump
Program Routines
/ /’/’
- S
-
-~ _ EE———
o=

sequence not followed by
Lrar:ch table program

Rev B

Label Code Operand
START: LXI H, BTBL ; Registers H and L will
; point to branch table.
GTBIT: RAR
Jc GETAD
INX H S(H,L=H L2 10
INX H ; point to next address
; in branch table.
JMP GTBIT
GETAD: MOV EM ; A one bit was found.
INX H ; Get address in D and
; E.
MOV DM
XCHG ; Exchange D and E
;withHand L.
PCHL ; Jump to routine
; address.
BTBL: DW ROUT1 ; Branch table. Each
DW. ROUT2 ;entry is a two-byte
, address
bDw ROUT3 ; held least significant
Dw ROUT4 ; byte first,
DW ROUTS
DW ROUT6
DW ROUT7
DW ROUTS

The control routine at START uses the H and L regis-
ters as a pointer into the branch table (BTBL) corresponding
to the bit of the accumulator that is set. The routine at
GETAD then transfers the address held in the corresponding
branch table entry to the H and L registers via the D and E
registers, and then uses a PCHL instruction, thus transferring
control to the selected routine.

SUBROUTINES

Frequently, a group of instructions must be repeated
many times in a program. As we have seen in Chapter 3, it is
sometimes helpful to define a macro to produce these
groups. If a macro becomes too lengthy or must be repeated
many times, however, better economy can be obtained by
using subroutines. :

- A subroutine is coded like any other group of assembly
language statements, and is referred to by its name, which is
the label of the first instruction. The programmer references
a subroutine by writing its name in the operand field of a
CALL instruction. When the CALL is executed, the address
of the next sequential instruction after the CALL is pushed
onto the stack (see the section on the Stack Pointer in
Chapter 1), and program execution proceeds with the first
instruction of the subroutine. When the subroutine has com-
pleted its work, a RETURN instruction is executed, which

42

causes the top address in the stack to be popped into the
program counter, causing program execution to continue
with the instruction following the CALL. Thus, one copy of
a subroutine may be called from many different points in
memory, preventing duplication of code.

Example:

Subroutine MINC increments a 16-bit number held
leastsignificant-byte first in two consecutive memory loca-
tions, and then returns to the instruction following the last

CALL statement executed. The address of the number to be
incremented is passed in the H and L registers.

Egt_ge_l Code Operand Comment
MINC: INR ‘M ; Increment low-order byte
RNZ ; If non-zero, return to
; calling routine
INX H ; Address high-order byte
INR M : Increment high-order byte
RET ; Return unconditionally

Assume MINC appears in the following program:

. Arbitrary

Memory Address

Arbitrary

Memory Address
2C00 CALL MINC 3C00,| MINC
2EFO CALL MINC

When the first call is executed, address 2C0O3H is
pushed onto the stack indicated by the stack pointer, and
control is transferred to 3COOH. Execution of either RE-
TURN statement in MINC will cause the top entry to be
popped off the stack into the program counter, causing exe-
cution to continue at 2C0O3H (since the CALL statement is
three bytes long).

Stack After

Stack Before Stack While RETURN
CALL MINC Executes is Performed

FF FE |3tk fpp

Pointer
FF 2c 2
Stack < Stack
FF ‘—Pointer 00 00 Pointer
FF FF FF

When the second call is executed, address 2EF3H is
pushed onto the stack, and control is again transferred to
MINC. This time, either RETURN instruction will cause exe-
cution to resume at 2EF3H.

Note that MINC could have called another subroutine
during its execution, causing another address to be pushed
onto the stack. This can occur as many times as necessary,
limited only by the size of memory available for the stack.

Note also that any subroutine could push data onto
the stack for temporary ssorage without affecting the call
and return sequences as long as the same amount of data is
popped off the stack before executinga RETURN statement.

Transferring Data To Subroutines

A subroutine often requires data to perform its opera-
tions. In the simplest case, this data may be transferred in
one or more registers. Subroutine MINC in the last section,
for example, receives the memory address which it requires
in the H and L registers.

Sometimes it is more convenient and economical to let
the subroutine load its own registers. One way to do this is
to place a list of the required data (called a parameter list)
in some data area of memory, and pass the address of this
list to the subroutine in the H and L registers.

For example, the subroutine ADSUB expects the ad-
dress of a three-byte parameter list in the H and L registers.
It adds the first and second bytes of the list, and stores the
result in the third byte of the list:

Label Code Operand Comment
L H, PLIST ; Load H and L with
; addresses of the param-
; eter list
CALL ADSUB ; Call the subroutine
RETt: ——
PLIST: DB 6 ; First number to be added
DB 8 ; Second number to be
; added
DS 1 ; Result will be stored here
LXI H, LIST2 ; Load H and L registers
CALL ADSUB ;for another call toADSUB
RET2: ——
LIST2: DB 10
DB 35
DS 1
ADSUB: MOV A M ; Get first parameter
INX H ; Increment memory
; address
MOV B, M ; Get second parameter
ADD B . Add first to second
INX H ; Increment memory
; address
MOV M A ; Store result at third
; parameter store
RET ; Return unconditionally

43

The first time ADSUB is called, it loads the A and B
registers from PLIST and PLIST+1 respectively, adds them,
and stores the result in PLIST+2. Return is then made to
the instruction at RET1.

First call to ADSUB:

ADSUB: l‘i-] I‘_-]
06 | PLIST
08 PLIST+
L »] 0EH | PLIST+2

The second time ADSUB is called, the H and L regis-
ters point to the parameter list LIST2. The A and B registers
are loaded with 10 and 35 respectively, and the sum is stored
at LIST2 + 2. Return is then made to the instruction at
RET2.

Second call to ADSUB:

ADSUB: l H] :L|
[
O0A |LIST2
23 |LIST2+1
———> | 2D |LIST2+2

Note that the parameter lists PLIST and LIST2 could
appear anywhere in memory without altering the results pro-
duced by ADSUB.

This approach does have its limitations, however. As
coded, ADSUB must receive a list of two and only two num-
bers to be added, and they must be contiguous in memory.
Suppose we wanted a subroutine (GENAD) which would
add an arbitrary number of bytes, located anywhere in mem-
ory, and leave the sum in the accumulator.

This can be done by passing the subroutine a param-
eter list which is a list of addresses of parameters, rather
than the parameters themselves, and signifying the end of
the parameter list by a number whose first byte is FFH
{assuming that no parameters will be stored above address
FFQOOH).

