BASIC COMPILERS FOR THE COMPUCOLOR - By D.R. Peel

Wouldn’t you know it. Just at the time when the Compucolor seems
to be winding down, not one but two Basic Compilers appear on the
market. First, we’re informed by Mr. Keith Ochiltree of CUVIC,
Victoria, Australia, that a Basic Compiler was about to realeased for

the Compucclor over there. Apparently it will be selling for about
%16G3.606 Australian and be on an "uncopiable" disk to protect against
piracy. We don’t have any further information on this product, so

perhaps if you’re interested, contact CUVIC at the address listed 1in
the EDITOR™S CORNER for more data.

The second compiler we do have a lot of information on including
the compiler itself. Not only is the product itself superb, but the
pricing will blow your socks off. It is called FASBAS and we have
included the full instruction manual in this issue of FORUM on the
following pages. We did this rather than trying to go into 1long
explanations in explaining how to use it.

The Ffollowing letter was received from Mr. FPeter Hiner, the
author of FASBAS, and I am reprinting it here because I think Peter
better explains how he wishes to handle the distribution than I could.

" Dear Mr. Peel,

Thank vyou for publishing in FORUM the letter from Dave Thomas,
describing my Basic Compiler.

I am taking the liberty of sending vyou the program and
documentation, in the hope that vyou will be pleased with the
performance of the compiler and that you will review it in FORUM and
distribute it within your user group.

I am asking a price of $25 ((US) for the compiler and
documentation ordered direct from me, but I would prefer to reach
agreement with user groups, for them to make and distribute their own
copies. In this case I would ask user groups to send me a fee of %15
{US) per copy made.

I am well aware of the impossibility of enforcing payment of
fees. This is why I am offering the compiler at such a low price (%135
compared with a typical market price of $159-$3608). I hope that
people will be fair to me in return. »

I should like to comment on the wide readership of FORUM. I have
received two enquiries from the USA and two from Australia, following
the publication of Dave Thomas’s letter, and that did not give
information on price etc. Clearly FORUM moves far and fast.

I look forward to hearing your comments on the compiler and on my
offer.

Yours Sincerely,
Peter Hiner "

Well, 1 can only say that I’m extremely impressed with what Peter
has been able to accomplish. I wouldn’t have believed that a Basic
Compiler could be written for the Compucclor that would run in 32K let
alone on a 16K machine.

The price is incredible value for what the program is capable of
doing. I would encourage any user who orders it directly from Peter
to request NO documentation, since the entire manual is published here
in FORUM. The reason for this is that it cost Peter over $5.88 in
postage to mail the compiler to me plus the disk. Give him a break
and leave him som=thing extra for this fantastic programming effort.

The Ffollowing pages are the actual documentation for FASBAS.
They will give you all the information that you could possibly require
about the program. FASBAS needs the following regirements to run and
may be ordered directly from Peter at the address listed below.

FASBAS

MINIMUM REQUIRMENTS: 16K MEMORY
SINGLE DISK DRIVE
V6.78 or VB.79 BASIC

(C)COPYRIGHT 1982 MR. PETER HINER
' 11, PENNY CROFT
HARPENDEN
HERTS, ALS 2PD
ENGLAND

TELEPHONE @5827 64872

_—

FASBAS

INTRODUCTION

FASBAS (Fast Basic) is a program which compiles Basic
programs to make them run faster. It produces output to
disk in a modified form of Assembly Language, for
subsequent assembly into machine code using the FBASM
assembler program.

After compilation and assembly, Basic programs will run

up to 5 times faster, though the increase in speed will
vary considerably, depending on the contents of the
original Basic program. FASBAS interprets the Basic
program and generates addresses for fast access to variables,
subroutines, etc., but it uses the same ROM subroutines as
Basic for trigonometric and other functions. So a minimum
speed increase of 50% is almost certain, but further speed
increases will depend on the proportion of time used by the
Basic program for the fundamental jobs of interpretation
and searching. Many articles have been written about how
to speed up Basic by putting common subroutines at the
beginning, by dec¢laring common variables early in the
program, and by using variables to replace constants.