Call to GENAD:

GENAD:

mjm

As implemented below, GENAD saves the current sum
{beginning with zero) in the C register. it then loads the ad-
dress of the first parameter into the D and E registers. If this
address is greater than or equal to FFOOH, it reloads the
accumulator with the sum held in the C register and returns

8| PARMI1 to the calling routine. Otherwise, it loads the parameter into
the accumulator and adds the sum in the C register to the
. ine then | back ick
o) -[1a] panwa fecmatr, e ot e oo b 1 ik e
ADR2
ADR3 13 | PARM3
ADR4
FFFF 82 | PARM2
Label Code Opera d Comment
LXI1 H, PLIST ; Calling program
CALL GENAD
PLIST: bw PARM1 ; List of parameter addresses
DwW PARM2
oW PARM3
DW PARM4
Dw OFFFFH ; Terminator
PARM1: D8 6
PARM4: 4] 16
PARM3: D8 13
PARM2: [0]:] 82
GENAD: XRA A ; Clear accumulator
LOOP: MOV C A ; Save current total in C
MOV E.,M . Get low order address byte
; of first parameter
ANX H
MOV A M ; Get high order address byte
; of first parameter
CPI OFFH ; Compare to FFH
- Jz BACK ; If equal, routine is complete
MOV DA ; D and E now address parameter
LDAX D ; Load accumulator with parameter
ADD C ; Add previous total
INX H ; Increment H and L to point
; to next parameter address
_ JMP LOOP : Get next parameter
BACK: MOV A,C ; Routine done—restore total
RET ; Return to calling routine

44

Note that GENAD could add any combination of the
parameters with no change to the parameters themselves.

The sequence:

LXI H, PLIST
CALL GENAD
PLIST: oW PARM4
oW PARM1
DW OFFFFH

would cause PARM1 and PARM4 to be added, no matter
where in memory they might be located (excluding ad-
dresses above FFOOH).

Many variations of parameter passing are possible. For
example, if it was necessary to allow parameters to be stored
at any address, a calling program could pass the total number
of parameters as the first parameter; the subroutine would
load this first parameter into a register and use it as a count-
er to determine when all parameters had been accepted.

.(a)

SOFTWARE MULTIPLY AND DIVIDE

The multiplication of two unsigned 8-bit data bytes
may be accomplished by one of two techniques: repetitive
addition, or use of a register shifting operation.

Repetitive addition provides the simplest, but slowest,
form of multiplication. For example, 2AH- 74H may be gen-
erated by adding 74H to the (initially zeroed) accumulator
2AH times. ‘

Using shift operations provides faster multiplication.
Shiftinga byte left one bit is equivalent to multiplying by 2,
and shifting a byte right one bit is equivalent to dividing by
2. The following process will produce the correct 2-byte
result of multiplying a one byte multiplicand by a one byte
multiplier:

Test the least significant bit of the multiplier. If zero,
go to step b. If one, add the multiplicand to the most
significant byte of the result.

(b)
(c)

Shift the entire two-byte result right one bit position.

Repeat steps a and b until all 8 bits of the muitiplier
have been tested.

For example, consider the multiplication:
2AH-3CH=9D8H

HIGH-ORDER BYTE LOW-ORDER BYTE
MULTIPLIER MULTIPLICAND OF RESULT OF RESULT
Start 00111100 00101010 00000000 00000000
Step1a
b 00000000 00000000
Step2a
b 00000000 00000000
Step 3a 00101010 00000000
b 00010101 00000000
Step4a 00111111 00000000
b 00011111 10000000
Step5a 01001001 10000000
b 00100100 11000000
Step6a 01001110 11000000
b 00100111 01100000
Step 7 a
b 00010011 10110000
Step8a
b 00001001 11011000

45

Step 1: Test multiplier 0-bit; it is 0, so shift 16-bit result
right one bit.

Step 2: Test multiplier 1-bit; it is 0, so shift 16-bit result
right one bit.

Step 3: Test multiplier 2-bit; it is 1, so add 2AH to high-
order byte of result and shift 16-bit result right one
bit.

Step 4: Test multiplier 3-bit; it is 1, so add 2AH to high-
order byte of result and shift 16-bit result right one
bit.

Step 5: Test multiplier 4-bit; it is 1, so add 2AH to high-
order byte of result and shift 16-bit result right one
bit.

Step 6: Test multiplier 5-bit; it is 1, so add 2AH to high-
arder byte of result and shift 16-bit result right one
bit.

Step 7: Test multiplier 6-bit; it is 0, so shift 16-bit result
right one bit.

Step 8: Test multiplier 7-bit; it is 0, so shift 16-bit result

: right one bit.

The result produced is 09D8.
The procesé works for the following reason:
The result of any multiplication may be written:

Equation 1: BIT7-MCND+27 + BIT6*-MCND-2% + . ..
+BITO-MCND-2°

where BITO through BIT8 are the bits of the multiplier (each
equal to zero or one), and MCND is the muitiplicand.

For example:
MULTIPLICAND MULTIPLIER
00001010 00000101 =

0:0AH-27 + 0-0AH-2° + 0-0AH-25 + 0-0AH-2* +
0-0AH-2® + 1-0AH: 2* + 0-0AH-2' + 1:0AH-2° =
00101000 + 00001010 = 00110010 = 50,,

Adding the multiplicand to the high-order byte of the
result is the same as adding MCND+2% to the full 16-bit
result; shifting the 16-bit result one position to the right is
equivalent to multiplying the result by 2* (dividing by 2).

Thelefore, step one above produces:

(BITO- MCND - 2%) - 270

Step two produces: :
((BITO - MCND #28) + 27! + (BIT1 + MCND - 2%)) - 2"
= BITO - MCND - 26 +BIT1 + MCND -+ 2
And so on, until step eight produces:
BITO - MCND + 2° +BIT1- MCND + 2! +.. . +BIT7 *
MCND - 27 o

which is equivalent to Equation 1 above, and therefore is
the correct result,

Since the multiplication routine described above uses

a number of important programming techniques, a sample
program is given with comments.

The program uses the B register to hold the most sig-
nificant byte of the result, and the C register to hold the
least significant byte of the resuit.

The 16-bit right shift of the result is performed by two
rotate-right-through-carry instructions:

Zero carry and then rotate B

s

“Then rotate C to complete the shift

X]—
1

Register D holds the multiplicand, and register C orig-
inally holds the multiplier.

MULT: MVI B, 0 ;lInitialize most significant byte

; of result

MVI E,9 ;Bitcounter

MULTO: MOV A, C ; Rotate least significant bit of
RAR . ; multiplier to carry and shift
MOV C, A ;low-order byte of result
DCR E
JZ DONE ; Exit if complete
MOV A,B
JNC MULT1
ADD D ; Add multiplicand to high-

; order byte of result if bit
; was a one

MULT1: RAR ; Carry=0 here; shift high-
; order byte of result -
MOV B, A
JMP MULTO
DONE:

An analogous procedure is used to divide an unsigned
16-bit number by an unsigned 8-bit number. Here, the pro-
cess involves subtraction rather than addition, and rotate-
left instructions instead of rotate-right instructions.

The program uses the B and C registers to hold the
most and least significant byte of the dividend respectively,
and the D register to hold the divisor. The 8-bit quotient is
generated in the C register, and the remainder is generated
in the B register.

DIV: MVI EZ9

; Bit counter
MOV A.B
DIVO: MOV B,A
MOV A.C ; Rotate carry into C -
; register; rotate next
; most significant bit
. to carry
MOV C A
DCR E
JZ DIv2
MOV A.B ., Rotate most significant
RAL ; bit to high-order
JNC DIV1 ; quotient
suB D ; Subtract divisor & loop
JMP DIVO
Divi: SuB D ; Subtract divisor. If
; less than high-order
JNC DIVO ; quotient, loop.
ADD D ; Otherwise, add it back
JMP DIVO
DIV2: RAL
MOV E.A
MVI A, OFFH ; Complement the quotient
XRA C
MOV C,A
MOV AE
RAR’
DONE:

MULTIBYTE ADDITION AND
SUBTRACTION

The carry bit and the ADC (add with carry) instruc-
tions may be used to add unsigned data quantities of arbi-
trary length. Consider the following addition of two three-
byte unsigned hexadecimal numbers:

32AF8A
+ B4BA90
B76A1A

This addition may be performed on the 8080 by add-
ing the two low-order bytes of the numbers, then adding
the resulting carry to the two next-higher-order bytes, and
so on:

32 AF 8A
84 BA 20
B7 6A 1A

carry = 1 carry = 1

The following routine will perform this multibyte ad-
dition, making these assumptions:

The C register holds the length of each number to be
added (in this case, 3).

The numbers to be added are stored from low-order
byte to high-order byte beginning at memory locations
FIRST and SECND, respectively.

47

The result will be stored from low-order byte to high-
order byte beginning at memory location FIRST, replacing
the original contents of these locations.

Memory
Location before after
FIRST |BA'[—> + > 1A L carry
P & 4)
FIRST+1 | AF >+ >| 6A) carry
FIRST+2 | 32 -+ —>| B7
E 3
SECND |90 | —° 90
SECND+1 | BA BA
SECND+2 | 84 84
Label Code Operand Comment
MADD: LXI B,FIRST ;B and C address FIRST
LX1 H,SECND; H and L address SECND
XRA A ; Clear carry bit
LOOP: LDAX B . Load byte of FIRST
ADC M , Add byte of SECND
; with carry
STAX B ; Store result at FIRST
DCR C ;DoneifC=0
Jz DONE
INX B ; Point to next byte of
; FIRST
INX H ; Point to next byte of
; SECND
JMP LOOP ; Add next two bytes
DONE: —
FIRST: DB 90H
: DB 0BAH
DB 84H
SECND: DB 8AH
DB OAFH
DB 32H

Since none -cf the instructions in the program loop
affect the carry bit except ADC, the addition with carry will
proceed correctly.

When location DONE is reached, bytes FIRST through
FIRST+2 will contain TA6AB7, which is the sum shown at
the beginning of this section arranged from low-order to
high-order byte.

Rev. B

The carry (or borrow) bit and the SBB (subtract with
borrow) instruction may be used to subtract unsigned data
quantities of arbitrary length. Consider the following sub-
traction of two two-byte unsigned hexadecimal numbers:

1301
- 0503
ODFE
This subtraction may be performed on the 8080 by
subtracting the two low-order bytes of the numbers, then
using the resulting carry bit to adjust the difference of the
two higher-order bytes if a borrow occurred (by using the
SBB instruction).

Low-order subtraction (carry bit = O indicating no
borrow):

00000001 = O1H

11111101 = -(03H+carry)

11111110 = OFEH, the low-order result
carry out = 0, setting the Carry bit = 1, indicating a borrow

High-order subtraction:

00010011 = 13H
11111010 = -(05H+carry)
00001101
carry out = 1, resetting the Carry bit indicating no borrow

Whenever a borrow:has occurred, the SBB instruction
increments the subtrahend by one, which is equivalent to
borrowing one from the minuend.

In order to create a multibyte subtraction routine, it
is necessary only to duplicate the multibyte addition routine
of this section, changing the ADC instruction to an SBB in-
struction. The program wiil then subtract the number begin-
ning at SECND from the number beginning at FIRST, plac-
ing the result at FIRST,

DECIMAL ADDITICN

Any 4-bit data quantity may be treated as a decimal
number as long as it represents one of the decimal digits
from O through 9, and does not contain any of the bit pat-
terns representing the hexadecimal digits A-through F. In
order to preserve this decimal interpretation when perform-
ing addition, the value 6 must be added to the 4-bit quantity
whenever the addition produces a result between 10 and 185.
This is because each 4-hit data quantity can hold 6 more
combinations of bits than there are decimal digits.

Decimal addition is performed on the 8080 by letting
each 8-bit byte represent two 4-bit decimal digits. The bytes
are summed in the accumulator in standard fashion, and the
DAA (decimal adjust accumulator) instruction is then used
_ s in Section 3, to convert the 8-bit binary result to the cor-
rect representation of 2 decimal digits. The settings of the
carry and auxiliary carry bits also affect the operation of the
DAA, permitting the addition of decimal numbers longer
than two digits.

To perform the decimal addition:

2985
+ 4936
7921

the process works as follows:

(1) Clear the Carry and add the two lowest-order digits of
each number (remember that each 2 decimal digits are
represented by one byte).

85 = 100001018
36 =001101108B
carry = __ 0
10111011B
P X
/S

Carry =0

Auxiliary Carry =0
The accumulator now contains BBH.

(2) Perform a DAA operation. Since the rightmost four
bits are = 10D, G will be added to the accumulator.