"These particular techniques will speed up a Basic program

but will not affect the speed of a compiled program. On the
other hand, normal good practices (such as minimising
activities within a FOR...NEXT loop) will speed up both.

On the subject of speed, it is interesting to consider a
real example. In the September, 1981 issue of Data Chip,
Ken Jenkins published a Basic program for comparing three
routines for sorting variables, using the internal clock
to measure time taken. I compiled this program and the
table shows time taken before and after compilation. 1In
every case the number of items sorted was 100.

Type of sort Random data Already in order Reverse order
routine Basic |Compiled Basic [Compiled Basic |Compiled

Bubblesort 253 70 2 1 229 83

Shellsort 58 14 11 3 28

Quicksort 21 5 12 3 » 14

Times are in seconds, and exlude fractions of a second, so
comparisons for the shorter times are not accurate. This
program is quite a favourable test for FASBAS, as it makes
heavy use of single dimension numerical arrays, which are
given special treatment by FASBAS. A program using two-
dimensional arrays would not have shown such good results.

A demonstration program SNAKE is included on the disk for
practice in the FASBAS operating procedures. In Basic the
SNAKE is so slow that you should beat it every time, but
after compilation the increase in speed makes it a much more
challenging game.

The price that has to be paid for speed is program size.
The final compiled version will be about twice the size of
the original Basic program, with a minimum size of about
750 bytes (containing a run time library of routines).

This is not likely to be a practical problem, because there
is a more severe limitation on the maximum size of Basic
program that can be compiled. FASBAS generates a tokenised
Assembly language file (SRC file) as an intermediate stage,
and for a large program the SRC file will be 4 or 5 times
the size of the Basic program. - Therefore, due to the
limited storage capacity of a disk, the maximum size of
Basic program (excluding REM statements) that can be
compiled is effectively about 8 Kbytes with one disk drive
(or 12 K with two drives).

This problem can sometimes be overcome by splitting out
part of the Basic program (e.g. instructions for a game)
and then chaining the two parts of the program.

A lot of care has been taken to ensure that FASBAS is
capable of compiling every possible combination of instruct-
ions that programmers might use in writing Basic programs.
There are a few limitations imposed (which are detailed
later), but within these limits there should be no problems.
However, it would be a brave man who declared his program
to be free of bugs, particularly a program of this complex-
ity. So please let me know if you hit problems.

DEMONSTRATION PROGRAM

The FASBAS disk contains a Basic game SNAKE.

I recommend that you try compiling this first, to see what
FASBAS can do to speed things up and to gain confidence in
how compilation ought to work before you try something
more complicated.

1. Put the FASBAS disk in the default drive (say drive 0)
2. Enter Escape D (for FCS mode) and RUN FASBAS

3. In response to 'Select Version', just hit RETURN

4. Leave the FASBAS disk in the drive

5. In response to FILESPEC >, enter SNAKE

6. When compilation is complete, control returns to FCS mode
7. Enter RUN FBASM

8. In response to the prompt, enter ASM SNAKE to O:

9. The last address indicated by the assembler should be 98CB
10. Enter LOAD SNAKE "

11. Enter SAVE SNAKE. PRG 82A0 - 98CB

Now you can test the difference between the Basic and
compiled versions.

I suggest you try the Basic version first (you will need to
enter Escape W to initialise Basic).

When you have beaten the snake, enter Escape D RUN SNAKE,
and see if you can still win. '

3.

INSTRUCTIONS FOR USE OF FASBAS

3.1

Debugging Basic

First of all, debug your Basic program thoroughly, so
that it runs consistently, without any error messages.
Compiled programs save time by omitting many of the
error checks provided by Basic, so programs with errors
in them may crash in a cloud of dots and lines,

produce a meaningless error message or simply disappear
into thin air. .

Check for unacceptable Basic statements

FASBAS will accept nearly all the Basic instruction
set, but there are a few exceptions, which are detailed
later. You may prefer to let FASBAS flag up
unacceptable statements, rather than scan through the
Basic program yourself. However, I do recommend that
you check for premature exit from FOR...NEXT loops, as
this will not cause FASBAS to indicate an error but may
cause unexpected results when you run the compiled
program. This is the most common problem encountered
(see section 5.1 for more details).