Accumulator = 10111 Oi 1B
6= 01108
110000018

Since the leftmost 4 bits are now 910, 6 will be added
to these bits, setting the Carry bit,

Accumulator = 110000018

6 =0110 B
1 00100001B
\Carry bit =1
The accumulator now contains 21H. Store these two

digits.
(3) Add the next group of two digits:
29 = 001010018
49 =010010018

carry = _ 1

01011100118
7 LN

N

The accumulator now contains 73H.

Carry =0 Auxiliary Carry = 1

(4) Perform a DAA operation. Since the Auxiliary Carry
bit is set, 6 will be added to the accumulator.

Accumulator = 01110011B
6=___01108
g 011110018

X

\

Since the leftmost 4 bits are <10 and the Carry bit is
reset, no further action occurs.

carry bit=0

Thus, the correct decimal result 7921 is generated in
two bytes.

A routine which adds decimal numbers, then, is exact-
ly analogous to the multibyte addition routine MADD of the
last section, and may be produced by inserting the instruc-
tion DAA after the ADC M instruction of that example.

Rev. B

Each iteration of the program loop will add two decimal
digits (one byte) of the numbers.

DECIMAL SUBTRACTION

Each 4-bit data quantity may be treated as a decimal
number as long as it represents one of the decimal digits O
through 9. The DAA (decimal adjust accumulator} instruc-
tion may be used to permit subtraction of one byte (repre-
senting a 2-digit decimal number) from another, generating
a 2-digit decimal result. In fact, the DAA permits subtraction
of multidigit decimal numbers.

The process consists of generating the hundred’s com-
plement of the subtrahend digit (the difference between the
subtrahend digit and 100 decimal), and adding the result to
the minuend digit. For instance, to subtract 34D from 56D,
the hundred’s complement of 34D (100D-34D=66D) is
added to 56D, producing 122D, which when truncated to 8
bits gives 22D, the correct result. If a borrow was generated
by the previous subtraction, the 99's complement of the
subtrahend digit is produced to compensate for the borrow.

in detail, the procedure for subtracting one multi-digit
decimal from another is as follows:

(1) Set the Carry bit = 1 indicating no borrow.

(2) Load the accumulator with 99H, representing the
number 99 decimal.

(3) Add zero to the accumulator with carry, producing
either 99H or 9AH, and resetting the Carry bit,.

(4) Subtract the subtrahend digits from the accumulator,
producing either the 99's or 100’s complement.

(5) Add the minuend digits to the accumulator.

(6) Use the DAA instruction to make sure the result in
the accumulator is in decimal format, and to indicate
a borrow in the Carry bit if one occurred.

Save this result.
(7) if there are more digits to subtract, go to step 2.

Otherwise, stop.

Example:
Perform the decimal subtraction:

43580
- 1362D
2996D

(1) Setcarry =1.
(2) Load accumulator with 99H.

(3) Add zero with carry to the accumulator, producing
9AH.

Accumulator = 100110018
0 = 000000008
Carry =_._ 1
100110108 = 9AH

(4) Subtract the subtrahend digits 62H from the accumu-
Jator.

Accumulator = 100110108
$2H = 100111108
i 001110008

(5) Add the minuend digits 58H to the accumulator.
Accumulator = 001110008
58H = 010110008
7 100100008 = 90H
y .4

Carry =0 /

Auxiliary Carry = 1

(6) DAA converts accumulator to 96H (since Auxiliary
Carry = 1) and leaves Carry bit = 0 indicating that a
borrow occurred.

(7) Load accumulator with 99H.

(8) Add zero with carry to accumulator, leaving accumu-
lator = 99H.

(9) Subtract the subtrahend digits 13H from the accumu-
lator,

Accumulator = 100110018
13H =111011018B
il 10000110B

(10) Add the minuend digits 43H to the accumulator.

Accumulator = 100001108
43H = 01000011B
@ 110010018 = C9H

e

Carry =0 Auxiliary Carry =0

(11) DAA converts accumulator to 29H and sets the carry
bit = 1, indicating no borrow occurred.

Therefore, the result of subtracting 1362D from
4358D is 2996D.

The following subroutine will subtract one 16-
digit decimal number from another using the following
assumptions:

The minuend is stored least significant (2) digits first
beginning at location MINU,

The subtrahend is stored least significant (2) digits
first beginning at location SBTRA.

The result will be stored least significant (2) digits
first, replacing the minuend.

Comment

; D and E address minuend

H,SBTRA ; H and L address subtra-

Label Code Operand
DSuB: LXI D, MINU
LXI
MVvI C,8
STC
LOOP: MVI A, 99H
ACI 0o
SuUB M
XCHG
ADD M
DAA
MOV M, A
XCHG
DCR C
Jz DONE
INX D
INX H
JMP LOOP
DONE: NOP

; hend

; Each loop subtracts 2
; digits {one byte),

; therefore program will
. subtract 16 digits.

; Set Carry indicating
; no borrow

; Load accumulator

; with 99H.

. Add zero with Carry
; Produce complement
. of subtrahend

; Switch D and E with
sHand L

; Add minuend

. Decimal adjust

, accumulator

. Store result

; Reswitch D and E
;with Hand L
;Doneif C=0

. Address next byte

; of minuend

; Address next byte

; of subtrahend

; Get next 2 decimal digits

50

Often, events occur external to the central processing
unit which require immediate action by the CPU. For exam-
ple, suppose a device is receiving a string of 80 characters
from the CPU, one at a time, at fixed intervals. There are
two ways to handle such a situation:

(a) A program could be written which inputs the first
character, stalls until the next character is ready (e.g.,
executes a timeout by incrementing a sufficiently
large counter), then inputs the next character, and
proceeds in this fashion until the entire 80 character

string has been received.

This method is referred to as programmed Input/

Output,

(b) The device controller could interrupt the CPU when a
character is ready to be input, forcing a branch from
the executing program to a special interrupt service
routine.

The interrupt sequence may be illustrated as follows:
INTERRUPT

Normal Program

Program Execution

Execution Continues

Interrupt Service
Routine

The 8080 contains a bit named INTE which may be
set or reset by the instructions El and DI described in
Chapter 2. Whenever INTE is equal to 0, the entire interrupt
handling system is disabled, and no interrupts will be
accepted.