Running FASBAS

Load disk containing FASBAS into the default drive,
enter FCS mode (Escape D) and key in RUN FASBAS. (Note
that FASBAS will automatically configure itself to run
on V6.78 or V8.79 machines.)

FASBAS loads to address 82A0 and you can not re-run it
using Escape T etc. FASBAS uses overlay techniques to
reduce memory requirements, and you must always start
from scratch.

Select target machine

It is not feasible to generate compiled programs that
will automatically run on either V6.78 or V8.79
machines, as that would increase the size of the final
program considerably. However, FASBAS allows you to
select the version on which the compiled program is to
run.

To compile for the same version of machine as you are
using, enter 0 (or Return).

To compile for the other version of machine, enter 1.

FASBAS will now load the appropriate table of
addresses and routines.

- 14 -

Load disk containing Basic program

With a single disk drive, there are no options, and
FASBAS will output the Assembly language file to the
disk containing the Basic program (so make sure there
is plenty of space).

With more than one disk drive you can select the
drives for Basic input and Assembly language output
(see next section).

Response to FILE SPEC >

The minimum response required is the name of the Basic
program to be compiled (e.g. TEST). This will cause
the Basic program to be read from the disk in the
default drive and the compiled version to be written
onto the same disk (as an SRC file with the same name
as the Basic program).

The maximum response allows input and output drives,
program names and versions to be specified. For
example: :

CDh@ : TEST. BAS; 01 TO CD1 : DOODLE. SRC; ©2

Any legitimate variation or subset of the above can be
entered (but if you insist on making the output file
type anything other than SRC, remember to specify file
type during assembly).

Compilation

FASBAS makes two passes through the Basic program. The
first pass is quite fast since FASBAS is only looking
for DATA and DIM statements. During the second pass
the compiled program is generated and written to disk.

The Basic program line numbers are displayed, so that
you can see progress. If FASBAS detects any Basic
statements that it can not accept, it will display an
error message against the offending line number, and
will continue compiling at the next line.

At the end, FASBAS exits to FCS mode.

3.8

Correction of errors

Inspect the Basic program line number (s) indicated as
containing an error, and check for functions not
accepted by FASBAS. As well as obvious items such as
DEF FNA (X), FASBAS will detect undimensioned numerical
arrays with more than one dimension, and unsupported
FILE statements (e.g. FILE "T").

Some of the more subtle points (such as RESTORE to a
line numbher not containing data) will not cause FASBAS
to generate an error message. In the above example of
RESTORE, an error will be indicated during Assembly,
since there will be a pointer to a non-existent data
reference (e.g. (Shift)XHD200 means LXI H,D200 and
refers to data supposedly stored in line 200). Some

" errors may not cause any indication at all until the

compiled program is run. For example, jumping out of
FOR...NEXT loops prematurely may even work satisfactorily
when the compiled program is run (but it will probably
cause the program to give peculiar results or to crash).

A particular point to watch for is the use of POKE to
load machine code programs in what you believe to be
spare RAM (for subsequent use by the CALL function).
Since the compiled version of a program will be much
larger than the original Basic program, the addresses
being POKED may no longer be spare. The compiled
program uses memory space in a very similar way to
Basic, that is to say:-

820 Start of compiled program (which includes space
for storing variables and single dimension
numerical arrays).

End of compiled program

Start of storage space for string pointers, multi-
dimension numerical arrays and string array
pointers

End of storage space
Start of spare space

End of spare space
Start of stack space

End of stack space
Start of string manipulation space (50 bytes unless
altered by a CLEAR statement).

YYYY

End of string manipulation space
End of available memory (unless memory space
reserved during Basic initialisation)

AERR

|
{
—
{
{

- 16 -

As you can see, the start and end of spare space are
not very well defined. The start depends on size of
program and storage space for strings and arrays, and
the end depends on both the amount of space allocated
for string manipulation and how big the stack grows
during program run. Note that the stack grows from
end towards start, -and although it should decrease as
often as it grows, so that it finishes back at the end
point, it will reach peak size during deeply nested
subroutines.

The above remarks apply equally to Basic and compiled
programs. The safe way to obtain spare space is to
reserve it after the end of string manipulation space.
This can be done by initialising Basic (Escape W) and,
when asked 'Maximum RAM available?' entering a number
which is n bytes less than the actual memory available.
That is not practicable, since you would have to
remember to do it every time you ran the program.

The same result can be obtained by POKE and CLEAR
instructions at the start of the Basic program. Here
is an example for 16K and 32K machines (values for
(a) and (b) can be found from the table):

O POKE 32940, (a) : POKE 32941, (b) : CLEAR 50 (or more)
Number of bytes 16K Machine 32K Machine
to be reserved @)) @) ™)
128 127 191 127 255
256 255 190 255 254
512 255 189 255 253

This is too complicated for many people and so the
.usual practice is to use spare space after the Basic
program, variables and arrays, allowing generous
margins for errors in estimation, and then to run the
program and see if it works. The same procedure can
be applied to compiled programs, allowing twice as
much space as for the original Basic program.

Editing
FASBAS produces a modified form of assembly language
output (using single byte tokens to save space). The

SRC file, which is generated by FASBAS, can be edited
using the Com-tronics CTE program (version 2.23 on
disk). For some unknown reason the ISC editor (EDT)
loses the last block of the SRC file. No doubt this

is caused by a deficiency in the way FASBAS writes

the SRC file to disk, but I have not been able to
discover the reason. The CTE editor increases the size
of the SRC file by automatically inserting carriage
return characters (which have been omitted by FASBAS to
save space), so you may not be able to edit long programs.

Although there is no normal reason for editing the SRC
file the identities of tokens are given in the following
table. 1In each case the token is a letter together with
shift key operated. Note also that FBASM assumes that
all numbers are hexadecimal and the H postscript is
always omitted, as are spaces and commas.

Shifted Hex
Letter Value Significance

A 61 _ LDA
B 62 . STA
C 63 CALL
D 64 DCX
E 65 DAD
F 66 CPI
G 67 XCHG
H 68 ' PUSH
I 69 INX
J 6A JMP
K 6B ANA
L 6C LHLD
M 6D Mov
N 6E DB

o 6F DS

P 70 POP
Q 71 XRA
R 72 RET
S 73 SHLD
T 74 XTHL
U 75 INR
\% . 76 MVI
W 77 DCR
X 78 LXI
Y 79 JN3B
Z 7A J3A

Assembly

The FBASM assembler program is derived from the ISC
Assembler and is used in the same way as the ISC
Assembler is used for programs in normal assembly
language. The size of assembled program will be
between a third and a half of the size of the SRC file
(in other words, about twice the size of the original
Basic program). With a large program and a single disk
drive you may need to delete the original Basic
program from disk to leave enough space for assembly.

In response to the prompt (>), enter ASM.... TO O:
(or TO 1:). Entering ASM.... only will cause assembly
without writing to disk.

If FBASM finds an error it will stop (hit return to
continue assembly). You should assume in the first
instance that errors result from some unacceptable
practice in the original Basic program (e.g. RESTORE

to a line number not containing data, or a redundant
line containing instruction to GOTO or GOSUB a line
number which does not exist). You can identify the line

. number of the Basic program from the reference labels in

the SRC file (e.g. L999 : precedes the compiled contents
of line 999. 1Ignore auxiliary references such as
L999A: or L999A0:).

If you believe an error has actually been caused by a
bug in FASBAS, then please let me know.

Running the compiled program

At last the fruits of your labour will be revealed.
The program can be run as normal for LDA programs, oOr
you can load it and then save it again as a PRG.

At the end of a program run, control will return to
Basic, with a READY message. Programs can be interrupted
only by using the RESET key. To run a program again,

use ESC A.

Changing an LDA to a PRG type program

The FBASM program produces an LDA file which can be
run by entering (in FCS mode) : -

RUN TEST. LDA

The only drawback is that LDA files are slow to load,
and therefore it is preferable to convert them to PRG.
This can not be done by simply renaming the file in
the Directory, as LDA files contain extra information
(load addresses for each block of data) which must be
removed.