51

When the CPU recognizes an interrupt request from an
external device, the following actions occur:

(1) Theinstruction cqrrently being executed is completed.
(2) The interrupt enable bit, INTE, is reset = Q.
(3) The interrupting device supplies, via hardware, one in-

struction which the CPU executes. This instruction
does not appear anywhere in memory, and the pro-
grammer has no control over it, since it is a function
of the interrupting device’s controller design. The
program counter is not incremented before this
instruction,

The instruction supplied by the interrupting device is
normally an RST instruction (see Chapter 2), since this is an
efficient one byte call to one of 8 eight-byte subroutines lo-
cated in the first 64 words of memory. For instance, the
teletype may supply the instruction:

RST OH

with each teletype input interrupt. Then the subroutine
which processes data transmitted from the teletype to the
CPU will be called into execution via an eight-byte instruc-
tion sequence at memory locations 0000H to 0007H.

A digital input device may supply the instruction:
RST 1H

Then the subroutine that processes the digital input signals
will be called via a sequence of instructions occupying
memory locations 0008H to O00FH.

. Transfers
Device “a” control to Subroutine for
Supplies RST OH| ——— > 0000 e
device “a
0007
i Transfers
Device “b control to Subroutine for
Supplies RST 1H| —————> 0008 } geyice “b*
000F

e

Device “’x Transfers
control to 0038 | Subroutine for

device ‘‘x"’

Supplies RST 7H
003F

Note that any of these 8-byte subroutines may in turn
call longer subroutines to process the interrupt, if necessary.

Any device may supply an RST instruction (and in-
deed may supply any 8080 instruction).

The following is an example of an Interrupt sequence:

ARBITRARY

MEMORY ADDRESS INSTRUCTION

3CcoB MOV

For example, suppose a program is interrupted just
prior to the instruction:

JC LOC

and the carry bit equals 1. If the interrupt subroutine hap-
pens to zero the carry bit just before returning to the inter-

rupted program, the jump to LOC which should have occur-
red will not, causing the interrupted program to produce

erroneous results.

0000 Instruction 1
Instruction 2
RET

CB <«

—— > 3C0C MOV EA \

—

Interrupt from Device 1 A

Device 1 supplies
RST OH

Program Counter =
3C0C pushed onto B
the stack.

Control transferred
to 0000

l

Stack popped into
program counter C

Device 1 signals an interrupt as the CPU is executing
the instruction at 3COB. This instruction is completed. The
program counter remains set to 3COC, and the instruction
RST OH supplied by device 1 is executed. Since this is a
call to location zero, 3COC is pushed onto the stand and pro-
gram control is transferred to location 0000H. (This subrou-
tine may perform jumps, calls, or any other operation.)
When the RETURN is executed, address 3COC is popped off
the stack and replaces the contents of the program counter,
causing execution to continue at the instruction following
the point where the interrupt occurred.

WRITING INTERRUPT SUBROUTINES

In general, any registers or condition bits changed by
an interrupt subroutine must be restored before returning to
the interrupted program, or errors will occur.

Like any other subroutine then, any interrupt subrou-
tine should save at least the condition bits and restore them
before performing a RETURN operation. (The obvious and
most convenient way to do this is to save the data in the
stack, using PUSH and POP operations.)

Further, the interrupt enable system is automatically
disabled whenever an interrupt is acknowledged. Except in
special cases, therefore, an interrupt subroutine should in-
clude an E! instruction somewhere to permit detection and
handling of future interrupts. Any time after an El is exe-
cuted, the interrupt subroutine may itself be interrupted.
This process may continue to any level, but as long as all
pertinent data are saved and restored, correct program exe-
cution will continue automatically.

A typical interrupt subroutine, then, could appear as
follows:

Code Operand Comment
PUSH PSW ; Save condition bits and accumulator

Ei

POP
RET

; Re-enable interrupts
; Perform necessary actions to service
; the interrupt

PSW ; Restore machine status
. Return to interrupted program

53

B oot el
0O, o
M SO

\3) U
SR i
@?? \‘.\%‘(@ o

This appendix provides a summary of 8080 assembly language instructions. Abbreviations used are as follows:

A The accumulator (register A)

A, Bit n of the accumulator contents, where n may have any value from 0 to 7 and 0 is the least significant
(rightmost) bit

ADDR Any memory address

Aux. carry The auxiliary carry bit

Carry The carry bit
CODE An operation code
DATA 8 bits (one byte) of data

DATA16 16 brts {2 hvtes) of data

DST Destination register or memory byte

EXP A constant or mathematical expression

INTE The 8080 interrupt enable flip-flop

LABEL: Any instruction label

M A memory byte

Parity The parity bit

PC Program Counter

PCH The most significant 8 bits of the program counter
PCL The least significant 8 bits of the program counter

REGM Any register or memory byte

vi

RP

RP1
RP2
Sign
sP

SRC

Zero

XY

Format:

A register pair. Legal register pair symbols are:
B for registers B and C
D for registers D and E
H for registers H and L
SP for the 16 bit stack pointer
PSW for condition bits and register A
The first register of register pair RP
The second register of register pair RP
The sign bit
The 16-bit stack pointer register

Source register or memory byte

The zero bit

The value qbtained by concatenating the values X and Y

An optional field enclosed by brackets

Con_tents of register or memory byte enclosed by parentheses

Replace value on lefthand side of arrow with value on righthand side of arrow

CARRY BIT INSTRUCTIONS

| (LABEL:] CODE

| cooe ~ DESCRIPTION i
STC {Carry) <1 Set carry
cMC {Carry) < (Carry) Complement carr\;

Condition bits affected: 6";

Format:

SINGLE REGISTER INSTRUCTIONS

[LABEL:] INR REGM
_.or__

{LABEL:] DCR REGM
—or—

[LABEL:] , CMA
—or—

{LABEL:) DAA

vii

CODE DESCRIPTION
INR : (REGM) <« (REGM)+1 Increment register REGM
DCR (REGM) <« (REGM)-1 Decrement register REGM
CMA (A) <« (A) Complement accumulator
DAA I1f {Ag-A3) > 9 or(Aux.Carry)=1, Convert accumulator
(A) <« (A)6 contents to form
Then if (A4-A4) > 9 or(Carry)= two decimal
1 (A)=(A)+6-2* digits
Condition bits affected: INR,DCR : Zero, sign, parity
CMA : None ‘
DAA : Zero, sign, parity, carry, aux. carry
NOP INSTRUCTION
Format:
[LABEL:} NOP
CODE DESCRIPTION
NOP | e No operation

Condition bits affected: None

Format:

DATA TRANSFER INSTRUCTIONS

(LABEL:) MOV DST,SRC
‘ —or—
[LABEL:] CODE RP

NOTE: SRC and DST not both = M
NOTE: RP=B or D

CODE DESCRIPTION

MOV (DST) <« (SRC) Load register DST from register SRC

STAX ((RP)) <« (A) Store accumulator at memory location
referenced by the specified register pair

LDAX (A) « ((RP)) Load accumulator from memory location

referenced by the specified register pair

Condition bits affected: None

viii

REGISTER OR MEMORY TO ACCUMULATOR INSTRUCTIONS

Format:
[LABEL:] CODE REGM
" "copE DESCRIPTION
— —
ADD (A) <« (A)JHREGM) Add REGM to accumulator
ADC (A) <« (A)+(REGM)+(Carry) Add REGM to accumulator with carry
suB (A) <« (Al-(REGM) Subtract REGM from accumulator
SBB (A) <« (A)-(REGM)-(Carry) Subtract REGM from accumulator with borrow
ANA (A) < (A} AND (REGM) AND accumulator with REGM
XRA (A) <« (A} XOR (REGM) EXCLUSIVE-ORaccumulator with REGM
ORA (A) <« (A) OR (REGM) OR accumulator with REGM
CMP Condition bits set by {A)-(REGM) Compare REGM with accumulator

Condition bits affecte.(;:

ADD, ADC, SUB, SBB: Carry, Sign, Zero, Parity, Aux. Carry

ANA, XRA, ORA: Sign, Zero, Parity. Carry is zeroed.

CMP: Carry, Sign, Zero, Parity, Aux. Carry. Zero set if {A)=(REGM)

Carry set if (A) <(REGM)

Carry reset if (A) = (REGM)

Note: CMP treats (A) and (REGM) as unsigned
8-bit quantities.

ROTATE ACCUMULATOR INSTRUCTIONS

Format:

[LABEL:} CODE
CODE DESCRIPTION
RLC (Carr'y) < Ag, Apt1n €A Ag < Ay Set Carry = A, rotate accumulator left
RRC (Carry) + Ag, Ap < Apty. A7 < Ag Set Carry = A, rotate accumulator right
RAL Ansr €A, (Carry) < Aq, Ay < (Carry) Rotate accumulator left through the Carry
RAR An < Anpty, (Carry) < Ag, A < (Carry) Rotate accumulator right through Carry

Condition bits affected: Carry

Rev. B

REGISTER PAIR INSTRUCTIONS
Format:
[LABEL:] CODE1 RP
[LABEL:] CODE2

NOTE: For PUSH and POP, RP=B, D, H, or PSW
For DAD, INX, and DCX, RP=8B, D, H, or SP

CODE?1 DESCRIPTION
PUSH ({SP)-1) < (RP1), ({SP)-2) «+ (RP2), Save RP on the stack
(SP) < (SP)-2 RP=PSW saves accumulator and condition bits
POP {RP1) < ((SP)+1), (RP2) « ((SP)), Restore RP from the stack-
(SP) < (SP)+2 RP=PSW restores accumulator and condition bits
DAD (HL) < (HL) + (RP) Add RP to the 16-bit number in H and L
INX (RP) < (RP)+1 Increment RP by 1
DCX (RP) < (RP)-1 Decrement RP by 1
CODE2 DESCRIPTION
XCHG (H) «— (D), (L) <> (E) Exchange the 16 bit number in H and L with
: that in D and E
XTHL (L) <= ((SP)), (H) <« ((SP}+1) Exchange the last values saved in the stack
with H and L
SPHL (SP) « (H):(L) Load stack pointer from H and L
Condition bits affected:
PUSH, INX, DCX, XCHG, XTHL, SPHL: None
POP : If RP=PSW, all condition bits are restored from the stack, otherwise none are affected.
DAD : Carry
IMMEDIATE INSTRUCTIONS
Format:
[LABEL:] LX! RP, DATA16
[LABEL:] MWVI REGM, DATA
[LABEL:] ' CODE REGM

NOTE: RP=B, D, H, or SP

x Rev. B

CODE DESCRIPTION

LXI (RP) «<DATA 16 Move 16 bi; immediate Data into RP

MV (REGM) < DATA Move immediate DATA into REGM

ADI (A} < (A) + DATA Add immediate data to accumulator

ACI {A) < (A) + DATA + (Carry) Add immediate data t§ accumulator with Carry

Sul (A) < (A) - DATA Subtract immediate data from accumulator

S8l (A) < (A) - DATA - (Carry) Subtract immediate data from accumulator ‘with
borrow

ANI (A) < (A) AND DATA AND accumulator with immediatg data

XRI (A) < (A) XOR DATA EXCLUSIVE-OR accumulator with immediate data

ORI (A) < (A) OR DATA OR accumulator with immediate data

CPI Condition bits set by (A}-DATA Compa;e immediate data with accumulator

Condition Bits affected:

LXI, MVI: None

ADI, AC1, SUI, SBI: Carry, Sign, Zero, Parity, Aux. Carry

ANI, XRI1, ORL: Zero, Sign, Parity. Carry is zeroed.

CPI: Carry, Sign, Zero, Parity, Aux. Carry. Zero set if (A) = DATA

Carry setif (A) < DATA

Carry reset if (A) = DATA

Note: CPI treats {A) and DATA as unsigned
8-bit quantities.

DIRECT ADDRESSING INSTRUCTIONS

Format:

[LABEL:] CODE ADDR
CODE DESCRIPTION
STA (ADDR) < (A) Store accumulator at location ADDR
LDA (A) < (ADDR) ~ Load accumulator from location ADDR
SHLD (ADDR) + (L), (ADDR+1) <« (H) Store L and H at ADDR and ADDR+1
LHLD (L) < (ADDR), (H) < (ADDR+!) Load L and H from ADDR and ADDR+1

Condition bits affected: None

Format:

JUMP INSTRUCTIONS

[LABEL:]) PCHL

—Or—

[LABEL:] CODE

xi

ADDR

Rev. B

CODE DESCRIPTION

PCHL (PC) < (HL) Jump to location specified by register H and L
JMP (PC) + ADDR Jump to location ADDR
JC If (Carry}) = 1, (PC) « ADDR

If {Carry) = 0, (PC) < (PC)+3 Jump to ADDR if Carry set
JNC If (Carry) = 0, (PC) < ADDR

If (Carry) = 1, (PC) < (PC)+3 Jump to ADDR if Carry reset
Jz If (Zero) = 1, (PC) « ADDR