The simplest way requires that you note the last memory
address displayed during the FBASM run. If this last
address were for example 9872, then the method would be:-

FCS > LOAD TEST
FCS > SAVE TEST. PRG 82A0 - 9872

(Note that the start address for compiled programs is
always 82A0)

If you forgot to note the last address during the
FBASM run, you can carry out assembly again (omitting
the instruction 'TO O:' or 'TO 1:', as the LDA file has
already been written to disk).

- 20 -

BASIC STATEMENTS ACCEPTED FREELY BY BASIC

The following cafegories of Basic statement may be used
without any abnormal limitation:-

Multiple statements per line

Equivalence statements (e.g. A = 1, B = C)

Mathematics (e.g. B = A + (2/37~2) - 32E2)

Logical connectives (e.g. C = X OR 3)

Trigonometric and other functions (e.g. COS(X) ,ABS(X)etc)
PEEK and POKE (e.g. PEEK (A + B), POKE X,Y)

INP and OUT (e.g. INP(X), OUT X,Y)

PRINT (e.g. PRINT TAB(X); A$; "OK"; A+B,Y)

PLOT (e.g. PLOT 12,3,X,Y)

IF...THEN... and IF... GOTO ... (e.g. IF X THEN 200)
GOTO and GOSUB
REM

END (Restart program by using Escape™)

ON... GOTO... and ON... GOSUB

FRE(X) and FRE(X$)

WAIT X,Y and WAIT X,Y,Z

Strings and functions (e.g. A$, CHR$ (X),MID$(A$,B,C))
String arrays (any number of dimensions)

CLEAR (e.g. CLEAR, CLEAR 500)

CALL (e.g. Y = CALL(X))

INPUT (variables, arrays, strings, single or multiple)
This list contains practically everything and it is much

easier to look at the lists of statements accepted with
limitations or not accepted at all.

- 21 -

BASIC STATEMENTS ACCEPTED WITH LIMITATIONS

The following categories of statement have some limitation
imposed on their use:-

FOR... NEXT loops
DATA, READ, RESTORE
NUMERICAL ARRAYS
DIM statements
LOAD, RUN

FILE, GET, PUT

5.1

FOR....NEXT loops

All normal FOR....NEXT loop statements are permitted,
except for premature exit from loops. This is not
good practice but is tolerated by Basic, although in
some cases it could cause the stack to grow so large
that it overwrites part of the program. Type b) below
will cause compiled programs to loop back to the wrong
place.

Premature exit can occur in three forms:

a) Straightfeorward jﬁmp out of a loop, e.g.:
10 FOR X = 1 TO 10 : READ A(X)
20 IF A(X) = 0 THEN 200
30 NEXT
This should be rewritten as follows:-
10 FOR X = 1 TO 10 : READ A(X)
20 IF A(X) = 0 THEN X = 10 : NEXT : GOTO 200
30 NEXT

b) Skipping part of the inner of two nested loops,
by using a qonditional NEXT to go back to the outer

loop e.g.

110 FORA = 1 TO 3 : FORB = 1 TO 10

120 READ X(A,B) : IF X (A,B) = 0 THEN NEXT A
130 PRINT X(A,B) : NEXT B,A

140

- 22 =

This form of premature exit will certainly not be
compiled correctly and it must be rewritten to
close the loop, e.g.

110 FORA = 1 TO 3 : FORB = 1 TO 10

120 READ X(A,B) : IF X(A,B) = 0 THEN B = 10: NEXT
B,A: GOTO 140

130 PRINT X(A,B) : NEXT B,A
140

c) Sometimes the value of the variable controlling a
FORNEXT loop must be preserved at exit as it
is used afterwards, and in this case setting the
variable to its final value will give the wrong
results. So a new variable must be used to store
the exit value temporarily while the loop is
closed, e.g. :-

50 FOR X = 1 TO 10

60 IF A(X) = 0 THEN 80

70 NEXT

80 PRINT X

This could be rewritten as:

50 FOR X = 1 TO 10

60 IFA(X) = 0 THEN Y =X : X =10 :NEXT:X = Y:GOTO 80
70 NEXT

80 PRINT X

Unfortunately some Basic programs are so badly
structured, with jumps out of a loop and back in again,
that it is difficult to tell whether there has been a
premature exit or not. A useful method of finding
instances of type b) above is to edit the Basic
program, changing suspected statements like NEXT X to
simply NEXT, and then running the Basic program to see
if it still works. It is best not to change too many
at once, or you will not be able to work out where the
problems are. This technique will not find the cases
where extra bytes are left on stack, but these may not

‘be critical (and Basic can not stop the stack growing

in such cases either).