If (Zero) = 0, (PC) < (PC)+3 Jump to ADDR of Zero set
INZ If (Zero) = 0, (PC) < ADDR

If (Zero) = 1, (PC) < (PC)+3 ~Jump to ADDR if Zero reset
JP If (Zero) = 0, (PC) <~ ADDR

If (Zero) = 1, (PC) «(PC)+3 Jump to ADDR if plus
JM . |f (Sign) = 1, (PC) « ADDR

If (Sign) = 0, (PC) « (PC)+3 Jump to ADDR if minus
JPE If (Parity) = 1, (PC) < ADDR

If (Parity) = 0, (PC) < (PC)+3 Jump to ADDR if parity even

JPO If (Parity) = 0, (PC) < ADDR .
If (Parity) = 1, (PC) < (PC)+3 Jump to ADDR if parity odd

Condition bits affected: None

CALL INSTRUCTIONS

Format:
[LABEL:} CODE ADDR
CODE DESCRIPTION
CALL ({SP)-1) < (PCH), ((SP)-2) < (PCL), (SP) « (SP)+2, (PC) < ADDR
Call subroutine and push return address onto stack

cc If (Carry) = 1, ((SP)-1) « (PCH), ({SP}-2) < (PCL), (SP) « ({SP)+2, (PC) « ADDR
If (Carry) = 0, (PC) « (PC)+3 Call subroutine if Carry set

CNC If (Carry) = O, ({SP)-1) « (PCH), ((SP)-2) « (PCL), (SP) «+ (SP)+2, (PC) < ADDR
If (Carry) = 1, (PC) < (PC)+3 Call subroutine if Carry reset

cz If (Zero) = 1, ((SP)-1) < (PCH), ({SP)-2) < (PCL), (SP) < (SP)+2, (PC) « ADDR
if (Zero) = 0, (PC) <(PC)+3 Call subroutine if Zero set

CNZ If (Zero) = 0, ((SP)-1) < (PCH), ({SP)-2) « (PCL), {SP) « (SP)+2, (PC) < ADDR

"~ If(Zero) = 1, (PC) < (PC)+3 Call subroutine if Zero reset

cep If(Sign) = 0, ((SP)-1) < (PCH), ({SP)-2) « (PCL), (SP) < (SP}+2, (PC) < ADDR
If (Sign) = 1, (PC) < (PC)+3 Call subroutine if Sign plus

CM If (Sign) = 1, ((SP)-1) « (PCH), ((SP)-2) < (PCL), (SP) « (SP)+2, (PC) < ADDR
If {Sign) = 0, (PC) < (PC)+3 Call subroutine if Sign minus

CPE If (Parity) = 1, ((SP) -1) < (PCH), {(SP)-2) «< {PCL), (SP) « (SP)+2, (PC) <« ADDR
If (Parity) = 0, (PC) < (PC)+3 Call subroutine if Parity even

CPO If (Parity) = 0, ({SP)-1) < (PCH), ((SP}-2) « (PCL), (SP) < (SP)+2, (PC) < ADDR
If (Parity) = 1, (PC) < (PC}+3 Call subroutine if Parity odd

Condition bits affected: None

xii

RETURN INSTRUCTIONS

Format:
{LABEL:) CODE
CODE DESCRIPTION
RET (PCL) < ((SP)), (PCH) <« ((SP)+1), (SP) < (SP)+2
Return from subroutine

RC if (Carry) = 1, (PCL) « ((SP)}, (PCH) <+ ((SP)+1), (SP) + (SP) +2
if (Carry) = 0, (PC) « (PC)+1 Return if Carry set

RNC If (Carry) = 0, (PCL) < ((SP)), (PCH) < ((SP)+1), (SP) < (SP)+2
If (Carry) = 1, (PC) < (PC)+1 . Return if Carry reset

RZ If (Zero) = 1, (PCL) < ({SP}), (PCH) <« ((SP)+1), (SP)_ <+ (SP)+2
If (Zero) = 0, (PC) « (PC)+1 Return if Zero set

RNZ If (Zero) = 0, (PCL) <« ((SP)), (PCH) < ((SP)+1), (SP) < (SP) « (SP)+2
If (Zero) = 1, (PC) « (PC)+1 Return if Zero reset ’

RM If (Sign) = 1, (PCL) « ((SP)), (PCH) < ((SP)+1), (SP) « (SP)+2
If (Sign) = 0, (PC) « (PC)+1 Return if minus

RP If (Sign) = 0, (PCL) + ((SP)}, (PCH) « ({SP)+1), (SP) « (SP)+2
tf (Sign) = 1, (PC) + (PC)+1 Return if plus

RPE) If (Parity) = 1, (PCL) + ((SP)), (PCH) + ((SP)+1), {SP) < (SP)+2
if (Parity) = 0, (PC) < (PC)+1 Return if parity even

RPO If (Parity) = 0, (PCL) « ({SP)), (PCH) <+ ((SP)+1), (SP) < (SP)+2
if (Parity) = 1, (PC) < (PC)+1 Return if parity odd

Condition bits affected: None

RST INSTRUCTION

Format:
[LABEL:]) RST EXP

NOTE: 000B<EXP<111B

CODE DESCRIPTION

RST {(SP)-1) < (PCH), ((SP)-2) < (PCL), (SP) + (SP)+2
(PC) < 0000000000EXP000B Call subroutine at address specified by EXP

Condition bits affected: None

INTERRUPT FLIP-FLOP INSTRUCTIONS

Format: v
[LABEL:] CODE
CODE DESCRIPTION
El (INTE) < 1 Enable the interrupt system
Di - (INTE} < 0 Disable the interrupt system

" Condition bits affected: None

xiii

Rev. B

INPUT/OUTPUT INSTRUCTIONS

Format:
[LABEL:] CODE EXP
CODE DESCRIPTION
IN (A) <« input device Read a byte from device EXP into the accumulator
ouT output device « (A) Send the accumulator contents to device EXP

Condition bits affected: None

HLT INSTRUCTION

Format:
[LABEL:] HLT
CODE DESCRIPTION
HLT | @ ———————— Instruction execution halts until an interrupt occurs

Condition bits affected: None

PSEUDO - INSTRUCTIONS

ORG PSEUDO — INSTRUCTION

Format:
ORG EXP
CODE DESCRIPTION
ORG LOCATION COUNTER <« EXP Set Assembler location counter to EXP
EQU PSEUDO — INSTRUCTION
Format:
NAME EQU EXP
CODE DESCRIPTION
EQU NAME < EXP Assign the value EXP to the symbol NAME
SET PSEUDO — INSTRUCTION
Format:
NAME SET EXP
CODE DESCRIPTION
SET NAME .« EXP Assign the value EXP to the symbol NAME, which
may have been previously SET.

Xiv

END PSEUDO — INSTRUCTION

Format:
END
CODE DESCRIPTION
END End the assembly
CONDITIONAL ASSEMBLY PSEUDO — INSTRUCTIONS
Format:
IF EXP
—and-— .
ENDIF
CODE DESCRIPTION
IF If EXP = 0, ignore assembler statements until ENDIF is reached. Otherwise, continue
assembling statements
ENDIF End range of preceding {F
MACRO DEFINITION PSEUDO — INSTRUCTIONS
Format:
NAME MACRO LIST
—and—
ENDM
CODE DESCRIPTION
MACRO Define a macro named NAME with parameters LIST

ENDM

End Macro definition

XV

This appendix summarizes the bit patterns and number of time states associated with every 8080 CPU instruction.
When using this summary, note the following symbology:

1) DDD represents a destination register. SSS represents a source register. Both DDD and SSS are interpreted as follows:

DDD or SSS Interpretation

000 Register B

001 Register C

010 Register D

011 Register E

100 Register H

101 Register L

110 A memory register
111 The accumulator

2) Instruction execution time equals number of time periods multiplied by the duration of a time period.

A time period may vary from 480 nanosecs to 2 usec.

Where two numbers of time periods are shown (eq. 5/11), it means that the smaller number of time periods will be
required if a condition is not met, and the larger number of time periods will be required if the condition is met.

MNEMONIC D, [De | Ds [Dy | D3 | D] D, | D, [NUMBER OF TIME PERIODS
CALL 1 1 0| o 1 1 0 1 17
cc 1 1 () 1 1 1 0 | o 11/17
CNC 1 1 0 1 0 1 0 | o 11/17
cz 1 1 0 0 1 1 o | o 1117
CNZ 1 1 0 0 0 1 o | o 11/17
cP 1 1 1 1 0 1 0| o 1/17
CM 1 1 1 1 1 1 0| o 117
CPE 1 1 1 0 1 1 o | o 117
CPO 1 1 1 0 0 1 o | 0 1117
RET 1 1 0 0 1 0 0 1 10
RC 1 1 (] 1 1 0 0 0 5/11
RNC 1 1 0 1 0| o 0 {0 5/11
RZ 1 1 0 0 1 0 0 0 5/11
RNZ 1 1 0 0 ol o o | o 5/11
RP 1 1 1 1 0| o 0 | 0 5/11
RM 1 1 1 1 1 0 o | o 5/11
RPE 1 1 1 0 1 0 0 0 5/11
RPO 1 1 1 0 o| o 0 0 5/11

Xvi

11

10
10
10
10
10
10
1
11
1

11

10
10
10
10
13
13

18

10
10
10
10

10

10
10

Do |NUMBER OF TIME PERIODS

D,

D,

D¢

D4

MNEMONIC

RST
IN

ouT

LXIB

LXID

LXiH

LXISP

PUSH B

PUSH D

PUSH H

PUSH PSW
POP B

POP D

POP H

POP PSW
STA

LDA

XCHG
XTHL

SPHL
PCHL

DAD B

DADD

DADH

DAD SP
STAXB

STAX D
LDAXB
LDAX D
INX B
INX D
INXH
INX SP
MOV ry,r,
MOV M, r
MOV r, M
HLT
MVIr

MVIM
INR

DCR

INR A
DCR A

INR M

DCR M
ADDr

ADCr
SUBr

SBBr

AND r

XRATr

ORATr

CMPr

ADD M
ADCM

Rev. B

xvii

Do |NUMBER OF TIME PERIODS

RERRNRNNMNNNNNNNNRNNee TTOCO0O0000C0CO0O LT TTTOOT ¢ <
- - - — -

00000000000000111"00000000.lqlcl.lcl.lal.loo.lnlo
D.l .l.lcl1-.I-|.l.l.|-lcl¢l.|.l1n¢l¢l1¢1l..|.l1u¢l¢l¢|¢l..ll.l.lallcl.lcl-l.lcl.lo
D3 0101010101010101010101001.lo.lcl.lal-lo.looal.loo
D4 11001100110011001-loclaloo-lnloo010'01]000110
Ds 00111100001111000000000111100111-1111'.'110
D6 0000001111111100001111111110000000000110
D—I 1]11111111111100001111111'10000000000110
Q
&

a.

w BBDAAP'.I""I.'CCLRP o N w XXXXLy0<CId a.
Z 2RZESEQ B2 EEJEIdSuzZnzaslPO0000ERE<TT__5&
2 |lnnndaXo0odqd4dn AXOCRRRRJJJJJJJJJDDDDCSCDSLEDN

xviii

reset.

' \
?«‘\0* GFC"O'\(‘&\&

The 8080 uses a seven-bit ASCHl code, which is the normal 8 bit ASCII code with the parity (high-order) bit always

GRAPHIC OR CONTROL

ASCIt (HEXADECIMAL)

GRAPHIC OR CONTROL

ASCII (HEXADECIMAL)

NULL
SOM
EOA
EOM
EOT
WRU
RU
BELL
FE

H. Tab
Line Feed
V. Tab
Form
Return
SO

Sl
DCO
X-On
Tape Aux. On
X-Off
Tape Aux. Off
Error
Sync
LEM
SO

S1

S2

S3

sS4

S5

S6

S7

00
01
02
03
04
05
06
07
08
03
0A
08
oc
oD
OE
OF
10
1
12
13
14
15
16
17
18
19
1A
1B
1C-
1D
1E
1F

ACK
Alt. Mode

Rubout
|

"

TR Oy

a — e~

.

~

@1_)_,/,_.\,\/"/\-. ..

blank

7C
7D
7F
21
22
23
24
25
26
27
28
29
2A
28
2C
2D
2E
2F
3A
3B
3c
3D
3E
3F
58
5C
5D
5E
5F
40
20
30

X

GRAPHIC OR CONTROL ASCHl (HEXADECIMAL)

3
32
33
34
35
36
37
38
39
41

42
43
44
45
46
47

a8
49
aA
4B
ac
4D
4E
4F
50
51

52
53
54
55

56
57
58
59
5A

NAAXS<CHVITIPODIOZZIrXA-~"IODTMOODPOBLIODNEWN.=

K