- 23 -

DATA, READ, RESTORE

These statements can be used freely except that if the
statement RESTORE to a line number (e.g. RESTORE 200)

is used, then the referenced line must contain some
DATA. (Basic allows RESTORE 200 to cause reading of
data from the next DATA statement at or after line 200.)

This error will not be found by FASBAS itself, but will
cause an error indication during assembly, due to
reference to non-existent label D.......

Numerical Arrays

Numerical arrays with two or more dimensions (e.g.A(1,2),
B(1,2,3) etc) are handled exactly the same as in Basic,
using most of the same access routines, and as a result
they do not give much increase in speed. Single
dimension numerical arrays such as X(3) are treated as

a special case to reduce access time, but this does
cause slight complications.

Essentially all numerical arrays can be used freely,
except that multi-dimension arrays must be declared
using a DIM statement (for single dimension arrays the
DIM statement is optional).

Failure to include a DIM statement for a multi-
dimension numerical array will cause FASBAS to generate
an error message against every line containing the array.

(Note that no such limitations apply to string arrays,
which are all handled as in Basic.)

A second peculiarity of numerical arrays is that single
dimension arrays can not be loaded using the LOAD"....ARY"
statement. This can be fiddled by turning them into two
dimensional arrays with one dimension set to zero

(e.g. DIM A(20,0)), with consequent loss of speed.

DIM Statements

Dimensioning of multi-dimension numerical arrays is
described in section 5.3.

Dynamic dimensioning, by using variables instead of
constants (e.g. DIM A$(X,Y)), is not allowed, and will
cause an error indication from FASBAS. This is because
when running the compiled program, variable X and Y
would be found to have value zero, and therefore a

BS ERROR would result if this were not corrected.

- 24 -

5.5 LOAD and RUN

The LOAD statement can be used freely, with the sole
exception that LOAD....ARY can be used only for
multi-dimension arrays (see section 5.3). This is
because compiled programs use a different method for
accessing single dimension arrays.

The RUN statement can be used by itself or following

a LOAD statement in the same line. Used by itself,

the RUN statement is taken as an instruction to run the
compiled program from the beginning, and any attempt to
specify a line number will be ignored (e.g. IF A$ = "y"
THEN RUN 20 will cause the program to run from the
beginning rather than from line 20).

When following a LOAD statement, RUN is assumed to be
an instruction to run a Basic program that has been
loaded, and in this case a line number can be specified.
The following example will work the same as in Basic:

1500 IF A$ = "N" THEN LOAD "MENU": RUN 100

Note that LOAD "MENU": GOTO 100 would probably not give
the results expected, since this technique is normally
used in Basic when it is required to carry forward
variable values from one program to another, and a
compiled program does not store variables in a suitable
location or format for subsequent use by Basic. -

Compiled programs can also be chained, but not using
the LOAD statement. For these you must use PLOT 27,4 :
PRINT "RUN TEST. LDA" (or "RUN TEST" for PRG type
programs) . ’

5.6 FILE, GET, PUT

FASBAS does not accept FILE "A", "T" or "E" statements,
and will give an error indication. FILE "N", "R", "C",
and "D" statements, GET and PUT can be used freely
without any limitations. However, with a large program
you might possibly find that, because the compiled
program is larger than the original, the memory space
available for file buffers is not sufficient.

6. STATEMENTS NOT ACCEPTED BY FASBAS

The following statements are not accepted by FASBAS and will
cause an ERROR indication.

DEF

FN

LIST

SAVE

CONT

- 25 -

